JPS6132830B2 - - Google Patents

Info

Publication number
JPS6132830B2
JPS6132830B2 JP12546477A JP12546477A JPS6132830B2 JP S6132830 B2 JPS6132830 B2 JP S6132830B2 JP 12546477 A JP12546477 A JP 12546477A JP 12546477 A JP12546477 A JP 12546477A JP S6132830 B2 JPS6132830 B2 JP S6132830B2
Authority
JP
Japan
Prior art keywords
oxide film
film
region
gate
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12546477A
Other languages
Japanese (ja)
Other versions
JPS5457970A (en
Inventor
Yoshito Ikuwa
Koji Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12546477A priority Critical patent/JPS5457970A/en
Publication of JPS5457970A publication Critical patent/JPS5457970A/en
Publication of JPS6132830B2 publication Critical patent/JPS6132830B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 この発明は縦型接合形電界効果トランジスタの
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a vertical junction field effect transistor.

従来の縦型接合形電界効果トランジスタ(以後
V−FETと称す)としては、第1図dに示すよ
うな構造を有するものがあるが、これは次のよう
にして製造されている。先ずドレインとなる第1
導電型を有する半導体基板1表面に下敷酸化膜1
1、窒化膜12を順次被着後、第1図aに示すよ
うに所定の位置の前記窒化膜12、下敷酸化膜1
1を順次除去し、第2導電型を有する不純物を拡
散してゲート領域2を形成する。この時、電気特
性に寄与するチヤネル領域3も形成される。続い
て第1図bに示すように所定の位置の窒化膜12
を除去し、熱酸化膜13を形成する。この時、周
知のように窒化膜12が残つている位置には熱酸
化膜13は形成されない。次に第1図cに示すよ
うに、残つている窒化膜12及びこの窒化膜12
下の下敷酸化膜11を順次除去し、第1導電型を
有する不純物を拡散してソース領域4を形成す
る。しかるのち、熱酸化膜13にゲート電極取り
出し口を窓明けし、電極配線5,6を形成して第
1図dに示すような表面ゲート構造のV−FET
が製造される。
A conventional vertical junction field effect transistor (hereinafter referred to as V-FET) has a structure as shown in FIG. 1d, and is manufactured as follows. The first drain
An underlying oxide film 1 is formed on the surface of a semiconductor substrate 1 having a conductivity type.
1. After sequentially depositing the nitride film 12, as shown in FIG.
1 is sequentially removed and impurities having a second conductivity type are diffused to form a gate region 2. At this time, a channel region 3 contributing to electrical properties is also formed. Subsequently, as shown in FIG. 1b, the nitride film 12 is
is removed, and a thermal oxide film 13 is formed. At this time, as is well known, the thermal oxide film 13 is not formed at the position where the nitride film 12 remains. Next, as shown in FIG. 1c, the remaining nitride film 12 and this nitride film 12 are
The underlying oxide film 11 is sequentially removed, and impurities having the first conductivity type are diffused to form the source region 4. Thereafter, a gate electrode outlet is opened in the thermal oxide film 13, and electrode wirings 5 and 6 are formed to form a V-FET with a surface gate structure as shown in FIG. 1d.
is manufactured.

しかしながら、かかるV−FETの製造方法に
は次に示すような欠点がある。
However, this V-FET manufacturing method has the following drawbacks.

(1) 窒化膜12と半導体基板1の熱膨張率が異な
るため、拡散工程における高温処理で窒化膜と
半導体の膨張の差より半導体基板表面に欠陥が
発生し易く、耐圧歩留が良くない。
(1) Since the coefficients of thermal expansion of the nitride film 12 and the semiconductor substrate 1 are different, defects are likely to occur on the surface of the semiconductor substrate due to the difference in expansion between the nitride film and the semiconductor during high-temperature treatment in the diffusion process, resulting in poor breakdown voltage yield.

(2) ソース・ゲート領域間の半導体基板表面上に
外部からの不純物の侵入を防ぐパシベーシヨン
膜を形成することは困難であり、酸化膜13が
汚染され耐圧が劣化し易い。
(2) It is difficult to form a passivation film on the surface of the semiconductor substrate between the source and gate regions to prevent impurities from entering from the outside, and the oxide film 13 is likely to be contaminated and the withstand voltage will be deteriorated.

(3) 1つ1つのソース領域4の中心位置はゲート
写真製版で決まるが、その広さは下敷酸化膜1
1のサイドエツチングと熱酸化膜13の窒化膜
12下への喰い込みで決定されるため再現性に
乏しく、ソース領域4とゲート領域2の距離が
バラツキ易い。このため通常リーチスルーで決
まるソース・ゲート耐圧のバラツキが大きい。
(3) The center position of each source region 4 is determined by gate photolithography, but its width is determined by the underlying oxide film 1.
Since it is determined by the side etching of No. 1 and the digging of the thermal oxide film 13 under the nitride film 12, reproducibility is poor and the distance between the source region 4 and the gate region 2 tends to vary. For this reason, there is usually a large variation in the source/gate breakdown voltage determined by reach-through.

(4) 窒化膜12を利用した選択酸化方式では、周
知のように酸化終了時、窒化膜12が残つてい
た位置に形成されるソース領域4において、合
金時にAがSi中に深く喰い込み易く、その結
果浅いソース領域4をAがつきぬけ易いた
め、ソース・ゲート耐圧歩留が悪くなる。
(4) In the selective oxidation method using the nitride film 12, as is well known, at the end of oxidation, in the source region 4 formed at the position where the nitride film 12 remained, A digs deeply into the Si during alloying. As a result, A easily penetrates the shallow source region 4, resulting in poor source/gate breakdown voltage yield.

(5) ソース領域4形成のため窒化膜12とその下
の下敷酸化膜11を除去する時に、ゲート領域
2上の熱酸化膜13もエツチングされて膜厚が
減少するため、酸化膜13を介しゲート領域2
上にも延在するソース電極とゲート領域2間の
モス容量が増加し、高周波用に適さない。
(5) When removing the nitride film 12 and the underlying oxide film 11 below it to form the source region 4, the thermal oxide film 13 on the gate region 2 is also etched and the film thickness is reduced. Gate area 2
The MOS capacitance between the source electrode and the gate region 2 which also extends upward increases, making it unsuitable for high frequency applications.

本発明はかかる従来のV−FETの構造および
製造方法の欠点を解消することのできる新規のV
−FETの構造およびその製造方法を提供するも
のである。
The present invention provides a novel V-FET that can overcome the drawbacks of the conventional V-FET structure and manufacturing method.
-Provides a structure of an FET and a method for manufacturing the same.

以下第2図a〜eに従つて本発明の一実施例を
説明する。
An embodiment of the present invention will be described below with reference to FIGS. 2a to 2e.

本発明のV−FETの製造方法は、例えば次に
示すようなものである。まず第2図aに示すよう
に、ドレインとなるN型半導体基板1の表面に第
1の酸化膜21を5000Å、パシベーシヨン効果の
ある燐をドープした酸化膜22(第1の絶縁膜
P・S・G膜と称す)を2000Åの膜厚に順次形成
する。
The method for manufacturing the V-FET of the present invention is, for example, as shown below. First, as shown in FIG. 2a, a first oxide film 21 with a thickness of 5000 Å is formed on the surface of an N-type semiconductor substrate 1 that will become a drain, and a phosphorous-doped oxide film 22 (first insulating film P.S.・G film) is sequentially formed to a thickness of 2000 Å.

次に第2図bに示すように、ゲート領域および
ソース領域を形成する位置上の前記P・S・G膜
22および酸化膜21を写真製版にて順次除去し
て半導体基板1表面を露出後、前記P・S・G膜
22を含む半導体基板1表面に多結晶シリコン膜
23を5000Å、第2の酸化膜24を4000Åの膜厚
に順次被着する。この第2の酸化膜24は多結晶
シリコン膜23を7000Åの厚さに被着後、その表
面側の2000Åを酸化することで形成しても良い。
続いてゲート領域を形成する位置を含む所定の領
域上の前記第2の酸化膜24を写真製版にて除去
する。
Next, as shown in FIG. 2b, the P/S/G film 22 and the oxide film 21 on the positions where the gate region and the source region are to be formed are sequentially removed by photolithography to expose the surface of the semiconductor substrate 1. A polycrystalline silicon film 23 and a second oxide film 24 are sequentially deposited to a thickness of 5000 Å and 4000 Å on the surface of the semiconductor substrate 1 including the P.S.G film 22, respectively. This second oxide film 24 may be formed by depositing the polycrystalline silicon film 23 to a thickness of 7000 Å and then oxidizing 2000 Å on the surface side.
Subsequently, the second oxide film 24 on a predetermined region including a position where a gate region is to be formed is removed by photolithography.

この第2の酸化膜24を選択除去するマスクの
ゲート窓明け幅を、前記P・S・G膜22および
酸化膜21を選択除去するマスク(以後第第1マ
スクと呼ぶ)のゲート窓明け幅より大きくしてお
けば、前記第1マスクでゲート領域を形成すべく
前記P・S・G膜22および酸化膜21を除去
し、半導体基板1表面を露出させた領域上の第2
の酸化膜24を除去するためのマスク合せは精密
さを必要としない。
The gate window opening width of the mask for selectively removing the second oxide film 24 is the gate window opening width of the mask for selectively removing the P/S/G film 22 and the oxide film 21 (hereinafter referred to as the first mask). If it is made larger, the P/S/G film 22 and the oxide film 21 are removed to form a gate region using the first mask, and the second mask is removed on the area where the surface of the semiconductor substrate 1 is exposed.
Mask alignment for removing the oxide film 24 does not require precision.

次に第2図cに示すように、第2の酸化膜24
をマスクとして多結晶シリコン膜23を除去後、
P型不純物を所定量イオン注入し、その後熱処理
を加えてゲート領域2を形成する。この際、電気
特性に寄与するチヤネル領域3も形成される。次
に前記ゲート領域2を含む半導体基板1表面に第
3の酸化膜25を6000Å、第2のP・S・G膜
(第2の絶縁膜)26を4000Åの厚膜に順次被着
後、ソース領域を形成する位置上の前記P・S・
G膜26、第3の酸化膜25および第2の酸化膜
24を写真製版にて順次除去し、続いて第2図d
に示すように多結晶シリコン膜23を介してN型
不純物を拡散し、ソース領域4を形成する。この
際の写真製版で使用するマスクのソース窓明け幅
を、前記第1のマスクのソース窓明け幅より広く
しておけば、第1マスクで半導体基板1表面を露
出させたソース領域上の前記第2のP・S・G膜
26、第3の酸化膜25および第2の酸化膜24
を除去するためのマスク合せは精密さを必要とし
ない。なおN型不純物を拡散することにより前記
多結晶シリコン膜23は導電性を持つようにな
る。続いて第2のP・S・G膜26および第3の
酸化膜25にゲートコンタンクト用の窓明けを行
ない、A電極配線5,6を形成することによ
り、第2図eに示すように本発明の構造を有する
V−FETが得られる。
Next, as shown in FIG. 2c, a second oxide film 24 is formed.
After removing the polycrystalline silicon film 23 using as a mask,
A predetermined amount of P-type impurity is ion-implanted, and then heat treatment is applied to form the gate region 2. At this time, a channel region 3 contributing to electrical characteristics is also formed. Next, on the surface of the semiconductor substrate 1 including the gate region 2, a third oxide film 25 with a thickness of 6000 Å and a second P/S/G film (second insulating film) 26 with a thickness of 4000 Å are sequentially deposited. The P・S・on the position where the source region is formed
The G film 26, the third oxide film 25, and the second oxide film 24 are sequentially removed by photolithography, and then as shown in FIG.
As shown in FIG. 2, N-type impurities are diffused through the polycrystalline silicon film 23 to form the source region 4. If the source window opening width of the mask used in photolithography is made wider than the source window opening width of the first mask, it is possible to Second P/S/G film 26, third oxide film 25, and second oxide film 24
Mask alignment to remove does not require precision. Note that by diffusing N-type impurities, the polycrystalline silicon film 23 becomes conductive. Subsequently, a window for gate contact is formed in the second P/S/G film 26 and the third oxide film 25, and the A electrode wirings 5 and 6 are formed, as shown in FIG. 2e. A V-FET having the structure of the present invention is obtained.

本発明の構造を有するV−FET及びV−FET
の製造方法は次のような利点がある。
V-FET and V-FET having the structure of the present invention
The manufacturing method has the following advantages.

(1) ソース領域4とゲート領域2を形成する位置
が1つのマスクで決まる上、この写真製版は絶
縁膜に段差が無い状態で行なわれるので再現性
が良い。従つて得られる特性は再現性が非常に
良い。
(1) The positions where the source region 4 and gate region 2 are to be formed are determined by one mask, and this photolithography is performed without any step in the insulating film, so reproducibility is good. Therefore, the obtained characteristics have very good reproducibility.

(2) 電極取り出し領域を除く素子表面全域に、
P・S・G膜に代表されるパシベーシヨン膜を
形成することが可能であり、外部からの汚染に
強く耐圧化が少ない。
(2) All over the device surface except for the electrode extraction area.
It is possible to form a passivation film typified by P/S/G films, which is highly resistant to external contamination and requires little voltage resistance.

(3) ソース領域4とゲート領域2の間の半導体基
板1表面上に形成された多層の絶縁膜のある層
間に不純物がドープされた結果導電性を持つよ
うになつたソース領域4上より延在する多結晶
シリコン膜23があり、この多結晶シリコン膜
23はソース電位に固定されているため絶縁膜
中の電荷は動きにくく、耐圧劣化が少ない。
(3) A layer of a multilayer insulating film formed on the surface of the semiconductor substrate 1 between the source region 4 and the gate region 2 has an impurity doped between the layers, and as a result has become conductive. Since the polycrystalline silicon film 23 is fixed at the source potential, the charges in the insulating film do not easily move, and there is little deterioration in breakdown voltage.

(4) 半導体と熱膨張率が異なり、そのため拡散工
程で半導体基板表面に欠陥を発生させ易い窒化
膜を使用せず、ソース領域4とゲート領域2が
セルフアラインメント可能となるから、拡散工
程での欠陥発生が少なくなり、耐圧歩留が大幅
に向上する。
(4) The source region 4 and gate region 2 can be self-aligned without using a nitride film, which has a coefficient of thermal expansion different from that of a semiconductor and therefore tends to cause defects on the semiconductor substrate surface during the diffusion process. The occurrence of defects is reduced, and the breakdown voltage yield is significantly improved.

(5) 多結晶シリコン膜23を介してソース不純物
を拡散するので、高濃度にソース不純物をデポ
してもソース領域4の拡散深さは浅く出来る。
その結果ソース・ゲート間距離は大きくでき、
通常リーチスルーで決まる表面ゲート型V−
FETのソース・ゲート耐圧が大きくできる。
(5) Since the source impurity is diffused through the polycrystalline silicon film 23, the diffusion depth of the source region 4 can be made shallow even if the source impurity is deposited at a high concentration.
As a result, the distance between the source and gate can be increased,
Surface gate type V- usually determined by reach-through
FET source/gate breakdown voltage can be increased.

(6) ソース電極5は多結晶シリコン膜23上にA
を被着して形成されるため、合金時のソース
領域4におけるAのSi中への喰い込みがA
と多結晶シリコンの合金化で抑制され、Aが
浅いソース領域4をつらぬくことが減少し、ソ
ース・ゲート間耐圧歩留が上昇する。
(6) The source electrode 5 is placed on the polycrystalline silicon film 23.
Since it is formed by depositing A, the penetration of A into the Si in the source region 4 during alloying is less than A.
This is suppressed by alloying with polycrystalline silicon, reducing the penetration of A into the shallow source region 4, and increasing the source-to-gate breakdown voltage yield.

(7) C・V・Dによりゲート酸化膜を形成するこ
とが可能であるから、ゲート酸化膜を厚くする
ことが可能である。
(7) Since the gate oxide film can be formed by CVD, it is possible to increase the thickness of the gate oxide film.

従つて酸化膜を介して所定のゲート領域2上に
延在するソース電極5とゲート領域2間のモス容
量が小さくでき、高周波化に適する。
Therefore, the MOS capacitance between the source electrode 5 extending over the predetermined gate region 2 via the oxide film and the gate region 2 can be reduced, making it suitable for higher frequencies.

なお、上記実施例はNチヤネルV−FETを例
にとり説明したが、PチヤネルV−FETに適用
しても何ら差しつかえない。またパシベーシヨン
膜は燐ドープト酸化膜に限定されるものではな
く、鉛ドープト酸化膜等を使用しても同様の効果
を奏することは明らかである。
Although the above embodiment has been described using an N-channel V-FET as an example, there is no problem in applying it to a P-channel V-FET. Furthermore, it is clear that the passivation film is not limited to a phosphorus-doped oxide film, and the same effect can be achieved even if a lead-doped oxide film or the like is used.

以上のように、本発明によれば、電極取り出し
領域を除く素子表面全域にパシベーシヨン効果を
有する第1、第2の絶縁膜を形成するとともに、
この第1、第2の絶縁膜間のソース領域とゲート
領域間の部分にかつこれと連続して基板主面のソ
ース領域を覆うように多結晶シリコン膜を形成
し、該多結晶シリコン膜には不純物拡散により上
記ソース領域とゲート領域間の基板の表面電位を
安定化させるよう導電性を持たせるようにしたの
で、確実なパシベーシヨン効果が得られ耐圧劣化
を著しく少なくすることができ、しかもその製造
に際し窒化膜を使用していないので、拡散工程で
の高温処理時に基板表面の欠陥発生が少なくな
り、耐圧歩留が大幅に向上するという効果があ
る。
As described above, according to the present invention, first and second insulating films having a passivation effect are formed over the entire surface of the device except for the electrode extraction region, and
A polycrystalline silicon film is formed in a portion between the source region and the gate region between the first and second insulating films so as to continuously cover the source region on the main surface of the substrate. The material is made conductive by impurity diffusion to stabilize the surface potential of the substrate between the source region and the gate region, so a reliable passivation effect can be obtained and breakdown voltage deterioration can be significantly reduced. Since no nitride film is used during manufacturing, the occurrence of defects on the substrate surface during high-temperature treatment in the diffusion process is reduced, and the withstand voltage yield is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜dは従来のV−FETの製造方法を
示す主要工程における模式的な断面図、第2図a
〜eはこの発明によるV−FETの製造方法の一
実施例を示す主要工程における模式的な断面図で
ある。 図において、1は半導体基板、2はゲート領
域、4はソース領域、5はソース電極、6はゲー
ト電極、21は第1の酸化膜、22はP・S・G
膜(第1の酸化膜)、23は多結晶シリコン膜、
24は第2の酸化膜、25は第3の酸化膜、26
は第2のP・S・G膜(第2の絶縁膜)である。
なお、図中同一符号は夫々同一または相当部分を
示す。
Figures 1 a to d are schematic cross-sectional views of the main steps of the conventional V-FET manufacturing method, and Figure 2 a
-e are schematic cross-sectional views showing main steps of an embodiment of the V-FET manufacturing method according to the present invention. In the figure, 1 is a semiconductor substrate, 2 is a gate region, 4 is a source region, 5 is a source electrode, 6 is a gate electrode, 21 is a first oxide film, 22 is a P.S.G.
film (first oxide film), 23 is a polycrystalline silicon film,
24 is a second oxide film, 25 is a third oxide film, 26
is the second P/S/G film (second insulating film).
Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型を有する半導体基板の一主面上
に、第1酸化膜及び燐あるいは鉛等の不純物がド
ープされた酸化膜からなる第1の絶縁膜を順次被
着する工程、ソース領域及びゲート領域を形成す
るべき所定表面領域上の前記第1の絶縁膜および
第1の酸化膜を順次選択的に除去する工程、前記
第1の絶縁膜を含む半導体基板表面に多結晶シリ
コン膜および第2の酸化膜を順次被着する工程、
ゲート領域を形成すべき領域を含む所定表面領域
上の前記第2の酸化膜および多結晶シリコン膜を
順次除去し、第2導電型を有する不純物を導入し
てゲート領域を形成する工程、前記第2の酸化膜
を含む半導体基板表面に第3の酸化膜及び燐ある
いは鉛等の不純物がドープされた酸化膜からなる
第2の絶縁膜を順次被着する工程、ソース領域を
形成すべき領域上の前記第2の絶縁膜、第3の酸
化膜および第2の酸化膜を順次選択的に除去し、
前記多結晶シリコン膜を介して第1導電型を有す
る不純物を導入してソース領域を形成する工程を
含む縦型接合形電界効果トランジスタの製造方
法。
1. A step of sequentially depositing a first insulating film consisting of a first oxide film and an oxide film doped with an impurity such as phosphorus or lead on one principal surface of a semiconductor substrate having a first conductivity type; a step of sequentially and selectively removing the first insulating film and the first oxide film on a predetermined surface area where a gate region is to be formed; step 2 of sequentially depositing oxide films;
a step of sequentially removing the second oxide film and the polycrystalline silicon film on a predetermined surface region including a region where a gate region is to be formed, and introducing an impurity having a second conductivity type to form a gate region; A step of sequentially depositing a third oxide film and a second insulating film made of an oxide film doped with impurities such as phosphorus or lead on the surface of the semiconductor substrate containing the oxide film No. 2, on the region where the source region is to be formed. selectively removing the second insulating film, the third oxide film, and the second oxide film in sequence;
A method for manufacturing a vertical junction field effect transistor, including the step of introducing an impurity having a first conductivity type through the polycrystalline silicon film to form a source region.
JP12546477A 1977-10-18 1977-10-18 Vertical junction-type field effect transistor and its production Granted JPS5457970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12546477A JPS5457970A (en) 1977-10-18 1977-10-18 Vertical junction-type field effect transistor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12546477A JPS5457970A (en) 1977-10-18 1977-10-18 Vertical junction-type field effect transistor and its production

Publications (2)

Publication Number Publication Date
JPS5457970A JPS5457970A (en) 1979-05-10
JPS6132830B2 true JPS6132830B2 (en) 1986-07-29

Family

ID=14910727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12546477A Granted JPS5457970A (en) 1977-10-18 1977-10-18 Vertical junction-type field effect transistor and its production

Country Status (1)

Country Link
JP (1) JPS5457970A (en)

Also Published As

Publication number Publication date
JPS5457970A (en) 1979-05-10

Similar Documents

Publication Publication Date Title
US5583065A (en) Method of making a MOS semiconductor device
KR930001559B1 (en) Manufacturing method of fet
US3943542A (en) High reliability, low leakage, self-aligned silicon gate FET and method of fabricating same
JPS6143864B2 (en)
KR910006700B1 (en) The method of manufacturing of mos type semiconductor device
US4054989A (en) High reliability, low leakage, self-aligned silicon gate FET and method of fabricating same
JPH07153952A (en) Semiconductor device and manufacture thereof
JPH0555262A (en) Vertical mos filed-effect transistor and manufacture thereof
JPH098135A (en) Manufacture of semiconductor device
JP2729422B2 (en) Semiconductor device
JPS5817673A (en) Field-effect transistor
JPH06177376A (en) Manufacture of mos field-effect semiconductor device
JPS6132830B2 (en)
JP2759472B2 (en) Method of manufacturing high voltage MOS field effect transistor
JPH0127589B2 (en)
JPS6228579B2 (en)
JPS62285468A (en) Manufacture of ldd field-effect transistor
JPH05129335A (en) Manufacture of vertical-type transistor
JPS6237543B2 (en)
JP3521921B2 (en) Method for manufacturing semiconductor device
EP0115287A2 (en) Semiconductor device including a metal silicide
KR0135670B1 (en) Method of manufacturing semiconductor device
JP2705583B2 (en) Method for manufacturing semiconductor device
JPH03188637A (en) Manufacture of semiconductor device
JP2765142B2 (en) Method for manufacturing semiconductor device