JPS61296780A - Formation of back electrode of light-emitting diode - Google Patents
Formation of back electrode of light-emitting diodeInfo
- Publication number
- JPS61296780A JPS61296780A JP60138705A JP13870585A JPS61296780A JP S61296780 A JPS61296780 A JP S61296780A JP 60138705 A JP60138705 A JP 60138705A JP 13870585 A JP13870585 A JP 13870585A JP S61296780 A JPS61296780 A JP S61296780A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- emitting diode
- metal mask
- area
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
発光ダイオードは長寿命・低消費電力・高速でちるとい
う長所を有する為、近年各方面において使用されるよう
になシ各種ディスプレイ、及び家電製品等のリモートコ
ントロール装置の発光源として幅広く使用されている。[Detailed Description of the Invention] [Industrial Field of Application] Light emitting diodes have the advantages of long life, low power consumption, and quick turn off, so in recent years they have been used in various fields, including various displays and home appliances. It is widely used as a light source for remote control devices such as.
本発明は上記発光ダイオードの構造に関し、特に裏面電
極の形成方法に関する。The present invention relates to the structure of the above-mentioned light emitting diode, and particularly to a method for forming a back electrode.
発光ダイオードは一般的に第2図に示したようにGaP
、GaAs等の基板l上に同種の層又はGaAs+−x
Px、GaA1.−>(Asx等の3元系化合物半導体
層1,2をエピタキシャル成長させ、PN接合を形成し
たウェハースに所定の電極を表面及び裏面に形成した後
、所定寸法のペレットに分離して構成される。また、ダ
イボンディングする側の裏面電極4は、PN接合にて発
生した光の裏面での吸収を低減するため裏面電極面積を
小さくする工夫がなされ、一般的には50〜100μm
φの円形の微小なドツト電極を複数個蒸着する方法が採
用されてきた。なお5は表面電極である。Light emitting diodes are generally made of GaP as shown in Figure 2.
, a similar layer on a substrate l such as GaAs or GaAs+-x
Px, GaA1. ->(After epitaxially growing ternary compound semiconductor layers 1 and 2 such as Asx and forming a PN junction, predetermined electrodes are formed on the front and back surfaces of a wafer, and then separating into pellets of predetermined dimensions. Furthermore, in order to reduce the absorption of light generated by the PN junction on the back surface of the back electrode 4 on the die bonding side, the area of the back electrode 4 is made small, and is generally 50 to 100 μm.
A method has been adopted in which a plurality of circular minute dot electrodes of φ are deposited. Note that 5 is a surface electrode.
上述した円形の微小電極の形成は、モリブデン等を素材
とする金属薄板をエツチングによシ必要とする電極形状
の穴を多数設けた蒸着用メタルマスクにより、ウェハー
スの裏面へ密着カバーして、そこへ直接所定の電極材料
を蒸着することによシ行なうのが一般的である。ところ
が、メタルマスク蒸着法は円形電極の径の大聖化及び電
極の数を増して線電極面積を増加させたい場合に、メタ
ルマスク製造に関する点で限界が生じることとなる。The above-mentioned circular microelectrodes are formed by etching a thin metal plate made of molybdenum or the like, and then using a metal mask for vapor deposition, which has many holes in the shape of the necessary electrodes, to closely cover the back surface of the wafer. This is generally done by vapor depositing a predetermined electrode material directly onto the electrode. However, the metal mask deposition method has limitations in terms of metal mask manufacturing when it is desired to increase the diameter of the circular electrode and increase the number of electrodes to increase the area of the line electrode.
つまシメタルマスクのエツチング精度上、及びマスク自
身の機械的強度上、通常使用される25〜30μmの板
厚に関して隣接する穴の最近接間隔が50μmに制限さ
れるからである。例えば、4002mX400μmペレ
ットの場合、50〜100μmφ の円形ドツト電極の
場合、裏面全面積に対する電極面積の割合は最大30%
に制限される。ゆえに発光ダイオード特にリモートコン
トロール用発信源として大電流領域(xoomA以上)
での使用が多いG a A s系赤外発光ダイオードで
は裏面電極面積が小さいことに起因して大電流での順方
向電圧の増大をまねいていた。それにより乾電池を電源
として使用する定電圧駆動の発光ダイオードでは裏面電
極を小さくすることKよシ出力を増加させたにもかかわ
らず大電流での順方向電圧増大による通電電流減少の影
響が犬きくなシ、全体として出力の線形性の悪化を引き
起こしていた。そこで電極面積と出力のバランスを考慮
して最適値を求める必要があった。This is because, due to the etching accuracy of the metal mask and the mechanical strength of the mask itself, the closest distance between adjacent holes is limited to 50 .mu.m for a commonly used plate thickness of 25 to 30 .mu.m. For example, in the case of a 4002 m x 400 μm pellet, in the case of a circular dot electrode with a diameter of 50 to 100 μm, the ratio of the electrode area to the total area of the back surface is at most 30%.
limited to. Therefore, light emitting diodes can be used as a source for remote control, especially in the large current range (more than xoomA).
In the case of GaAs-based infrared light emitting diodes, which are often used in , the back electrode area is small, leading to an increase in forward voltage at large currents. As a result, in constant-voltage light-emitting diodes that use dry batteries as a power source, the back electrode has to be made smaller, and even though the output has been increased, the effect of reducing the current flowing due to the increase in forward voltage at large currents is significant. However, this caused a deterioration in the linearity of the output as a whole. Therefore, it was necessary to find the optimal value by considering the balance between electrode area and output.
また、上述した不具合を取り除く為にフォト・レジスト
法によれば第3図ら)に示すように網目状の電極構造4
1を採用して電極面積を増大させることができる。しか
し、フォト・レジスト法はメタルマスク法に比較して工
程が長く々シエ数増大となるのみならず、エツチングに
よるムラの影響により部分的に実効電極面積にバラツキ
を生じるという問題点を有していた。In addition, in order to eliminate the above-mentioned problems, the photoresist method is used to form a mesh-like electrode structure 4 as shown in Fig. 3.
1 can be adopted to increase the electrode area. However, compared to the metal mask method, the photoresist method not only requires a longer process and increases the number of sheaths, but also has the problem that the effective electrode area partially varies due to unevenness caused by etching. Ta.
C問題点を解決するための手段〕
本発明は、発光ダイオードの裏面電極において、従来の
欠点を取り除く為、メタルマスク蒸着法において、電極
形状を従来の円形から矩形または多角形に変更し、電極
部分の面積を増加させることを可能ならしめ、メタルマ
スク蒸着法においても発光ダイオードの使用目的によ勺
歩留シを低下させずに幅広く裏面電極面積を選択できる
方法を提供するものである。Means for Solving Problem C] In order to eliminate the drawbacks of the conventional back electrode of a light emitting diode, the present invention changes the shape of the electrode from the conventional circular shape to a rectangular or polygonal shape in the metal mask evaporation method. The present invention provides a method in which the area of the back electrode can be selected from a wide range without reducing the yield depending on the purpose of use of the light emitting diode even in the metal mask evaporation method.
実施例り
前述したようにメタルマスク蒸着法に使用するマスクは
材質は主にモリブデンで板厚は25〜30μmが一般的
であシ、その場合穴と穴との最近接距離を50μm以下
にすることは困難である。Examples As mentioned above, the mask used in the metal mask evaporation method is mainly made of molybdenum and generally has a thickness of 25 to 30 μm. In this case, the closest distance between the holes should be 50 μm or less. That is difficult.
そこで電極形状を従来の円形から矩形に変更することに
よシミ極面積の増大を計った。不実施例では第1図(a
)に示すように100μmX200μmの短冊状の矩形
の穴を最近接50μmの間隔で複数個配列したメタルマ
スクを製作してG a A s系赤外発光ダイオードエ
ピタキシャルウェハースへ金を主体とする所定の電極材
料を蒸着した。その後400μmX 400μmの細切
シペレット状にして本発明による発光ダイオードペレッ
トは完成した。Therefore, we attempted to increase the stain electrode area by changing the electrode shape from the conventional circular shape to a rectangular shape. In the non-implemented example, Fig. 1 (a
), a metal mask in which a plurality of 100 μm x 200 μm strip-shaped rectangular holes are arranged at intervals of 50 μm closest to each other is manufactured, and predetermined electrodes mainly made of gold are applied to the GaAs-based infrared light emitting diode epitaxial wafer. The material was deposited. Thereafter, the pellets were cut into pieces of 400 μm×400 μm to complete a light emitting diode pellet according to the present invention.
本実施例に使用したメタルマスクの場合、ペレット裏面
全面積に対する電極42の面積の占める割合は50%で
ある。In the case of the metal mask used in this example, the area of the electrode 42 accounts for 50% of the total area of the back surface of the pellet.
実施例Z
本実施例は、裏面電極形状を正六角形とした場合の、一
実施例である。第1図(b)に示すように一辺100μ
mの正六角形の穴を、50μmの間隔で、三方向にくシ
返し配列したメタルマスクを製作して、実施例1と同様
GaAs系赤外発光ダイオードエピタキシャルウェハー
スへ金を主体とする所定の電極材料を蒸着した。その後
400μmX400μmの細切シペレット状にした。本
実施例に使用したメタルマスクの場合、ペレット裏面全
面積に対する電極42の面積の占める割合Pi 50.
6%である。Example Z This example is an example in which the shape of the back electrode is a regular hexagon. As shown in Figure 1(b), each side is 100μ
A metal mask in which regular hexagonal holes of m in size are arranged in a comb pattern in three directions at intervals of 50 μm was fabricated, and predetermined electrodes mainly made of gold were placed on a GaAs-based infrared light emitting diode epitaxial wafer as in Example 1. The material was deposited. Thereafter, it was cut into 400 μm×400 μm pellets. In the case of the metal mask used in this example, the ratio Pi of the area of the electrode 42 to the total area of the back surface of the pellet was 50.
It is 6%.
〔発明の効果〕
以上説明したように発光ダイオードの東面電極形成にお
いて、メタルマスク蒸着法においても、電極形状を矩形
または多角形とすることによシミ極面積を増加させるこ
とが可能となシ、辺の寸法を変化させることで400μ
mX400μmペレットの場合、最大50%程度まで電
極比率を高めることができる。本発明によシ、フォトエ
ツチング法によらずとも裏面電極面積を増し、大電流通
電時も順方向電圧を低く押えた発光ダイオードを製造す
ることができた。電圧値は円形電極の従来品で順方向電
流Ir=400mA時L70Vを示していたG a A
s赤外発光ダイオードが本発明の実施例1及び2とも
L60Vへ低下し、フォトエツチング法による網目状t
&(電極比率50%)の値と同等となった。[Effects of the Invention] As explained above, when forming the east electrode of a light emitting diode, it is possible to increase the stain pole area by making the electrode shape rectangular or polygonal even in the metal mask evaporation method. , 400μ by changing the side dimensions
In the case of m×400 μm pellets, the electrode ratio can be increased up to about 50%. According to the present invention, a light emitting diode with an increased back electrode area and a low forward voltage even when a large current is applied can be manufactured without using the photoetching method. The voltage value is G a A, which was a conventional product with a circular electrode and showed L70V at forward current Ir = 400 mA.
s The infrared light emitting diode in both Examples 1 and 2 of the present invention was lowered to L60V, and the mesh-like t
It became equivalent to the value of & (electrode ratio 50%).
また、メタルマスク蒸着法による為、フォトエツチング
法に比較して工数の低減及び歩留の改善がなされること
は言うまでもない。Furthermore, since the metal mask evaporation method is used, it goes without saying that the number of man-hours is reduced and the yield is improved compared to the photoetching method.
第1図(a)及びΦ)は本発明による発光ダイオードの
ダイボンティング側裏面電極の平面図を示し、第2図は
発光ダイオードの最も一般的な構造を示す断面図、第3
図は従来技術による裏面電極の平面図を示し、(a)は
メタルマスク法によシ形成され九円形ドツト電極、Φ)
はフォトエツチング法により形成される網状電極を示す
。
4.41.42・・・・・・裏面電極、5・・・・・・
裏面電極。
代理人 弁理士 内 原 2 ・〜ゝく1(a) and Φ) show a plan view of the back electrode on the die bonding side of a light emitting diode according to the present invention, FIG. 2 is a sectional view showing the most general structure of a light emitting diode, and FIG.
The figure shows a plan view of a back electrode according to the prior art, and (a) is a nine-circular dot electrode formed by a metal mask method, Φ).
shows a mesh electrode formed by photoetching. 4.41.42... Back electrode, 5...
Back electrode. Agent Patent Attorney Uchihara 2 ・〜ゝku
Claims (1)
を施す側の裏面電極において、電極を形成しようとする
基板に直接メタルマスクを密着させて電極材料を蒸着す
るいわゆるメタルマスク蒸着法において、メタルマスク
の穴部の形状を矩形または多角形にすることにより裏面
全面積に対する電極部面積の占有率を30%以上に構成
することを特徴とする発光ダイオードの裏面電極形成方
法。In the electrode of a light-emitting diode, especially the back electrode on the side to which die bonding is performed, in the so-called metal mask evaporation method, in which the electrode material is vapor deposited by closely contacting the metal mask directly to the substrate on which the electrode is to be formed, the holes in the metal mask are A method for forming a backside electrode of a light emitting diode, characterized in that the area of the electrode portion occupies 30% or more of the total area of the backside by making the shape rectangular or polygonal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60138705A JPS61296780A (en) | 1985-06-25 | 1985-06-25 | Formation of back electrode of light-emitting diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60138705A JPS61296780A (en) | 1985-06-25 | 1985-06-25 | Formation of back electrode of light-emitting diode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61296780A true JPS61296780A (en) | 1986-12-27 |
Family
ID=15228196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60138705A Pending JPS61296780A (en) | 1985-06-25 | 1985-06-25 | Formation of back electrode of light-emitting diode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61296780A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001061765A1 (en) * | 2000-02-15 | 2001-08-23 | Osram Opto Semiconductors Gmbh | Semiconductor component which emits radiation, and method for producing the same |
US6730939B2 (en) | 2000-02-15 | 2004-05-04 | Osram Opto Semiconductors Gmbh | Radiation emitting semiconductor device |
JP2008251925A (en) * | 2007-03-30 | 2008-10-16 | Sanyo Electric Co Ltd | Diode |
CN102163666A (en) * | 2010-02-24 | 2011-08-24 | 乐金显示有限公司 | Hybrid light emitting diode chip and light emitting diode device having the same, and manufacturing method thereof |
-
1985
- 1985-06-25 JP JP60138705A patent/JPS61296780A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001061765A1 (en) * | 2000-02-15 | 2001-08-23 | Osram Opto Semiconductors Gmbh | Semiconductor component which emits radiation, and method for producing the same |
US6730939B2 (en) | 2000-02-15 | 2004-05-04 | Osram Opto Semiconductors Gmbh | Radiation emitting semiconductor device |
US7195942B2 (en) | 2000-02-15 | 2007-03-27 | Osram Gmbh | Radiation emitting semiconductor device |
US7205578B2 (en) | 2000-02-15 | 2007-04-17 | Osram Gmbh | Semiconductor component which emits radiation, and method for producing the same |
JP2008251925A (en) * | 2007-03-30 | 2008-10-16 | Sanyo Electric Co Ltd | Diode |
CN102163666A (en) * | 2010-02-24 | 2011-08-24 | 乐金显示有限公司 | Hybrid light emitting diode chip and light emitting diode device having the same, and manufacturing method thereof |
US8816365B2 (en) | 2010-02-24 | 2014-08-26 | Lg Display Co., Ltd. | Hybrid light emitting diode chip and light emitting diode device having the same, and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006344623C1 (en) | Rod-shaped semiconductor device | |
JPS61110476A (en) | Infrared light emitting diode | |
JPS61296780A (en) | Formation of back electrode of light-emitting diode | |
CN110660887B (en) | LED epitaxial structure and manufacturing method thereof, suspension type chip structure and manufacturing method thereof | |
GB1308707A (en) | Television camera tubes | |
CN113594306B (en) | Micro semiconductor light-emitting device and manufacturing method thereof | |
JPH08306643A (en) | Electrode and light emitting element for iii-v group compound semiconductor | |
US6168962B1 (en) | Method of manufacturing a semiconductor light emitting device | |
JP3489395B2 (en) | Semiconductor light emitting device | |
CN112750935B (en) | LED chip and manufacturing method thereof | |
JPS61296779A (en) | Formation of back electrode of light emitting diode | |
CN101447546B (en) | LED chip-containing photonic crystal side direction light extractor | |
KR910006707B1 (en) | Light emitted diode and its method of manufacturing | |
CN108281532B (en) | Flexible LED chip and manufacturing method and packaging method thereof | |
JPH03190287A (en) | Light-emitting diode array | |
TWM591707U (en) | LED chip structure | |
KR100801922B1 (en) | Production method for light emitting element | |
JPH04103666U (en) | Electrode of blue light emitting device | |
JP3311946B2 (en) | Light emitting diode array | |
JPS62139365A (en) | Multi-step type semiconductor light emitting device | |
JPS61214587A (en) | Manufacture of semiconductor device | |
CN218867059U (en) | Wafer jig | |
JPS62145885A (en) | Semiconductor light emitting element | |
CN113594307A (en) | Miniature semiconductor light-emitting device and manufacturing method thereof | |
JPS62252180A (en) | Semiconductor element |