JPS6134275B2 - - Google Patents

Info

Publication number
JPS6134275B2
JPS6134275B2 JP15629080A JP15629080A JPS6134275B2 JP S6134275 B2 JPS6134275 B2 JP S6134275B2 JP 15629080 A JP15629080 A JP 15629080A JP 15629080 A JP15629080 A JP 15629080A JP S6134275 B2 JPS6134275 B2 JP S6134275B2
Authority
JP
Japan
Prior art keywords
groove
electrode
type layer
light emitting
multicolor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15629080A
Other languages
Japanese (ja)
Other versions
JPS5779687A (en
Inventor
Takao Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15629080A priority Critical patent/JPS5779687A/en
Publication of JPS5779687A publication Critical patent/JPS5779687A/en
Publication of JPS6134275B2 publication Critical patent/JPS6134275B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination

Description

【発明の詳細な説明】 本発明は多色発光素子の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a multicolor light emitting device.

第1図は、GaP(ガリウム隣)多色発光素子を
示し、1はキヤリア濃度が0.5〜10×1017cm-3であ
るN型GaP結晶基板であり、該結晶基板1の一主
面2の結晶方位は111B面である。
FIG. 1 shows a GaP (next to gallium) multicolor light emitting device, in which 1 is an N-type GaP crystal substrate with a carrier concentration of 0.5 to 10×10 17 cm −3 , and one main surface 2 of the crystal substrate 1 The crystal orientation of is the 111B plane.

3〜6は上記結晶基板1の一主面2上に順次エ
ピタキシヤル成長させて積層したGaPからなる第
1N型層、第1P型層、第2P型層、第2N型層であ
る。
3 to 6 are GaP layers formed by sequential epitaxial growth on one principal surface 2 of the crystal substrate 1;
They are a 1N type layer, a 1st P type layer, a 2nd P type layer, and a 2nd N type layer.

第1N型層3はTe(テルル)を不純物として含
み、5〜10×1017cm-3のキヤリア濃度を有する。
第1P型層4はZn(亜鉛)を不純物として含み、
1〜5×1017cm-3の濃度を有すると共に更にO
(酸素)を含み発光中心としてのZn−Oペアを有
している。従つて第1N型層3と第1P型層4との
境界には赤色発光接合7が存在することとなる。
The first N-type layer 3 contains Te (tellurium) as an impurity and has a carrier concentration of 5 to 10×10 17 cm −3 .
The first P-type layer 4 contains Zn (zinc) as an impurity,
It has a concentration of 1 to 5 × 10 17 cm -3 and also O
(oxygen) and has a Zn-O pair as a luminescent center. Therefore, a red light-emitting junction 7 exists at the boundary between the first N-type layer 3 and the first P-type layer 4.

第2P型層5はZnを不純物として含み、5〜10
×1017cm-3のキヤリア濃度を有し、第2N型層6は
S(硫黄)を不純物として含み、1〜20×1016cm
-3のキヤリア濃度を有する。更に第2P型層5及び
第2N型層6は共に発光中心としてのN(窒素)
を含んでいるので第2P型層5と第2N型層6との
境界には緑色発光接合8が存在することとなる。
The second P-type layer 5 contains Zn as an impurity, and contains 5 to 10
The second N -type layer 6 contains S (sulfur) as an impurity, and has a carrier concentration of 1 to 20 × 10 16 cm
It has a carrier density of -3 . Furthermore, both the second P-type layer 5 and the second N-type layer 6 contain N (nitrogen) as a luminescent center.
Therefore, a green light-emitting junction 8 exists at the boundary between the second P-type layer 5 and the second N-type layer 6.

9は上記第2N型層6表面にAu−Sn(金−錫)
を蒸着させてなる円形の第1電極、10は上記結
晶基板1裏面にAu−Snを蒸着させてなる円形の
第2電極、11は第2N型層6より深く、第1N型
層3に達しない深さの段部12にAu−Zn(金−
亜鉛)を蒸着させてなる第3電極である。
9 is Au-Sn (gold-tin) on the surface of the second N-type layer 6.
10 is a circular second electrode formed by vapor-depositing Au-Sn on the back surface of the crystal substrate 1; 11 is deeper than the second N-type layer 6 and reaches the first N-type layer 3; Au-Zn (gold-
The third electrode is formed by vapor-depositing zinc.

従つて第3電極11を共通正電極として第1電
極9−第3電極11間に順方向バイアスをかけれ
ば緑色発光接合8付近で緑色発光が生じ、第2電
極10−第3電極11間に順方向バイアスをかけ
れば赤色発光接合7付近で赤色発光が生じる。ま
た、第1電極9−第3電極11間及び第2電極1
0−第3電極11間に夫々順方向バイアスをかけ
両接合8,7に流れる電流を夫々調整することに
より赤から緑までの種々の発光色を得ることが可
能である。
Therefore, if the third electrode 11 is used as a common positive electrode and a forward bias is applied between the first electrode 9 and the third electrode 11, green light will be emitted near the green light emitting junction 8, and light will be emitted between the second electrode 10 and the third electrode 11. When a forward bias is applied, red light emission occurs near the red light emitting junction 7. Moreover, between the first electrode 9 and the third electrode 11 and between the second electrode 1
By applying a forward bias between the 0 and 3rd electrodes 11 and adjusting the current flowing through both junctions 8 and 7, it is possible to obtain various emitted light colors from red to green.

第2図はGaP多色発光素子の製造方法における
従来の工程を示す。
FIG. 2 shows conventional steps in a method for manufacturing a GaP multicolor light emitting device.

第2図Aは第1の工程を示し、N型GaP結晶基
板13の結晶方位が111B面である一主面14
上にGaPからなる第1N型層15、第1P型層1
6、第2P型層17、第2N型層18を順次エピタ
キシヤル成長させて積層してなるGaP多色発光素
子基板19を準備する。
FIG. 2A shows the first step, in which one main surface 14 of the N-type GaP crystal substrate 13 has a crystal orientation of 111B plane.
A first N-type layer 15 made of GaP and a first P-type layer 1 on top.
6. A GaP multicolor light emitting device substrate 19 is prepared by epitaxially growing a second P type layer 17 and a second N type layer 18 in order.

第2図Bは第2の工程を示し、上記素子基板1
9表面にAu−Znを蒸着してなる円形の第1電極
20を一定間隔で形成すると共に、上記素子基板
19裏面にAu−Znを蒸着してなる円形の第2電
極21を一定間隔で形成する。
FIG. 2B shows the second step, in which the element substrate 1
9, circular first electrodes 20 made by vapor depositing Au-Zn are formed at regular intervals, and circular second electrodes 21 made by vapor depositing Au-Zn are formed at regular intervals on the back surface of the element substrate 19. do.

第2図Cは第3の工程を示し、素子基板19表
面にホトレジ等によりエツチングマスク22を形
成する。
FIG. 2C shows the third step, in which an etching mask 22 is formed on the surface of the element substrate 19 by photoresist or the like.

第2図Dは第4の工程を示し、隣り合う第1電
極20間に存在するエツチングマスク22の一部
をホトエツチング等により除去し紙面垂直方向に
延在する幅Aの開口23を形成する。
FIG. 2D shows a fourth step, in which a portion of the etching mask 22 existing between adjacent first electrodes 20 is removed by photoetching or the like to form an opening 23 having a width A extending in the direction perpendicular to the plane of the paper.

第2図Eは第5の工程を示し、上記素子基板1
9表面のエツチングマスク22の施されていない
開口23部に王水等によりエツチングを施し紙面
垂直方向に延在する溝24を形成する。
FIG. 2E shows the fifth step, in which the element substrate 1
The opening 23 on the surface 9 where the etching mask 22 is not formed is etched with aqua regia or the like to form a groove 24 extending in the direction perpendicular to the plane of the paper.

このときエツチング方向は結晶基板13に向か
う方向だけでなく素子基板19表面と平行となる
方向にも存在し、従つて上記溝24はエツチング
マスク22下まで拡張される。また、上記溝24
は第2N型層18より深く、第1N型層15に達し
ない深さBに形成される。
At this time, the etching direction exists not only toward the crystal substrate 13 but also in a direction parallel to the surface of the element substrate 19, so that the groove 24 is extended to below the etching mask 22. In addition, the groove 24
is formed at a depth B that is deeper than the second N-type layer 18 and does not reach the first N-type layer 15.

第2図Fは第6の工程を示し、上記溝24底面
に第3電極25をAu−Znを蒸着することにより
形成する。
FIG. 2F shows a sixth step, in which a third electrode 25 is formed on the bottom surface of the groove 24 by depositing Au--Zn.

上記蒸着方向は図中矢印で示す如く水平に載置
された素子基板19表面に対して略垂直となる方
向より行なう。このとき溝24がエツチングマス
ク22下まで拡張されており、従つてエツチング
マスク22の一部が溝24に対してひさしとなり
溝24の側壁へ第3電極25が形成されない。
The vapor deposition is performed in a direction substantially perpendicular to the surface of the element substrate 19 placed horizontally, as shown by the arrow in the figure. At this time, the groove 24 is extended to the bottom of the etching mask 22, and therefore, a part of the etching mask 22 serves as an overhang for the groove 24, and the third electrode 25 is not formed on the side wall of the groove 24.

第2図Gは第7の工程を示し、エツチングマス
ク22を除去する。
FIG. 2G shows the seventh step, in which the etching mask 22 is removed.

第2図Hは最終工程を示し、溝24の一方の測
壁つまり図中−間に沿つてダイシングを行な
い第1図の素子を分離形成する。
FIG. 2H shows the final step, in which dicing is performed along one wall of the groove 24, that is, along the center line in the figure, and the elements shown in FIG. 1 are separated and formed.

上記第2図の工程において開口23の幅Aは
100〜150μm、溝24の深さBは30μm程度であ
り、溝24の深さBに対して開口23の幅Aが狭
く、従つて溝24の底面は平坦とならず、このよ
うな面に蒸着形成された第3電極25表面も平坦
とならない。
In the process shown in FIG. 2 above, the width A of the opening 23 is
The depth B of the groove 24 is about 30 μm, and the width A of the opening 23 is narrower than the depth B of the groove 24, so the bottom surface of the groove 24 is not flat. The surface of the third electrode 25 formed by vapor deposition is also not flat.

このような平坦でない第3電極25表面に金属
細線をボンデイングしようとしても困難であり、
失敗率もかなり高くなる。
It is difficult to bond a thin metal wire to such an uneven surface of the third electrode 25;
The failure rate is also quite high.

そこで溝24の底面を平坦にする方法として開
口23を充分広くすることが考えられるが、ただ
単に開口23を広くするだけでは最終的なチツプ
サイズが大きくなり、従つて一枚の素子基板19
から製造される発光素子数が減少してしまうとい
う問題が生じる。
Therefore, one possible method for flattening the bottom surface of the groove 24 is to make the opening 23 sufficiently wide, but simply making the opening 23 wide will increase the final chip size, and therefore, it will be difficult to make one element substrate 19.
A problem arises in that the number of light emitting elements manufactured from the above method decreases.

本発明は上記の点に鑑みてなされたもので、以
下一実施例に基づき本発明を詳述する。
The present invention has been made in view of the above points, and will be described in detail below based on one embodiment.

第3図は本発明における一実施例の多色発光素
子の製造工程を示す。
FIG. 3 shows the manufacturing process of a multicolor light emitting device according to an embodiment of the present invention.

第3図Aは本実施例における第1の工程を示
し、一主面30が111B面であるN型GaP結晶
基板31上にGaPからなる第1N型層32、第1P
型層33、第2P型層34、第2N型層35を順次
エピタキシヤル成長させて積層してなるGaP多色
発光素子基板36を準備する。
FIG. 3A shows the first step in this embodiment, in which a first N-type layer 32 made of GaP, a first P
A GaP multicolor light emitting element substrate 36 is prepared by sequentially epitaxially growing a type layer 33, a second P type layer 34, and a second N type layer 35 and stacking them.

第3図Bは第2の工程を示し、素子基板36表
面(第2N型層35表面)にAu−Snを蒸着して円
形の第1電極37を形成すると共に素子基板36
裏面にAu−Snを蒸着して円形の第2電極38を
形成する。
FIG. 3B shows the second step, in which Au-Sn is vapor-deposited on the surface of the element substrate 36 (the surface of the second N-type layer 35) to form a circular first electrode 37 and
A circular second electrode 38 is formed by depositing Au-Sn on the back surface.

このとき第1電極37は2個を1組として一定
間隔で形成され、第2電極38は第1電極37と
対向する素子基板36の裏面に形成されている。
At this time, the first electrodes 37 are formed in sets of two at regular intervals, and the second electrodes 38 are formed on the back surface of the element substrate 36 facing the first electrodes 37.

第3図Cは第3の工程を示し、素子基板36表
面にホトレジ等によりエツチングマスク39を形
成する。
FIG. 3C shows the third step, in which an etching mask 39 is formed on the surface of the element substrate 36 by photoresist or the like.

第3図Dは第4の工程を示し、隣接する第1電
極37の組の間のエツチングマスク39をホトエ
ツチング等により除去し、紙面垂直方向に延在す
る幅A′の開口40を設ける。
FIG. 3D shows a fourth step, in which the etching mask 39 between adjacent sets of first electrodes 37 is removed by photoetching or the like to form an opening 40 having a width A' extending in the direction perpendicular to the plane of the paper.

上記開口40の幅A′は第2図に示した従来例
の溝24の幅Aに比して約2〜3倍である300μ
m程度である。
The width A' of the opening 40 is 300μ, which is about 2 to 3 times the width A of the groove 24 of the conventional example shown in FIG.
It is about m.

第3図Eは第5の工程を示し、上記素子基板3
6表面のエツチングマスク39が施されていない
開口40に王水等によりエツチングを施し紙面垂
直方向に延在する溝41を形成する。
FIG. 3E shows the fifth step, in which the element substrate 3
Etching is performed using aqua regia or the like on the openings 40 on the surface 6 where the etching mask 39 is not applied to form grooves 41 extending in the direction perpendicular to the plane of the paper.

上記溝41は上記第2図Eの工程において形成
された溝24と同様にエツチングマスク39下ま
で拡張され、かつ第2N型層35より深く、第1N
型層32に達しない深さB′、つまり第2図に示し
た溝24の深さBと同じく約30μmに形成され
る。
The groove 41 extends below the etching mask 39 like the groove 24 formed in the step shown in FIG.
It is formed to a depth B' that does not reach the mold layer 32, that is, about 30 μm, which is the same as the depth B of the groove 24 shown in FIG.

従つて、第2図に示した従来例に比して幅B′が
深さAに対して充分大きく、開口40の真下に位
置する溝41の底面は平坦となる。
Therefore, compared to the conventional example shown in FIG. 2, the width B' is sufficiently larger than the depth A, and the bottom surface of the groove 41 located directly below the opening 40 is flat.

第3図Fは第6の工程を示し、溝41の底面に
Au−Znを蒸着して第3電極42を形成する。
FIG. 3F shows the sixth step, in which the bottom surface of the groove 41 is
The third electrode 42 is formed by depositing Au-Zn.

上記蒸着は素子基板36を水平に載置し素子基
板36表面に垂直となる方向より行なう。このと
き溝41がエツチングマスク39下まで拡張形成
されているためエツチングマスク39の一部が溝
41に対してひさしとなるので第3電極42は溝
41の側壁に形成されることなく平坦な溝41の
全底面に表面が平坦となるように形成される。
The above vapor deposition is carried out in a direction perpendicular to the surface of the element substrate 36 with the element substrate 36 placed horizontally. At this time, since the groove 41 is extended to the bottom of the etching mask 39, a part of the etching mask 39 serves as an overhang for the groove 41, so the third electrode 42 is not formed on the side wall of the groove 41, but instead is formed in a flat groove. 41 so that the entire bottom surface thereof is flat.

第3図Gは第7の工程を示し、エツチングマス
ク39を除去する。
FIG. 3G shows the seventh step, in which the etching mask 39 is removed.

第3図Hは本実施例の最終工程を示し、溝41
の略中心線つまり図中−間及び組となつてい
る第1電極37と第1電極37との間を溝41の
延在方向と平行となる方向、つまり図中−間
に沿つて夫々ダイシングを行ない第1図の素子を
分離成形する。
FIG. 3H shows the final step of this embodiment, in which the groove 41
Dicing is performed along the approximate center line of the figure, that is, the direction parallel to the direction in which the groove 41 extends, that is, between the first electrodes 37 and the pair of first electrodes 37, that is, along the middle line of the figure, respectively. The elements shown in FIG. 1 are separately molded.

本実施例では第3電極42は平坦となると共に
第3図Hに示す如く−間及び−間に沿つ
て夫々ダイシングを行なうため、得られた素子は
第2図で得られた素子に比して第3電極42が平
坦であり、かつ素子の大きさも従来の素子(350
μm角の寸法)と比して決して大きくならない。
In this example, the third electrode 42 becomes flat and is diced along the - and - spaces as shown in FIG. Therefore, the third electrode 42 is flat, and the size of the element is similar to that of the conventional element (350 mm).
It never becomes larger than the size (in μm square).

尚、上記実施例では第1電極37をダイシング
線−の両側に個別に設けたが第4図に示す如
くダイシング線−を跨がるように一体に設け
ても最終的には第1図の素子に分離成形されるこ
とは明白である。
In the above embodiment, the first electrodes 37 were individually provided on both sides of the dicing line, but even if they were provided integrally across the dicing line as shown in FIG. 4, the final result would be as shown in FIG. It is clear that the elements are separately molded.

以上の説明から明らかな如く、本発明によれば
多色発光素子の溝底面に形成された電極は平坦と
なり、従つて上記電極にワイヤボンドする際に失
敗率が低くなる。また例えば本発明により直径50
mmのGaP多色発光素子基板から得られる素子数は
第2図に示した従来方法の場合と同じ1万個程度
となり素子基板の利用効率も低下することがな
い。
As is clear from the above description, according to the present invention, the electrode formed on the bottom surface of the groove of the multicolor light emitting element becomes flat, and therefore the failure rate when wire bonding to the electrode is lowered. For example, according to the present invention, diameter 50
The number of devices obtained from a GaP multicolor light emitting device substrate of mm is about 10,000, which is the same as in the conventional method shown in FIG. 2, and the utilization efficiency of the device substrate is not reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はGaP多色発光素子の断面図、第2図A
〜Hは従来のGaP多色発光素子の製造方法を示す
工程別断面図、第3図A〜Hは本発明によるGaP
多色発光素子の製造方法の一実施例を示す工程別
断面図、第4図は本発明の他の実施例を示す断面
図である。 36……(GaP)多色発光素子基板、37……
第1電極(電極手段)、41……溝、42……第
3電極。
Figure 1 is a cross-sectional view of a GaP multicolor light emitting device, Figure 2A
~H are cross-sectional views showing each step of the conventional GaP multicolor light emitting device manufacturing method, and Figures 3A~H are GaP according to the present invention.
FIG. 4 is a cross-sectional view showing another example of the present invention. 36... (GaP) multicolor light emitting element substrate, 37...
First electrode (electrode means), 41... groove, 42... third electrode.

Claims (1)

【特許請求の範囲】 1 多色発光素子基板を準備する工程と、該素子
基板表面に一定間隔で電極手段を形成する工程
と、隣接する上記電極手段の間に溝を形成する工
程と、該溝の底面に電極を形成する工程と、上記
溝の略中心線に沿いダイシングすると共に上記電
極手段の略中央を溝の延在方向と平行となる方向
にダイシングする工程とからなることを特徴とす
る多色発光素子の製造方法。 2 上記電極手段は上記ダイシング工程前に一体
に形成されていることを特徴とする特許請求の範
囲第1項記載の多色発光素子の製造方法。 3 上記電極手段は上記ダイシング工程前にダイ
シング線の両側に個別に形成されていることを特
徴とする特許請求の範囲第1項記載の多色発光素
子の製造方法。
[Claims] 1. A step of preparing a multicolor light emitting element substrate, a step of forming electrode means at regular intervals on the surface of the element substrate, a step of forming grooves between the adjacent electrode means, The method is characterized by comprising a step of forming an electrode on the bottom surface of the groove, and a step of dicing along the approximate center line of the groove and dicing approximately the center of the electrode means in a direction parallel to the extending direction of the groove. A method for manufacturing a multicolor light emitting device. 2. The method of manufacturing a multicolor light emitting device according to claim 1, wherein the electrode means is integrally formed before the dicing step. 3. The method of manufacturing a multicolor light emitting device according to claim 1, wherein the electrode means are individually formed on both sides of the dicing line before the dicing step.
JP15629080A 1980-11-05 1980-11-05 Manufacture of polychromic luminous element Granted JPS5779687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15629080A JPS5779687A (en) 1980-11-05 1980-11-05 Manufacture of polychromic luminous element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15629080A JPS5779687A (en) 1980-11-05 1980-11-05 Manufacture of polychromic luminous element

Publications (2)

Publication Number Publication Date
JPS5779687A JPS5779687A (en) 1982-05-18
JPS6134275B2 true JPS6134275B2 (en) 1986-08-06

Family

ID=15624570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15629080A Granted JPS5779687A (en) 1980-11-05 1980-11-05 Manufacture of polychromic luminous element

Country Status (1)

Country Link
JP (1) JPS5779687A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743958U (en) * 1993-05-06 1995-10-09 俊雄 半田 Shogi set with pockets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743958U (en) * 1993-05-06 1995-10-09 俊雄 半田 Shogi set with pockets

Also Published As

Publication number Publication date
JPS5779687A (en) 1982-05-18

Similar Documents

Publication Publication Date Title
US5739552A (en) Semiconductor light emitting diode producing visible light
US4080245A (en) Process for manufacturing a gallium phosphide electroluminescent device
JPH08213657A (en) Visible light led device and its manufacture
JP2001144322A (en) Method of manufacturing semiconductor device and semiconductor light-emitting device
JP3706448B2 (en) Semiconductor light emitting device
JP3511213B2 (en) Optical semiconductor device
JP3602929B2 (en) Group III nitride semiconductor light emitting device
JPS6134275B2 (en)
JP2008071910A (en) Nitride semiconductor light emitting diode element and its manufacturing method
JPH0531317B2 (en)
JP3311946B2 (en) Light emitting diode array
JP3117203B2 (en) Light emitting diode and method of manufacturing the same
JP3662832B2 (en) Light emitting device and manufacturing method thereof
JPS6212916B2 (en)
JPH0363830B2 (en)
JPH0613654A (en) Semiconductor light emitting element and its manufacture
JPH0682862B2 (en) Light emitting diode
JPH03190287A (en) Light-emitting diode array
JPH07263746A (en) Light emitting diode and manufacture of it
JPH06310752A (en) Silicon carbide light emitting diode
JPS6134274B2 (en)
KR940000687B1 (en) Led and manufacturing method thereof
JP3488783B2 (en) Light emitting diode array
JP2003069077A (en) Method of manufacturing gallium nitride light emitting diode
JPS62252180A (en) Semiconductor element