JPH0613654A - Semiconductor light emitting element and its manufacture - Google Patents

Semiconductor light emitting element and its manufacture

Info

Publication number
JPH0613654A
JPH0613654A JP5288493A JP5288493A JPH0613654A JP H0613654 A JPH0613654 A JP H0613654A JP 5288493 A JP5288493 A JP 5288493A JP 5288493 A JP5288493 A JP 5288493A JP H0613654 A JPH0613654 A JP H0613654A
Authority
JP
Japan
Prior art keywords
semiconductor region
semiconductor
region
junction
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5288493A
Other languages
Japanese (ja)
Other versions
JP2827795B2 (en
Inventor
Hitoshi Murofushi
仁 室伏
Yoshiaki Tada
善紀 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP5052884A priority Critical patent/JP2827795B2/en
Publication of JPH0613654A publication Critical patent/JPH0613654A/en
Application granted granted Critical
Publication of JP2827795B2 publication Critical patent/JP2827795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Die Bonding (AREA)
  • Dicing (AREA)

Abstract

PURPOSE:To prevent solder from attaching by moving a p-n junction part exposed in a mesa etching side surface of a GaP light emitting diode. CONSTITUTION:A wafer is prepared by forming an n-type first semiconductor region 11 and a p-type second semiconductor region 12 on an n-type semiconductor substrate 10 by an epitaxial growth method. A groove is formed along a division predetermined region of a surface at the side of the second semiconductor region 12 of the wafer. Then, p-type impurities are diffused to include the groove. After an anode electrode 18 and a cathode electrode 19 are formed, a light emitting diode is acquired by cutting by the groove. It is then adhered to a metal substrate 20 by solder 21 with the anode electrode 18 down.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、GaP発光ダイオ−ド
等の半導体発光素子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device such as a GaP light emitting diode and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の緑色発光ダイオードチップは図1
に示すようにn型ガリウムりん(GaP)の基板(サブ
ストレイト)1と、この上に周知の液相エピタキシャル
法によって順次に積層されたn型GaP領域2及びp型
GaP領域3と、上下の電極4、5とからなる。GaP
のバンドギャップ(禁制帯幅)Egは2.24eVであ
り、その発光波長λは約555nmであるが、間接遷移
型であるため発光効率はあまり高く得られない。そこ
で、一般にはn型のGaP領域2の上方側即ちpn接合
6の近傍とp型GaP領域3とに半導体領域の導電型を
決定する不純物(n型はテルル、p型は亜鉛)に加えて
アイソエレクトロニックトラップとなる窒素(N)をド
ープする。これによって、発光波長は若干大きく(約5
65nm)なるが、発光効率を高めることができる。
2. Description of the Related Art A conventional green LED chip is shown in FIG.
As shown in FIG. 3, a substrate (substrate) 1 of n-type gallium phosphide (GaP), an n-type GaP region 2 and a p-type GaP region 3 sequentially stacked thereon by a known liquid phase epitaxial method, and It is composed of electrodes 4 and 5. GaP
Has a bandgap (forbidden band width) Eg of 2.24 eV and an emission wavelength λ of about 555 nm, but it is an indirect transition type, so that the emission efficiency is not so high. Therefore, in general, in addition to the impurities (n-type tellurium and p-type zinc) that determine the conductivity type of the semiconductor region above the n-type GaP region 2, that is, near the pn junction 6 and the p-type GaP region 3. Doping with nitrogen (N), which serves as an isoelectronic trap. As a result, the emission wavelength is slightly larger (about 5
65 nm), but the luminous efficiency can be increased.

【0003】[0003]

【発明が解決しようとする課題】ところで、この種のG
aP発光ダイオードチップにおいて、別の回路素子との
関係上、n型の基板1側即ちカソード電極が設けられて
いる領域側を上面にして実装したいことがある。この目
的のために、図2に示すようにp型GaP領域3に設け
たアノード電極6を金属取付基体7に半田8で接続する
と、p型GaP領域3が薄いために、半田8がpn接合
6にまで至り、pn接合6が短絡するおそれがある。そ
こで、図3に示すようにp型GaP領域3を厚く形成す
ることが考えられる。しかし、このp型GaP領域3
に、導電型決定不純物としての亜鉛(Zn)の他に窒素
(N)がドープされていると、p型領域3のpn接合6
から離れた部分がpn接合6の近傍のキャリアの再結合
に基づいて発生する光を吸収する領域(吸収端)として
作用し、発光効率を低下させる。これを解決する手段と
して、p型GaP領域3のpn接合から離れた部分に窒
素をドープしないことも考えられるが、このようにする
と窒素をドープしない領域に格子欠陥が生じ、結果とし
て、発光効率はあまり大きく得られない。
By the way, this type of G
In the aP light-emitting diode chip, it may be desired to mount the n-type substrate 1 side, that is, the region side where the cathode electrode is provided, as the upper surface in relation to another circuit element. For this purpose, as shown in FIG. 2, when the anode electrode 6 provided in the p-type GaP region 3 is connected to the metal mounting base 7 with the solder 8, the p-type GaP region 3 is thin, so that the solder 8 is pn-bonded. 6, the pn junction 6 may be short-circuited. Therefore, it is conceivable to form the p-type GaP region 3 thick as shown in FIG. However, this p-type GaP region 3
Is doped with nitrogen (N) in addition to zinc (Zn) as a conductivity determining impurity, the pn junction 6 of the p-type region 3 is doped.
The portion apart from acts as a region (absorption edge) that absorbs light generated due to recombination of carriers in the vicinity of the pn junction 6, and reduces the light emission efficiency. As a means for solving this, it is conceivable that the part of the p-type GaP region 3 away from the pn junction is not doped with nitrogen. However, in this case, a lattice defect occurs in the region not doped with nitrogen, and as a result, the luminous efficiency is increased. Can't get too big.

【0004】そこで、本発明の目的はpn接合の露出部
を半導体チップの取付面から遠ざけることができる半導
体発光素子及びその製造方法を提供することにある。
Therefore, it is an object of the present invention to provide a semiconductor light emitting device and a manufacturing method thereof in which an exposed portion of a pn junction can be separated from a mounting surface of a semiconductor chip.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明は、第1の導電型の化合物半導体からなる第1
の半導体領域と、前記第1の半導体領域よりも薄い厚さ
を有して前記第1の半導体領域に隣接配置された第2の
導電型の化合物半導体領域からなる第2の半導体領域
と、前記第1の半導体領域と前記第2の半導体領域との
間のpn接合の周縁を覆うように形成された第2の導電
型の化合物半導体からなる第3の半導体領域とを備え、
前記第3の半導体領域と前記第1の半導体領域との間の
pn接合の露出部が前記第1、第2及び第3の半導体領
域を含んで形成された半導体チップの側面に位置し、且
つこのpn接合の露出部と前記第2の半導体領域の表面
との距離が前記第1及び第2の半導体領域間のpn接合
と前記第2の半導体領域の表面との距離よりも大きいこ
とを特徴とする半導体発光素子に係わるものである。な
お、本発明の第1の半導体領域は実施例の第1の半導体
領域11又はこれと基板10との組み合せ部分に対応す
る。上記目的を達成するための方法の発明は、第1の導
電型のGaP半導体基板上に第1の導電型のGaPから
なる第1の半導体領域と第2の導電型のGaPからなる
第2の半導体領域が順次に形成されており、且つ少なく
とも前記第2の半導体領域には窒素がドープされてお
り、且つ前記第2の半導体領域が前記半導体基板と前記
第1の半導体領域との合計の厚さよりも薄く形成されて
いるウエハを用意する工程と、前記ウエハの前記第2の
半導体領域側から前記第1の半導体領域と前記第2の半
導体領域との間のpn接合よりも深くエッチングして分
断予定領域に溝を形成する工程と、前記ウエハの前記溝
が形成されている領域に第2の導電型の不純物を拡散し
て第2の導電型の第3の半導体領域を形成する工程と、
前記ウエハを前記溝で切断する工程とを有するGaP半
導体発光素子の製造方法に係わるものである。
The present invention for achieving the above object comprises a first compound semiconductor of the first conductivity type.
A semiconductor region of a second conductivity type, the second semiconductor region having a thickness smaller than that of the first semiconductor region and arranged adjacent to the first semiconductor region. A third semiconductor region made of a compound semiconductor of a second conductivity type formed so as to cover a peripheral edge of a pn junction between the first semiconductor region and the second semiconductor region,
An exposed portion of a pn junction between the third semiconductor region and the first semiconductor region is located on a side surface of a semiconductor chip including the first, second and third semiconductor regions, and The distance between the exposed portion of the pn junction and the surface of the second semiconductor region is larger than the distance between the pn junction between the first and second semiconductor regions and the surface of the second semiconductor region. The present invention relates to a semiconductor light emitting device. The first semiconductor region of the present invention corresponds to the first semiconductor region 11 of the embodiment or the combination of the first semiconductor region 11 and the substrate 10. An invention of a method for achieving the above object is to provide a first semiconductor region of GaP of the first conductivity type and a second semiconductor region of GaP of the second conductivity type on a GaP semiconductor substrate of the first conductivity type. Semiconductor regions are sequentially formed, at least the second semiconductor region is doped with nitrogen, and the second semiconductor region has a total thickness of the semiconductor substrate and the first semiconductor region. A step of preparing a wafer formed to be thinner than that, and etching deeper than a pn junction between the first semiconductor region and the second semiconductor region from the second semiconductor region side of the wafer. Forming a groove in a region to be divided, and forming a third semiconductor region of a second conductivity type by diffusing a second conductivity type impurity into a region of the wafer where the groove is formed. ,
The present invention relates to a method for manufacturing a GaP semiconductor light emitting device, the method including the step of cutting the wafer along the groove.

【0006】[0006]

【作用及び効果】本発明における第3の半導体領域はp
n接合の露出部を第2の半導体領域から遠ざけるために
働きを有する。この結果、第2の半導体領域側を取付基
体に半田等の導電性接着剤で固着した時に、pn接合に
導電性接着剤が付着しにくくなる。 方法の発明に従っ
て溝を形成し、ここに第3の半導体領域を設ければ、p
n接合の露出部の移動を容易に達成することができる。
FUNCTION AND EFFECT The third semiconductor region in the present invention is p
It has a function of keeping the exposed portion of the n-junction away from the second semiconductor region. As a result, when the second semiconductor region side is fixed to the mounting substrate with a conductive adhesive such as solder, it becomes difficult for the conductive adhesive to adhere to the pn junction. If a groove is formed in accordance with the method invention and a third semiconductor region is provided therein, p
The movement of the exposed portion of the n-junction can be easily achieved.

【0007】[0007]

【実施例】次に、図4〜図8を参照して本発明の実施例
に係わる緑色GaP発光素子即ち緑色発光ダイオード
(LED)及びその製造方法を説明する。
Next, a green GaP light emitting device, that is, a green light emitting diode (LED) and a method of manufacturing the same according to an embodiment of the present invention will be described with reference to FIGS.

【0008】まず、図4に示すように、n型GaP(ガ
リウム・リン)半導体基板(以下、n型基板と呼ぶ)1
0の上に液相エピタキシャル成長法でn型GaP半導体
領域からなる第1の半導体領域11を形成し、更にこの
上にエピタキシャル成長法でp型GaP半導体領域から
なる第2の半導体領域12を形成した半導体ウエハ13
を用意する。なお、pn接合14を形成する第1の半導
体領域11には導電型決定不純物としてのTe(テル
ル)の他に窒素がドープされ、第2の半導体領域12に
は導電型決定不純物としてのZn(亜鉛)の他に窒素が
ドープされている。また、第1及び第2の半導体領域1
1、12の厚さは基板10の厚さに比べて大幅に薄い。
First, as shown in FIG. 4, an n-type GaP (gallium-phosphorus) semiconductor substrate (hereinafter referred to as an n-type substrate) 1
A semiconductor in which a first semiconductor region 11 made of an n-type GaP semiconductor region is formed on the substrate 0 by a liquid phase epitaxial growth method, and a second semiconductor region 12 made of a p-type GaP semiconductor region is formed thereon by an epitaxial growth method. Wafer 13
To prepare. The first semiconductor region 11 forming the pn junction 14 is doped with nitrogen in addition to Te (tellurium) as a conductivity type determining impurity, and the second semiconductor region 12 is doped with Zn ( Nitrogen is doped in addition to (zinc). In addition, the first and second semiconductor regions 1
The thicknesses of 1 and 12 are significantly smaller than the thickness of the substrate 10.

【0009】次に、図5に示すようにウエハ13のp型
の第2の半導体領域12側の表面から選択的にエッチン
グを施して深さ約80μmのメサ型のエッチング溝15
を形成する。この溝15はウエハ13を複数のダイオー
ドチップ領域13a、13b、13cの境界領域(分断
領域)に一致させて設ける。従って、各ダイオードチッ
プ領域13a、13b、13cは溝15によって分離さ
れた島状領域である。溝15の深さは、第2の半導体領
域12よりも深く且つ基板10の近傍に達する程度に形
成する。即ち、溝15はpn接合14を横切るように形
成し、且つ基板10によって各ダイオードチップ領域1
3a、13b、13cの連結を維持することができる範
囲において出来るだけ深く形成する。なお、横方向エッ
チングによって溝15の幅が大きくなることを制限する
ために二段階に分けてエッチングした。
Then, as shown in FIG. 5, the surface of the wafer 13 on the p-type second semiconductor region 12 side is selectively etched to form a mesa-type etching groove 15 having a depth of about 80 μm.
To form. The groove 15 is provided so that the wafer 13 is aligned with the boundary region (division region) of the plurality of diode chip regions 13a, 13b, 13c. Therefore, each diode chip region 13a, 13b, 13c is an island-shaped region separated by the groove 15. The depth of the groove 15 is deeper than the second semiconductor region 12 and reaches the vicinity of the substrate 10. That is, the groove 15 is formed so as to cross the pn junction 14, and the substrate 10 allows each diode chip region 1 to be formed.
It is formed as deep as possible within the range in which the connection of 3a, 13b, and 13c can be maintained. It should be noted that the etching was performed in two steps in order to prevent the width of the groove 15 from increasing due to the lateral etching.

【0010】次に、溝15を形成したウエハ13を拡散
炉に入れ、Zn3 2 を0.1〜0.45mg/cc、P2
をZn3 2 に比べて少量導入し、600〜800℃、
10〜100時間の拡散処理を施して図6に示すp+ 型
GaP半導体領域からなる第3の半導体領域16を形成
する。この拡散工程においてはZn3 2 の他にP2
任意の量導入することで、ウエハ13からのリン(P)
のアウトディフュージョンを抑制している。第3の半導
体領域16は図5において溝15に露出していた第1及
び第2の半導体領域11、12のpn接合を覆うように
形成され、第3の半導体領域16と第1の半導体領域1
1及び基板10との間に新しいpn接合17が生じてい
る。なお、ウエハ13の基板10側の主面をマスクしな
いでZnを拡散した場合、基板10にもZnが拡散され
る。この時には研摩又はエッチングによってこの反転層
を除去する。
Next, the wafer 13 in which the groove 15 is formed is placed in a diffusion furnace, and Zn 3 P 2 is added in an amount of 0.1 to 0.45 mg / cc and P 2
Is introduced in a small amount as compared with Zn 3 P 2 , and 600 to 800 ° C.
Diffusion processing is performed for 10 to 100 hours to form the third semiconductor region 16 made of the p + -type GaP semiconductor region shown in FIG. By any amount introduce P 2 in addition to Zn 3 P 2 in the diffusion step, the phosphorus from the wafer 13 (P)
The out diffusion of is suppressed. The third semiconductor region 16 is formed so as to cover the pn junction of the first and second semiconductor regions 11 and 12 exposed in the groove 15 in FIG. 5, and the third semiconductor region 16 and the first semiconductor region 16 are formed. 1
A new pn junction 17 is formed between the substrate 1 and the substrate 10. When Zn is diffused without masking the main surface of the wafer 13 on the substrate 10 side, Zn is also diffused in the substrate 10. At this time, the inversion layer is removed by polishing or etching.

【0011】次に、図7に示すようにウエハ13の一方
の主面の第3の半導体領域16にアノード電極18を形
成し、他方の主面の基板10にカソード電極19を周知
の真空蒸着法で形成した後に、溝15に示すラインLで
ウエハ13を切断し、個々の発光ダイオードチップを得
る。
Next, as shown in FIG. 7, an anode electrode 18 is formed on the third semiconductor region 16 on one main surface of the wafer 13, and a cathode electrode 19 is formed on the substrate 10 on the other main surface by a well-known vacuum deposition method. After the formation by the method, the wafer 13 is cut along the line L shown in the groove 15 to obtain individual light emitting diode chips.

【0012】このようにして形成された発光ダイオード
チップは、図8に示すように金属台又は基板又は層から
なる導電性取付基体20に半田(導電性接着剤)21で
固着する。即ち、アノード電極18を取付基体20に固
着する。アノード電極18が下側になると、発光素子が
逆メサ配置になり、メサ型エッチングの溝15に基づく
傾斜側面22にも半田21が付着する。しかし、p型の
第3の半導体領域16を設けたために、第1及び第2の
半導体領域11、12間のpn接合14は傾斜側面22
に露出せず、第3の半導体領域16に基づくpn接合1
7の露出部は取付基体20に対してpn接合14よりも
高い位置にあり、pn接合14の高さ位置以上に半田2
1が盛り上ってもpn接合の短絡が生じない。
The light emitting diode chip thus formed is fixed to the conductive mounting base 20 made of a metal base, substrate or layer with solder (conductive adhesive) 21 as shown in FIG. That is, the anode electrode 18 is fixed to the mounting substrate 20. When the anode electrode 18 is on the lower side, the light emitting element is arranged in the reverse mesa arrangement, and the solder 21 is attached also to the inclined side surface 22 based on the groove 15 of the mesa type etching. However, since the p-type third semiconductor region 16 is provided, the pn junction 14 between the first and second semiconductor regions 11 and 12 has the inclined side surface 22.
Pn junction 1 based on the third semiconductor region 16 without being exposed to
The exposed portion of 7 is located higher than the pn junction 14 with respect to the mounting base 20, and the solder 2 is placed above the height of the pn junction 14.
Even if 1 is raised, the pn junction is not short-circuited.

【0013】本実施例の発光素子のp型の第2の半導体
領域12の厚さが図3の構造に比べて薄いので、図3の
構造で生じる吸収端作用による発光効率の低下が生じな
い。従って、アノード電極18を下側にした構成である
にも拘らず、比較的大きな輝度を得ることができる。ま
た、図7のラインLで分断したチップは、図8の逆メサ
配置に限らず、アノード電極18を上側にした配置にす
ることもできる。即ち、pn接合16の露出部がチップ
側面のほぼ中間に位置するので、アノード電極18とカ
ソード電極19とのいずれを下側にしても差し支えな
い。
Since the thickness of the p-type second semiconductor region 12 of the light emitting device of this embodiment is smaller than that of the structure shown in FIG. 3, the light emitting efficiency does not decrease due to the absorption edge effect that occurs in the structure of FIG. . Therefore, it is possible to obtain a relatively large brightness, despite the configuration in which the anode electrode 18 is on the lower side. Further, the chip divided along the line L in FIG. 7 is not limited to the inverted mesa arrangement in FIG. 8 and can be arranged with the anode electrode 18 on the upper side. That is, since the exposed portion of the pn junction 16 is located substantially in the middle of the side surface of the chip, it does not matter whether the anode electrode 18 or the cathode electrode 19 is on the lower side.

【0014】[0014]

【別の実施例】次に、図9を参照して別の実施例に係わ
る発光素子を説明する。但し、図9において図8と共通
する部分には同一の符号を付してその説明を省略する。
この実施例ではn型基板10の表面の周縁に沿って環状
にカソード電極19が形成され、このカソード電極19
の内側に基板10が露出し、ウィンドウ領域10aが生
じている。カソード電極19の1つの角部は幅広のリー
ド接続領域になっている。
Another Embodiment Next, a light emitting device according to another embodiment will be described with reference to FIG. However, in FIG. 9, the same parts as those in FIG. 8 are designated by the same reference numerals, and the description thereof will be omitted.
In this embodiment, the cathode electrode 19 is formed in a ring shape along the peripheral edge of the surface of the n-type substrate 10.
The substrate 10 is exposed to the inside of the window 10 and the window region 10a is formed. One corner of the cathode electrode 19 is a wide lead connection region.

【0015】一方、アノード電極18はチップの上方か
ら透視的に見てウィンドウ領域10aの中に収まるよう
に第2の半導体領域12の中央部に接触している。図9
の発光ダイオードでは選択拡散によって第3の半導体領
域16が傾斜側面22に対応する部分に形成されてお
り、第2の半導体領域12の下面側には形成されていな
い。また、傾斜側面22及び第2の半導体領域12の下
面には絶縁膜23が形成されている。この絶縁膜23に
は図11に示すように、第2の半導体領域12の下面の
中心側領域に対応する部分に開口23aが形成されてい
る。アノード電極18は、この絶縁膜23の開口23a
を通じて第2の半導体領域12に接続され、また絶縁膜
23の上にも形成されている。アノード電極18はチッ
プ下面側の広い面積に形成されているので、取付基板2
0に対する半田21による固着が強固になる。
On the other hand, the anode electrode 18 is in contact with the central portion of the second semiconductor region 12 so as to be included in the window region 10a when seen transparently from above the chip. Figure 9
In the light emitting diode of, the third semiconductor region 16 is formed by selective diffusion in the portion corresponding to the inclined side surface 22, and is not formed on the lower surface side of the second semiconductor region 12. An insulating film 23 is formed on the inclined side surface 22 and the lower surface of the second semiconductor region 12. As shown in FIG. 11, an opening 23a is formed in the insulating film 23 at a portion corresponding to the center side region of the lower surface of the second semiconductor region 12. The anode electrode 18 has an opening 23a in the insulating film 23.
Is also connected to the second semiconductor region 12 through and is also formed on the insulating film 23. Since the anode electrode 18 is formed in a large area on the lower surface side of the chip, the mounting substrate 2
Bonding of the solder 21 to 0 becomes strong.

【0016】図9の発光ダイオードでは、第3の半導体
領域16がアノード電極18から離間しており、チャン
ネル電流が流れることが防止されている。また、図9の
発光ダイオードでは、図中点線で示す電流径路から明ら
かなように、pn接合14の広い面積にわたって順方向
電流が流れ発光に寄与するキャリア再結合を豊富に生じ
させることができる。特に、pn接合14の中心側は電
流が集中して流れるため、キャリア再結合による発光量
が大きい。図9の発光ダイオードでは、このpn接合1
4の中心側領域の上方にウィンドウ領域10aが形成さ
れているため、この光をチップ外部に有効に取出すこと
ができる。
In the light emitting diode of FIG. 9, the third semiconductor region 16 is separated from the anode electrode 18 to prevent channel current from flowing. Further, in the light emitting diode of FIG. 9, as is clear from the current path indicated by the dotted line in the figure, a forward current flows over a wide area of the pn junction 14, and carrier recombination contributing to light emission can be abundantly generated. In particular, since the current flows concentratedly on the center side of the pn junction 14, the amount of light emission due to carrier recombination is large. In the light emitting diode of FIG. 9, this pn junction 1
Since the window region 10a is formed above the center side region of 4, the light can be effectively extracted to the outside of the chip.

【0017】図8の発光ダイオードと図9の発光ダイオ
ードとの相違点を更に詳しく次に述べる。図8に示す発
光ダイオードでは、アノード電極18とカソード電極1
9との間にアノード電極18側の電位を高くする電圧を
印加すると、アノード電極18からカソード電極19に
向って順方向電流が流れる。この順方向電流は、主とし
て、pn接合を介して第2の半導体領域12を通る第1
の電流とpn接合17を介して第3の半導体領域を通る
第2の電流から成る。ここで、第2の電流は発光ダイオ
ードの電圧−電流特性上問題となるリーク電流である
し、第2の電流に基づいて生じるキャリア再結合は第1
の電流に基づいて生じるキャリア再結合に比べて発光に
寄与しない。従って、第2の電流は極力流れないことが
望ましい。図9の発光ダイオードによれば上記第2の電
流が防止される。もちろん、図9の発光ダイオードも、
図8の発光ダイオードと同様にpn接合への半田21の
付着を防止することができる。
Differences between the light emitting diode of FIG. 8 and the light emitting diode of FIG. 9 will be described in more detail below. In the light emitting diode shown in FIG. 8, the anode electrode 18 and the cathode electrode 1
When a voltage for increasing the potential on the anode electrode 18 side is applied between the anode electrode 9 and the anode 9, a forward current flows from the anode electrode 18 toward the cathode electrode 19. This forward current is mainly the first current passing through the second semiconductor region 12 via the pn junction.
Current and a second current passing through the third semiconductor region via the pn junction 17. Here, the second current is a leak current that causes a problem in the voltage-current characteristics of the light emitting diode, and the carrier recombination generated based on the second current is the first one.
Does not contribute to light emission as compared with carrier recombination that occurs based on the electric current. Therefore, it is desirable that the second current does not flow as much as possible. According to the light emitting diode of FIG. 9, the second current is prevented. Of course, the light emitting diode of FIG.
As with the light emitting diode of FIG. 8, it is possible to prevent the solder 21 from adhering to the pn junction.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の発光素子を示す断面図である。FIG. 1 is a cross-sectional view showing a conventional light emitting device.

【図2】従来の発光素子をアノードを下側に取付けた状
態を示す断面図である。
FIG. 2 is a cross-sectional view showing a state in which a conventional light emitting device has an anode attached to a lower side.

【図3】従来の厚いp型領域を有する発光素子を示す断
面図である。
FIG. 3 is a cross-sectional view showing a conventional light emitting device having a thick p-type region.

【図4】本発明の実施例に係わる緑色GaP発光素子を
製造するためのウエハを示す断面図である。
FIG. 4 is a cross-sectional view showing a wafer for manufacturing a green GaP light emitting device according to an embodiment of the present invention.

【図5】ウエハに溝を形成した状態を示す断面図であ
る。
FIG. 5 is a cross-sectional view showing a state where a groove is formed on a wafer.

【図6】第3の半導体領域を形成したウエハを示す断面
図である。
FIG. 6 is a cross-sectional view showing a wafer on which a third semiconductor region is formed.

【図7】電極を形成したウエハを示す断面図である。FIG. 7 is a cross-sectional view showing a wafer on which electrodes are formed.

【図8】実施例に従う発光素子をアノード電極を下側に
して取付基体に接続した状態を示す断面図である。
FIG. 8 is a cross-sectional view showing a state in which the light emitting device according to the example is connected to the mounting base with the anode electrode facing downward.

【図9】別の実施例の発光ダイオ−ドの中央縦断面図で
ある。
FIG. 9 is a central longitudinal sectional view of a light emitting diode according to another embodiment.

【図10】図9の発光ダイオ−ドの平面図である。10 is a plan view of the light emitting diode of FIG.

【図11】図9の発光ダイオ−ドのアノ−ド電極を除い
た状態を示す底面図である。
FIG. 11 is a bottom view showing a state in which the anode electrode of the light emitting diode of FIG. 9 is removed.

【符号の説明】[Explanation of symbols]

11 第1の半導体領域 12 第2の半導体領域 16 第3の半導体領域 21 半田 11 First Semiconductor Region 12 Second Semiconductor Region 16 Third Semiconductor Region 21 Solder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の導電型の化合物半導体からなる第
1の半導体領域と、 前記第1の半導体領域よりも薄い厚さを有して前記第1
の半導体領域に隣接配置された第2の導電型の化合物半
導体領域からなる第2の半導体領域と、 前記第1の半導体領域と前記第2の半導体領域との間の
pn接合の周縁を覆うように形成された第2の導電型の
化合物半導体からなる第3の半導体領域とを備え、前記
第3の半導体領域と前記第1の半導体領域との間のpn
接合の露出部が前記第1、第2及び第3の半導体領域を
含んで形成された半導体チップの側面に位置し、且つこ
のpn接合の露出部と前記第2の半導体領域の表面との
距離が前記第1及び第2の半導体領域間のpn接合と前
記第2の半導体領域の表面との距離よりも大きいことを
特徴とする半導体発光素子。
1. A first semiconductor region made of a compound semiconductor of a first conductivity type, and a first semiconductor region having a thickness smaller than that of the first semiconductor region.
A second semiconductor region formed of a compound semiconductor region of a second conductivity type disposed adjacent to the semiconductor region, and a peripheral edge of a pn junction between the first semiconductor region and the second semiconductor region. A third semiconductor region made of a compound semiconductor of the second conductivity type formed in the first semiconductor region, and a pn between the third semiconductor region and the first semiconductor region.
The exposed portion of the junction is located on the side surface of the semiconductor chip formed including the first, second and third semiconductor regions, and the distance between the exposed portion of the pn junction and the surface of the second semiconductor region. Is larger than the distance between the pn junction between the first and second semiconductor regions and the surface of the second semiconductor region.
【請求項2】 第1の導電型のGaP半導体基板上に第
1の導電型のGaPからなる第1の半導体領域と第2の
導電型のGaPからなる第2の半導体領域が順次に形成
されており、且つ少なくとも前記第2の半導体領域には
窒素がドープされており、且つ前記第2の半導体領域が
前記半導体基板と前記第1の半導体領域との合計の厚さ
よりも薄く形成されているウエハを用意する工程と、 前記ウエハの前記第2の半導体領域側から前記第1の半
導体領域と前記第2の半導体領域との間のpn接合より
も深くエッチングして分断予定領域に溝を形成する工程
と、 前記ウエハの前記溝が形成されている領域に第2の導電
型の不純物を拡散して第2の導電型の第3の半導体領域
を形成する工程と、 前記ウエハを前記溝で切断する工程とを有するGaP半
導体発光素子の製造方法。
2. A first semiconductor region made of GaP of the first conductivity type and a second semiconductor region made of GaP of the second conductivity type are sequentially formed on a GaP semiconductor substrate of the first conductivity type. And at least the second semiconductor region is doped with nitrogen, and the second semiconductor region is formed to be thinner than the total thickness of the semiconductor substrate and the first semiconductor region. A step of preparing a wafer, and etching is performed deeper than a pn junction between the first semiconductor region and the second semiconductor region from the second semiconductor region side of the wafer to form a groove in a region to be divided. And diffusing impurities of the second conductivity type into a region of the wafer in which the groove is formed to form a third semiconductor region of the second conductivity type. Ga having a step of cutting Method for manufacturing P semiconductor light emitting device.
JP5052884A 1992-02-17 1993-02-17 Semiconductor light emitting device and method of manufacturing the same Expired - Lifetime JP2827795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5052884A JP2827795B2 (en) 1992-02-17 1993-02-17 Semiconductor light emitting device and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6919892 1992-02-17
JP4-69198 1992-02-17
JP5052884A JP2827795B2 (en) 1992-02-17 1993-02-17 Semiconductor light emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0613654A true JPH0613654A (en) 1994-01-21
JP2827795B2 JP2827795B2 (en) 1998-11-25

Family

ID=26393546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5052884A Expired - Lifetime JP2827795B2 (en) 1992-02-17 1993-02-17 Semiconductor light emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2827795B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003049152A3 (en) * 2001-11-30 2004-02-26 Intel Corp Backside metallization on sides of microelectronic dice for effective thermal contact with heat dissipation devices
JP2005322922A (en) * 2004-04-30 2005-11-17 Osram Opto Semiconductors Gmbh Semiconductor chips for optoelectronics and method of fabricating same
JP2009252998A (en) * 2008-04-07 2009-10-29 Sanyo Electric Co Ltd Semiconductor light emitting element and method of manufacturing the same
CN105355752A (en) * 2015-10-27 2016-02-24 天津三安光电有限公司 Light-emitting diode chip structure, light-emitting chip packaging structure and preparation method for light-emitting chip

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179766A1 (en) 2012-05-30 2013-12-05 オリンパス株式会社 Imaging device, semiconductor device, and imaging unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003049152A3 (en) * 2001-11-30 2004-02-26 Intel Corp Backside metallization on sides of microelectronic dice for effective thermal contact with heat dissipation devices
US6812548B2 (en) 2001-11-30 2004-11-02 Intel Corporation Backside metallization on sides of microelectronic dice for effective thermal contact with heat dissipation devices
US7064014B2 (en) 2001-11-30 2006-06-20 Intel Corporation Backside metallization on sides of microelectronic dice for effective thermal contact with heat dissipation devices
CN100334711C (en) * 2001-11-30 2007-08-29 英特尔公司 Backside metallization on sides of microelectronic dice for effective thermal contact with heat dissipation devices
JP2005322922A (en) * 2004-04-30 2005-11-17 Osram Opto Semiconductors Gmbh Semiconductor chips for optoelectronics and method of fabricating same
JP2009252998A (en) * 2008-04-07 2009-10-29 Sanyo Electric Co Ltd Semiconductor light emitting element and method of manufacturing the same
CN105355752A (en) * 2015-10-27 2016-02-24 天津三安光电有限公司 Light-emitting diode chip structure, light-emitting chip packaging structure and preparation method for light-emitting chip

Also Published As

Publication number Publication date
JP2827795B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
JP2927158B2 (en) Semiconductor light emitting device
US7943406B2 (en) LED fabrication via ion implant isolation
US4966862A (en) Method of production of light emitting diodes
US6586773B2 (en) Semiconductor light-emitting device
US4755485A (en) Method of making light-emitting diodes
JP2003174196A (en) Structure of light emitting diode, and its manufacturing method
US4122486A (en) Semiconductor light-emitting element
US6222208B1 (en) Light-emitting diode and light-emitting diode array
JP2827795B2 (en) Semiconductor light emitting device and method of manufacturing the same
US4719497A (en) High efficiency light-emitting diode
JP3072753B2 (en) Semiconductor device and manufacturing method
KR100491851B1 (en) Semiconductor device and manufacturing method therefor
US20040113225A1 (en) Semiconductor epitaxial structure and semiconductor light-emitting device
US6245588B1 (en) Semiconductor light-emitting device and method of manufacturing the same
JPH0779018A (en) Semiconductor light-emitting device
JP3905270B2 (en) LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
US4404580A (en) Light activated semiconductor device
JP3311946B2 (en) Light emitting diode array
JPH07254731A (en) Light emitting element
CN217387195U (en) Flip-chip type MICROLED chip structure
JP3638413B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPS5958877A (en) Semiconductor light emitting device
JPH0666043U (en) Semiconductor light emitting element
JPS6048915B2 (en) Injection type light emitting semiconductor device and its manufacturing method
JP2546097Y2 (en) Light emitting diode