JPS6048915B2 - Injection type light emitting semiconductor device and its manufacturing method - Google Patents

Injection type light emitting semiconductor device and its manufacturing method

Info

Publication number
JPS6048915B2
JPS6048915B2 JP54101507A JP10150779A JPS6048915B2 JP S6048915 B2 JPS6048915 B2 JP S6048915B2 JP 54101507 A JP54101507 A JP 54101507A JP 10150779 A JP10150779 A JP 10150779A JP S6048915 B2 JPS6048915 B2 JP S6048915B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
type
light emitting
semiconductor device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54101507A
Other languages
Japanese (ja)
Other versions
JPS5624986A (en
Inventor
一成 太田
勝 数村
晴義 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP54101507A priority Critical patent/JPS6048915B2/en
Publication of JPS5624986A publication Critical patent/JPS5624986A/en
Publication of JPS6048915B2 publication Critical patent/JPS6048915B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 本発明は、注入電流に応答し光を放射し得る注入型発光
半導体装置およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an injection type light emitting semiconductor device that can emit light in response to an injection current, and a method for manufacturing the same.

近年、高効率で電流−光出力の直線性のよい赤色光の発
光素子のための半導体材料として、GaA1As系が注
目されている。
In recent years, GaA1As has attracted attention as a semiconductor material for red light emitting elements with high efficiency and good current-light output linearity.

Ga、−xA]xAs材料はX=0から0.4付近まで
直接遷移型のバンド構造を持ち、0.6〜0.9μmの
波長の発光素子材料として有用てある。
The Ga, -xA]xAs material has a direct transition type band structure from X=0 to around 0.4, and is useful as a material for a light emitting device with a wavelength of 0.6 to 0.9 μm.

従来この材料を用いた発光素子の構造は、発光波長に対
応した禁制帯幅を持つGaAIAs層上に、この波長に
対して透明となるようこれより広い禁制帯幅を持つGa
AIAs層を波長させ、これらの層の伝導型を互に異な
るものとすることによりP−N接合を得、発光素子とす
る。このような構造では禁制帯幅が異なるヘテロ接合面
と、伝導型が異なるP−N接合面が一致するため、P−
N接合近傍のバンド構造は第1図に示すようにスパイク
4、ノッチ5を有する不連続な形状となる。なお、第1
図において、3はP−N接合面およびヘテロ接合面、1
はP型半導体層、2はN型半導体層を示す。
Conventionally, the structure of a light-emitting device using this material is to layer a GaAIAs layer with a forbidden band width corresponding to the emission wavelength on top of a GaAIAs layer with a wider forbidden band width so as to be transparent to this wavelength.
By changing the wavelength of the AIAs layers and making the conductivity types of these layers different from each other, a PN junction is obtained and a light emitting device is obtained. In such a structure, the heterojunction surface with different forbidden band widths and the P-N junction surface with different conduction types coincide, so the P-N junction surface has different conductivity types.
The band structure near the N junction has a discontinuous shape with spikes 4 and notches 5 as shown in FIG. In addition, the first
In the figure, 3 is a P-N junction surface and a heterojunction surface, 1
indicates a P-type semiconductor layer, and 2 indicates an N-type semiconductor layer.

このダイオードに電界を印加した場合、ノッチ5がトラ
ップとして働くため、発光の主波長と異フなる光が生成
され、発光スペクトルが悪化し発光効率が低下する。ま
た、このスパイク4、ノッチ5の影響により電流−電圧
特性にスイッチング現象が現れ、再現性良い発光の妨げ
となる。従つて、発光効率の改善と電流−電圧特性の安
定化の5実現のため、P−N接合部で不連続部のない素
子の製造が望まれる。本発明はP−N接合部とヘテロ接
合部を分離し、P−N接合近傍の不連続な接続を解消す
ることを目的としたものである。
When an electric field is applied to this diode, the notch 5 acts as a trap, so that light different from the main wavelength of light emission is generated, which deteriorates the light emission spectrum and lowers the light emission efficiency. Further, due to the effects of the spikes 4 and notches 5, a switching phenomenon appears in the current-voltage characteristics, which impedes light emission with good reproducibility. Therefore, in order to improve luminous efficiency and stabilize current-voltage characteristics, it is desired to manufacture a device without discontinuities at the PN junction. The present invention aims to separate the P-N junction and the heterojunction, and eliminate discontinuous connections in the vicinity of the P-N junction.

以下実施例をあげて説明する。第2図は、本発明による
注入型発光素子10の断面を示す。
This will be explained below by giving examples. FIG. 2 shows a cross section of an injection type light emitting device 10 according to the present invention.

素子10は導電型P型GaAsの単結晶基板11上に構
成される。GaAs基板11の典型的な厚さは150μ
mで、アクセプターとしてZnを1×10’゜原子数α
−゜程度含む。GaAlAs層12,13,14は基板
11上に液相エピタキシャル成長法を用いて成長させる
。層12は望む発光波長によつてに量を変化させる。典
型的な例では0.66μmの発光波長を得るためGaO
.。5AlO.3,ASを約25μm成長させる。
The element 10 is constructed on a single crystal substrate 11 of conductivity type P-type GaAs. The typical thickness of the GaAs substrate 11 is 150μ
m, Zn as an acceptor is 1×10'° atomic number α
Including around −°. GaAlAs layers 12, 13, and 14 are grown on the substrate 11 using a liquid phase epitaxial growth method. The amount of layer 12 varies depending on the desired emission wavelength. In a typical example, GaO is used to obtain an emission wavelength of 0.66 μm.
.. . 5AlO. 3. Grow AS to about 25 μm.

伝導型はP型とし、アクセプターとしてZnを約1×1
0″’原子数a−゜程度の濃度で含む。層13,14は
GaO.。
The conductivity type is P type, and Zn is about 1×1 as an acceptor.
The layers 13 and 14 are made of GaO.

AlO.8Asであり、上記発光波長に対して透明であ
るため、光の取り出し窓となる。層13はGaO.2A
lO.8Asの成長中および成長後の適当な熱処理によ
り層12中のZnを拡散せしめることにより、ドナー不
純物の補償がなされP型領域となる。層13の厚さは電
子一正孔の結合が層12の領域内で起こる必要があるた
め、少数キャリアである電子の拡散距離よりも薄くなく
てはならない。この厚さを得るための熱処理は温度が3
00〜1200℃の間で0.1〜3時間程度行なうと.
可能である。本実施例では、この熱処理を温度800℃
で2時間行なつた。
AlO. Since it is made of 8As and is transparent to the above emission wavelength, it serves as a light extraction window. Layer 13 is made of GaO. 2A
lO. Appropriate heat treatment during and after the growth of 8As diffuses the Zn in layer 12, thereby compensating for donor impurities and creating a P-type region. The thickness of the layer 13 must be thinner than the diffusion distance of the minority carrier electrons, since electron-hole coupling must occur within the region of the layer 12. The heat treatment to obtain this thickness was performed at a temperature of 3
If you do it for about 0.1 to 3 hours at a temperature between 00 and 1200℃.
It is possible. In this example, this heat treatment was carried out at a temperature of 800°C.
It lasted two hours.

層14は濃度1×10″゜原子数Cm−゜程度のTeま
たは他の適当なドナー不純物をドープした厚さ10μ3
m程度のN型GaO.2AlO.8As層である。
Layer 14 is 10μ3 thick doped with Te or other suitable donor impurity at a concentration on the order of 1×10″° Cm-° atoms.
m of N-type GaO. 2AlO. It is an 8As layer.

この素子をダイオードとして働かせるために、低抵抗N
型のGaAs層15を液相エピタキシャル成長させ、さ
らにAu−Ge−Ni電極(負電極)16を蒸着、合金
化しオーム性接触を得る。GaAs層15および負電極
16はZ方向へ取り出す妨げとなるので選択エッチング
技術により適当な大きさ、形状に形成する。正電極17
はAu−Znを蒸・着し、オーム性接触を得、支持金属
治具19へ〜ペースト18を用いて固定する。負電極1
6からAu線のリード線20を出し、金属支持具19と
の間に電池もしくはその他の方法で回路を構成すれば素
子10は目的の波長で発光する。素子10のP−N接合
面21は層13と層14の界面でありヘテロ接合面22
は層12と層13の界面である。これにより第3図に示
すようなバンド構造となり、P−N接合面21とヘテロ
接合面22の分離が達成される。この素子を発光させ・
ることにより、ヘテロ接合面とP−N接合面の一致する
従来の素子に比べ、約m倍の光出力が得られた。また電
圧−電流特性のスイッチング特性も見られなくなつた。
本発明に関し一実施例をあげて詳しく述べたがZnの代
わりにCdのような■族アクセプタ不純物を使用するこ
とは可能である。
In order to make this element work as a diode, a low resistance N
A GaAs layer 15 is grown by liquid phase epitaxial growth, and an Au-Ge-Ni electrode (negative electrode) 16 is deposited and alloyed to obtain ohmic contact. Since the GaAs layer 15 and the negative electrode 16 interfere with extraction in the Z direction, they are formed into an appropriate size and shape by selective etching technology. Positive electrode 17
evaporate and deposit Au-Zn to obtain ohmic contact, and fix it to the supporting metal jig 19 using paste 18. Negative electrode 1
If a lead wire 20 of Au wire is taken out from 6 and a circuit is constructed between it and the metal support 19 using a battery or other method, the element 10 will emit light at the desired wavelength. The PN junction surface 21 of the element 10 is the interface between the layers 13 and 14, and the heterojunction surface 22
is the interface between layer 12 and layer 13. This results in a band structure as shown in FIG. 3, and separation of the PN junction surface 21 and the heterojunction surface 22 is achieved. Make this element emit light
By doing so, an optical output approximately m times greater than that of a conventional element in which the heterojunction surface and the PN junction surface coincide with each other was obtained. Also, the switching characteristics of voltage-current characteristics were no longer observed.
Although the present invention has been described in detail with reference to one embodiment, it is possible to use a Group 2 acceptor impurity such as Cd in place of Zn.

また発光材料はGaAlAs系材料に限らず、その他の
半導体材料の使用が可能である。
Furthermore, the light-emitting material is not limited to GaAlAs-based materials, and other semiconductor materials can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の注入型発光半導体装置のエネルギーバン
ド構造の摸式図、第2図は本発明の一実施例における半
導体装置の断面図、第3図は同実施例のエネルギーバン
ド構造摸式図である。 11・・・・・・P型GaAs単結晶基板、12・・・
・・・P型GaO.5AlO.35AS)13・・・・
・・P型GaO.2AlO.8AS)14・・・・・・
N型GaO.2AlO.8AS)15・・・・・・N型
GaAsエピタキシャル層、16・・・・・・Au−G
e−Ni電極(負電極)、17・・・・・・Au−Zn
電極(正電極)、21・・・・・・P−N接合面、22
・・・・・・ヘテロ接合面。
FIG. 1 is a schematic diagram of the energy band structure of a conventional injection type light emitting semiconductor device, FIG. 2 is a sectional view of a semiconductor device according to an embodiment of the present invention, and FIG. 3 is a schematic diagram of the energy band structure of the same embodiment. It is a diagram. 11... P-type GaAs single crystal substrate, 12...
...P-type GaO. 5AlO. 35AS) 13...
...P-type GaO. 2AlO. 8AS) 14...
N-type GaO. 2AlO. 8AS) 15...N-type GaAs epitaxial layer, 16...Au-G
e-Ni electrode (negative electrode), 17...Au-Zn
Electrode (positive electrode), 21...P-N junction surface, 22
・・・Heterojunction surface.

Claims (1)

【特許請求の範囲】 1 二種以上の異なる禁制帯幅を有し、少くとも1つの
P−N接合を有する半導体よりなる注入型発光半導体装
置において、主たる発光領域である第1の半導体層表面
に上記半導体層より禁制帯幅が広く、同種の伝導形を有
し、その厚さがその少数キャリアの拡散長より薄い第2
の半導体層を有し、さらに上記第2の半導体層表面には
上記第2の半導体層と異なつた伝導形を有し、禁制帯幅
は第2の半導体層と同一である第3の半導体層を有する
ことを特徴とする注入型発光半導体装置。 2 亜鉛もしくはカドミウムをアクセプターとするP型
伝導形の第1の半導体層の表面に上記第1の半導体層よ
り広い禁制帯幅を有しN型伝導形を有する半導体層を成
長させ、しかるのち熱処理を施し、ヘテロ接合面より前
記N型半導体層へ向けて上記アクセプター不純物を拡散
せしめることより、N型半導体層内にP型伝導形を有す
る第2の半導体層を形成するとともに、拡散の及ばない
N型半導体層を第3の半導体層とすることを特徴とする
注入型発光半導体装置の製造方法。
[Claims] 1. In an injection type light emitting semiconductor device made of a semiconductor having two or more different forbidden band widths and at least one PN junction, the surface of the first semiconductor layer which is the main light emitting region The second semiconductor layer has a wider forbidden band width than the semiconductor layer, has the same conduction type, and has a thickness thinner than the diffusion length of the minority carriers.
a third semiconductor layer having a conduction type different from that of the second semiconductor layer on the surface of the second semiconductor layer and having the same forbidden band width as the second semiconductor layer; An injection type light emitting semiconductor device characterized by having the following. 2. A semiconductor layer having an N-type conductivity type and having a wider forbidden band width than the first semiconductor layer is grown on the surface of the first semiconductor layer of the P-type conductivity type using zinc or cadmium as an acceptor, and then heat-treated. The acceptor impurity is diffused from the heterojunction surface toward the N-type semiconductor layer, thereby forming a second semiconductor layer having P-type conductivity within the N-type semiconductor layer and preventing the diffusion from reaching the second semiconductor layer. A method for manufacturing an injection type light emitting semiconductor device, characterized in that an N-type semiconductor layer is used as a third semiconductor layer.
JP54101507A 1979-08-08 1979-08-08 Injection type light emitting semiconductor device and its manufacturing method Expired JPS6048915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54101507A JPS6048915B2 (en) 1979-08-08 1979-08-08 Injection type light emitting semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54101507A JPS6048915B2 (en) 1979-08-08 1979-08-08 Injection type light emitting semiconductor device and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5624986A JPS5624986A (en) 1981-03-10
JPS6048915B2 true JPS6048915B2 (en) 1985-10-30

Family

ID=14302500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54101507A Expired JPS6048915B2 (en) 1979-08-08 1979-08-08 Injection type light emitting semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6048915B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204244A1 (en) * 2019-03-29 2020-10-08 주식회사 디오 Apparatus for treating surface of medical metal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804332A (en) * 1986-12-24 1989-02-14 Amp Incorporated Filtered electrical device and method for making same
JPH084151B2 (en) * 1988-03-04 1996-01-17 三菱化学株式会社 Epitaxial wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204244A1 (en) * 2019-03-29 2020-10-08 주식회사 디오 Apparatus for treating surface of medical metal

Also Published As

Publication number Publication date
JPS5624986A (en) 1981-03-10

Similar Documents

Publication Publication Date Title
US6846686B2 (en) Semiconductor light-emitting device and method of manufacturing the same
US5008718A (en) Light-emitting diode with an electrically conductive window
US4755485A (en) Method of making light-emitting diodes
JPS6327851B2 (en)
JPH0268968A (en) Compound semiconductor light-emitting device
US4122486A (en) Semiconductor light-emitting element
US4017881A (en) Light emitting semiconductor device and a method for making the same
US3634872A (en) Light-emitting diode with built-in drift field
EP0411612A2 (en) Semiconductor light-emitting device
US4719497A (en) High efficiency light-emitting diode
JPS6048915B2 (en) Injection type light emitting semiconductor device and its manufacturing method
JPH0691280B2 (en) Semiconductor light emitting diode
JP3260001B2 (en) Semiconductor element
JP2827795B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3966962B2 (en) Light emitting diode and manufacturing method thereof
JP3723314B2 (en) Semiconductor light emitting device
JPH07254731A (en) Light emitting element
JPS5958877A (en) Semiconductor light emitting device
JP2967122B2 (en) ZnSe semiconductor light emitting device
JP3140037B2 (en) Semiconductor light emitting device
JP2000082841A (en) Epitaxial wafer and manufacture thereof
JPS63213378A (en) Manufacture of semiconductor light emitting element
JP3420417B2 (en) Light emitting diode array
JPH07335940A (en) Compound semiconductor light emitting device
JP3736401B2 (en) COMPOUND SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, LIGHT EMITTING DEVICE, LAMP, AND LIGHT SOURCE