JPS61283341A - Novel method for preparing lithium adsorbent - Google Patents

Novel method for preparing lithium adsorbent

Info

Publication number
JPS61283341A
JPS61283341A JP12204885A JP12204885A JPS61283341A JP S61283341 A JPS61283341 A JP S61283341A JP 12204885 A JP12204885 A JP 12204885A JP 12204885 A JP12204885 A JP 12204885A JP S61283341 A JPS61283341 A JP S61283341A
Authority
JP
Japan
Prior art keywords
lithium
compound
adsorbent
adsorption
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12204885A
Other languages
Japanese (ja)
Other versions
JPH0230737B2 (en
Inventor
Yoshitaka Miyai
宮井 良孝
Kenta Oi
健太 大井
Shunsaku Kato
俊作 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP12204885A priority Critical patent/JPH0230737B2/en
Publication of JPS61283341A publication Critical patent/JPS61283341A/en
Publication of JPH0230737B2 publication Critical patent/JPH0230737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Li-adsorbent excellent in selective adsorbability and having large adsorbing capacity, by grinding and mixing an Li-compound and an Mn-compound and applying heat treatment to the resulting mixture at specific temp. to prepare an Li-containing Mn-compound which is, in turn, treated with an acid to elute Li. CONSTITUTION:An Li-compound (e.g., Li-oxide or Li-carbonate) and an Mn- compound (e.g., Mn-oxide or Mn-carbonate) are respectively ground and mixed. Subsequently, the resulting mixture is subjected to heat treatment at 500 deg.C or more, pref., at 700 deg.C or more for 10min or more to obtain an Li-containing Mn-compound with Li-content of 0.5-20wt%. This Mn-compound is treated at pH3 or less pref. by using 0.05N or more mineral acid to elute Li to obtain an Li-adsorbent having a large number of micropores. This adsorbent is excellent in selective adsorbability to Li and has large adsorbing capacity and a high adsorbing speed and is low in toxicity and inexpensive.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム吸着剤の製造方法に間するものである
。更に詳しく言えば、リチウムに対する選択吸着性が優
れ、かつ吸着容量及び吸着速度が大きく、リチウム希薄
溶液中で安定であって、毒性が少なく安価なリチウム吸
着剤の製造方法に間するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a lithium adsorbent. More specifically, the present invention provides a method for producing a lithium adsorbent that has excellent selective adsorption for lithium, has a large adsorption capacity and rate, is stable in a dilute lithium solution, has little toxicity, and is inexpensive.

近年、リチウム金属及びその化合物は、多くの分野、例
えばセラミックス、電池、吸収型冷媒、医薬品などに用
いられており、また将来、大容量電池、アルミニウム合
金材料、核融合燃料などとしての利用が考えられており
、リチウムの需要の著しい増大が見込まれている〔「日
本鉱業会誌」第97巻、第221ページ〕。
In recent years, lithium metal and its compounds have been used in many fields, such as ceramics, batteries, absorption refrigerants, and pharmaceuticals, and in the future, they are being considered for use in large-capacity batteries, aluminum alloy materials, nuclear fusion fuels, etc. The demand for lithium is expected to increase significantly [Journal of the Japan Mining Association, Vol. 97, p. 221].

前記リチウム金属及びその化合物は、現在上とし゛てス
ボジュメン、アンブリゴナイト、ペタライート、レビド
ライトなどのリチウム含有鉱石(リチウム含有量2〜6
%)、及びリチウム濃度の高い塩湖や地下かん水(リチ
ウム濃度50〜200ppm)などを原料として製造さ
れている。
The lithium metal and its compounds are currently used in lithium-containing ores (with a lithium content of 2 to 6
%), and salt lakes and underground brine (lithium concentration 50 to 200 ppm) with high lithium concentrations.

しかるに、わが国においては、前記のようなリチウム鉱
石資源がなく、リチウム金属やその化合物は全量輸入に
依存しているのが現状である。一方、わが国の地熱水や
温泉水にはかなりのリチウムを含有するものがある。ま
た周囲をとりまく海洋中にも微量のリチウム(0,17
ppm)が含まれている。したがって、これらのリチウ
ムを含む希薄溶液から該リチウムを効率よく回収する技
術を確立することが強く要望されている。
However, our country does not have the above-mentioned lithium ore resources, and currently relies entirely on imports for lithium metal and its compounds. On the other hand, some geothermal water and hot spring water in Japan contain a considerable amount of lithium. In addition, trace amounts of lithium (0.17
ppm). Therefore, it is strongly desired to establish a technique for efficiently recovering lithium from these dilute solutions containing lithium.

従来の技術 従来、海水などのリチウムを含む希薄溶液がら該リチウ
ムを回収する方法としては、例えば水酸化アルミニウム
共沈法〔「日本化学会第43年余、講演要旨集rJ、第
1240ページ(1981)、あるいは無定形水酸化ア
ルミニウム〔「海水誌」、第32巻、第78ページ(1
978)、「日本鉱業会誌」、第99巻、−; 第585ページ(+983)) 、金属アルミニウム〔
「防錆管理」、第1982巻、第369ページ〕、含水
酸化スズ〔「日本鉱業会誌」、第99巻、第933ペー
ジ(+983))を用いる吸着法などが知られている。
BACKGROUND ART Conventionally, as a method for recovering lithium from a dilute solution containing lithium such as seawater, for example, the aluminum hydroxide coprecipitation method ["Chemical Society of Japan 43rd Annual Meeting, Abstracts RJ, p. 1240 (1981 ), or amorphous aluminum hydroxide [Seawater Magazine, Volume 32, Page 78 (1
978), "Journal of the Japan Mining Association", Volume 99, -; page 585 (+983)), Metal Aluminum [
"Rust Prevention Management," Vol. 1982, p. 369], and an adsorption method using hydrated tin oxide ("Journal of the Japan Mining Association," Vol. 99, p. 933 (+983)) are known.

また太陽熱で塩湖水や海水を蒸発し、食塩などを析出除
去した後、リチウム塩を採取する方法などが検討されて
いる( Geological 5urvey Pro
fessional Paper  第1005巻、第
79ページ(1976)) 。
In addition, methods are being considered to collect lithium salt after evaporating salt lake water or seawater using solar heat, precipitating out salt, etc. (Geological 5urvey Pro
1005, page 79 (1976)).

しかしながら、前記の吸着法はリチウムに対する吸着容
量及び吸着速度が小さいという欠点があるし、太陽熱を
利用する蒸発法では莫大な面積と気象条件が揃わなけれ
ばならない欠点があり、いずれも実用化は困難である。
However, the above-mentioned adsorption methods have the disadvantage that the adsorption capacity and adsorption rate for lithium are small, and the evaporation method that uses solar heat has the disadvantages of requiring a huge area and the same weather conditions, making it difficult to put them into practical use. It is.

また、ヒ酸トリウム(rJ、  Inorg、  Nu
cl、  ChelW、  J 第32巻、第1719
ページ(+970)) 、アンチモン酸スズ(r )l
ydron+etalIurgy J第12巻、第83
ページ(+984))などもリチウム吸着性を示すこと
が報告されているが、実用化するには吸着性の向上、脱
着法などの課題が残されている。
In addition, thorium arsenate (rJ, Inorg, Nu
cl, ChelW, J Volume 32, No. 1719
page (+970)), tin antimonate (r)l
ydron+etalurgy J Volume 12, No. 83
Page (+984)) have also been reported to exhibit lithium adsorption properties, but issues such as improvement of adsorption properties and desorption methods remain for practical use.

このほか各種のイオンシーブ型の吸着剤がリチウムに対
して吸着性を示すことも報告されているが(rNeor
gan、 Mat、 J 、第9巻、第1041ページ
(1973)、同誌、第12巻、第1415ページ(1
976))、該吸着剤の製造条件及び天然水中における
リチウム吸着性なとは明確にされておらず、まだ、実用
的性能に至っていない。
It has also been reported that various ion sieve type adsorbents exhibit adsorption properties for lithium (rNeor
gan, Mat, J, vol. 9, p. 1041 (1973), same magazine, vol. 12, p. 1415 (1973).
976)), the manufacturing conditions of the adsorbent and its ability to adsorb lithium in natural water have not been clarified, and practical performance has not yet been achieved.

発明が解決しようとする問題点 リチウムを含む海水、地熱水、地下かん水などの希薄溶
液から該リチウムを実用的に吸着回収するためには、リ
チウムに対する選択吸着性に優れ、かつ吸着速度及び吸
着容量が大きく、その上該希薄溶液中で安定であって、
毒性が少なく、更に吸着・脱着の繰り返しが可能である
吸着剤の開発が必要である。
Problems to be Solved by the Invention In order to practically adsorb and recover lithium from dilute solutions such as seawater, geothermal water, and underground brine containing lithium, it is necessary to have excellent selective adsorption for lithium, and to improve the adsorption rate and adsorption rate. having a large capacity and being stable in the dilute solution;
It is necessary to develop an adsorbent that is less toxic and can be repeatedly adsorbed and desorbed.

本発明の目的は、このような要件を満足しつる吸着剤の
製造方法を提供することにある。
An object of the present invention is to provide a method for producing a vine adsorbent that satisfies these requirements.

問題点を解決するための手段 本発明者らは種々研究を重ねた結果、リチウム含有マン
ガン酸化物、又はリチウム含有マンガン含水酸化物を 
500°C以上の温度で、望ましくは550°C以上の
温度で加熱処理したもののリチウム溶出物が前記の要件
を溝たしうるリチウム吸着剤であることを認め、先に特
許を申請した〔特許出願番号60−011621 )。
Means for Solving the Problems As a result of various studies, the present inventors found that lithium-containing manganese oxide or lithium-containing manganese hydrate oxide
Recognizing that the lithium eluate obtained by heat treatment at a temperature of 500°C or higher, preferably 550°C or higher, is a lithium adsorbent that can meet the above requirements, we have previously applied for a patent. Application No. 60-011621).

更に本発明者らはリチウム含有マンガン化合物の製造法
について研究を重ねた結果、リチウム化合物とマンガン
化合物を粉砕し、適当な割合で混合した後、特定の温度
で加熱処理する方法が簡便で、リチウム吸着容量の大き
い吸着剤が調製できることを見出し、この知見に基づい
て本発明を完成するに至フた。
Furthermore, as a result of repeated research on the manufacturing method of lithium-containing manganese compounds, the present inventors found that a method of crushing a lithium compound and a manganese compound, mixing them in an appropriate ratio, and then heat-treating them at a specific temperature is a simple method. It was discovered that an adsorbent with a large adsorption capacity could be prepared, and based on this knowledge, the present invention was completed.

すなわち、本発明は、リチウム水酸化物、酸化物、炭酸
塩、重炭酸塩、硝酸塩、ハロゲン化物等とマンガンの含
水酸化物、酸化物、炭酸塩、重炭酸塩、硝酸塩、ハロゲ
ン化物を粉砕し、混合した後、soo” c以上の温度
で加熱処理し、更に酸でリチウムを溶出させることを特
徴とする吸着剤の製造方法を提供するものである。
That is, the present invention crushes lithium hydroxide, oxide, carbonate, bicarbonate, nitrate, halide, etc. and manganese hydrated oxide, oxide, carbonate, bicarbonate, nitrate, halide, etc. The present invention provides a method for producing an adsorbent, which is characterized in that, after mixing, the adsorbent is heat-treated at a temperature of at least 100 ml, and the lithium is further eluted with an acid.

リチウム化合物とマンガン化合物の混合物の加−処理は
500°C以上、望ましくは700°C以上で10分以
上、望ましくは30分〜6時間行う必要がある。
The processing of the mixture of the lithium compound and the manganese compound must be carried out at a temperature of 500°C or higher, preferably 700°C or higher, for 10 minutes or more, preferably 30 minutes to 6 hours.

該リチウム含有マンガン化合物のリチウム含量は0.5
〜20%、望ましくは1〜7%がよい。
The lithium content of the lithium-containing manganese compound is 0.5
-20%, preferably 1-7%.

加熱処理された該リチウム含有マンガン化合物から、該
リチウムを溶出するのに用いる酸としてはpH3以下の
酸性溶液であればよいが、望ましくは0.05 N以上
の鉱酸がよい。
The acid used to elute the lithium from the heat-treated lithium-containing manganese compound may be any acidic solution with a pH of 3 or less, but preferably a mineral acid with a pH of 0.05 N or more.

本発明の方法で調製した吸着剤は海水や地熱水中のリチ
ウムを選択的に吸着し、吸着剤中のリチウム濃度は鉱石
なみである。
The adsorbent prepared by the method of the present invention selectively adsorbs lithium in seawater and geothermal water, and the lithium concentration in the adsorbent is similar to that of ore.

発明の効果 本発明の方法で製造した該リチウム含有マンガン化合物
からリチウムを溶出した吸着剤はリチウム吸着に適した
ミクロボアを多く持ち、リチウムに対する選択吸着性が
優れ、かつ吸着速度及び吸着容量が極めて大きく、しか
も毒性がなく、水溶液中で安定であり、吸着剤中のリチ
ウム濃度はリチウム含有鉱石なみになり、希薄溶液から
効率よ経済的に該リチウムを回収することができる。
Effects of the Invention The adsorbent from which lithium is eluted from the lithium-containing manganese compound produced by the method of the present invention has many micropores suitable for lithium adsorption, has excellent selective adsorption for lithium, and has an extremely high adsorption rate and adsorption capacity. Furthermore, it is non-toxic and stable in aqueous solutions, and the lithium concentration in the adsorbent is comparable to that of lithium-containing ores, making it possible to efficiently and economically recover lithium from dilute solutions.

実施例 次に実施例により本発明の詳細な説明する。Example Next, the present invention will be explained in detail with reference to Examples.

実施例1 マンガン化合物及びリチウム化合物をそれぞれを粉砕し
た後、第1表の割合でそれぞれを混合し第    1 
   表 試料 マンガン化合物   リチウム化合物番号   
 添加量(g)    添加量(g)1 三酸化二マン
ガン 2.3  炭酸リチウム0.52  炭    
酸    〃   3.3  酸化    〃0.23
     〃    〃 水酸化 〃0.54    
 〃    〃 炭酸  〃  〃5 二酸化   〃
2.5  酸化  〃0.26     〃    〃
 水酸化 〃0.57     〃    〃 炭酸 
 〃  〃た。該混合物を温度800°Cで3時間加熱
処理した。次いで0.I N塩酸で洗浄してリチウムを
溶出したのち、水洗・風乾して吸着剤を得た。
Example 1 After pulverizing a manganese compound and a lithium compound, they were mixed in the proportions shown in Table 1.
Table sample Manganese compound Lithium compound number
Addition amount (g) Addition amount (g) 1 Dimanganese trioxide 2.3 Lithium carbonate 0.52 Charcoal
Acid〃3.3 Oxidation〃0.23
〃 〃 Hydroxylation 〃0.54
〃 〃 Carbonic acid 〃 〃5 Dioxide 〃
2.5 Oxidation 〃0.26 〃 〃
Hydroxide 〃0.57 〃 〃 Carbonic acid
〃 〃Ta. The mixture was heat treated at a temperature of 800°C for 3 hours. Then 0. After washing with IN hydrochloric acid to elute lithium, the adsorbent was obtained by washing with water and air drying.

得られた各吸着剤0.2gをリチウム濃度が6.6pp
mの水溶液(pH8,5) 100mLにそれぞれ加え
、25°Cで7日間かきまぜた後、上澄液中のリチウム
濃度を定量し、リチウム吸着量を求めた。その結果を第
2表に示す。ここで示した分配係数とは吸着平衡時にお
ける水溶液中の平衡イオ゛ン濃度と吸着剤中の平衡吸着
量との比で、次式で表されるものである。
0.2 g of each adsorbent obtained has a lithium concentration of 6.6 pp.
After adding each to 100 mL of an aqueous solution (pH 8, 5) of M and stirring at 25°C for 7 days, the lithium concentration in the supernatant was determined to determine the amount of lithium adsorbed. The results are shown in Table 2. The distribution coefficient shown here is the ratio between the equilibrium ion concentration in the aqueous solution and the equilibrium adsorption amount in the adsorbent at the time of adsorption equilibrium, and is expressed by the following equation.

吸着剤中の平衡吸着量(mg/g) 分配係数=□ 水溶液中の平衡濃度(+wg/mL) いずれの吸着剤ともリチウム吸着性が優れており、リチ
ウム吸着量は2〜3 mg/gでリチウム分配係数は1
,000〜10,000に達しており、従来のアルミニ
ウム系吸着剤(分配係数的500 ) 、含水酸化スズ
(分配係数的100)に比べ優れていることは明らかで
ある。
Equilibrium adsorption amount in adsorbent (mg/g) Partition coefficient = □ Equilibrium concentration in aqueous solution (+wg/mL) All adsorbents have excellent lithium adsorption properties, and the lithium adsorption amount is 2 to 3 mg/g. The lithium distribution coefficient is 1
,000 to 10,000, which is clearly superior to conventional aluminum-based adsorbents (partition coefficient: 500) and hydrous tin oxide (partition coefficient: 100).

第    2    表 試料  い吸着量 L1吸着率 い分配係数番号   
(mg/g)    (X)1    2.65   
88.3  3.8 X 1032    2.93 
  97.8 22.OX l033    2.36
   78.7  1.8 X 1034    2.
37   79.0   +、9 X IQ352.8
5   95.0  、 9.5 XIO’6    
2.00   66.7  1.OXIO371,50
50,00,5X 103 実施例2 実施例1で得られた各種吸着剤0.05gを2Lの天然
海水中にそれぞれ添加し、25°Cで7日間かきまぜた
のち、上澄液中のリチウム濃度を定量し、リチウム吸着
量を求めた。その結果を第3表に示す。該吸着剤はいず
れも天然海水系においても良第    3    表 試料  L1吸着量  い吸着率 L1濃縮係数番号 
  (mg/g)    (%)1    2.8  
  41.2   +、6 X 10’2    4.
0    58.8  2.4  tt3    2.
8    4+、2  1.6  tt4    2.
4    35.3  1.4  tt5    4.
0    58.8  2.4  //6    2.
4    35.3   +、4  tt7    1
.2    1?、7  0.7  sLi吸着量(m
g/g) (II縮係数=□)
Table 2 Sample Adsorption amount L1 adsorption rate Partition coefficient number
(mg/g) (X)1 2.65
88.3 3.8 X 1032 2.93
97.8 22. OX l033 2.36
78.7 1.8 x 1034 2.
37 79.0 +, 9 X IQ352.8
5 95.0, 9.5 XIO'6
2.00 66.7 1. OXIO371,50
50,00,5X 103 Example 2 0.05g of each adsorbent obtained in Example 1 was added to 2L of natural seawater, stirred at 25°C for 7 days, and the lithium concentration in the supernatant liquid was determined. was quantified to determine the amount of lithium adsorbed. The results are shown in Table 3. All of these adsorbents are good even in natural seawater systems.Table 3 Sample L1 adsorption amount Adsorption rate L1 concentration factor number
(mg/g) (%)1 2.8
41.2 +, 6 X 10'2 4.
0 58.8 2.4 tt3 2.
8 4+, 2 1.6 tt4 2.
4 35.3 1.4 tt5 4.
0 58.8 2.4 //6 2.
4 35.3 +, 4 tt7 1
.. 2 1? , 7 0.7 sLi adsorption amount (m
g/g) (II reduction coefficient=□)

Claims (1)

【特許請求の範囲】 1 リチウム化合物とマンガン化合物をそれぞれを粉砕
して混合したのち、500℃以上の温度で加熱処理して
調製したリチウム含有マンガン化合物から酸を用いてリ
チウムを溶出することを特徴とするリチウム吸着剤の製
造方法。 2 リチウム化合物としては水酸化物、酸化物炭酸塩、
重炭酸塩、ハロゲン化物及び硝酸塩等を用いることを特
徴とする特許請求範囲第1項記載のリチウム吸着剤の製
造法。 3 マンガン化合物として含水酸化物、酸化物炭酸塩、
重炭酸塩、ハロゲン化物、硝酸塩等を用いることを特徴
とする特許請求範囲第1項に記載したリチウム吸着剤の
製造方法。 3 酸としてpH3以下の酸性溶液を用いることを特徴
とする特許請求範囲第1項記載のリチウム吸着剤の製造
方法。
[Claims] 1. Lithium is eluted using acid from a lithium-containing manganese compound prepared by pulverizing and mixing a lithium compound and a manganese compound, and then heat-treating the mixture at a temperature of 500°C or higher. A method for producing a lithium adsorbent. 2 Lithium compounds include hydroxide, oxide carbonate,
A method for producing a lithium adsorbent according to claim 1, characterized in that bicarbonate, halide, nitrate, etc. are used. 3 Hydrous oxides, oxide carbonates, as manganese compounds
A method for producing a lithium adsorbent according to claim 1, characterized in that a bicarbonate, a halide, a nitrate, etc. are used. 3. The method for producing a lithium adsorbent according to claim 1, characterized in that an acidic solution with a pH of 3 or less is used as the acid.
JP12204885A 1985-06-05 1985-06-05 RICHIUMUKYUCHAKUZAINOSHINSEIZOHOHO Expired - Lifetime JPH0230737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12204885A JPH0230737B2 (en) 1985-06-05 1985-06-05 RICHIUMUKYUCHAKUZAINOSHINSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12204885A JPH0230737B2 (en) 1985-06-05 1985-06-05 RICHIUMUKYUCHAKUZAINOSHINSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS61283341A true JPS61283341A (en) 1986-12-13
JPH0230737B2 JPH0230737B2 (en) 1990-07-09

Family

ID=14826315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12204885A Expired - Lifetime JPH0230737B2 (en) 1985-06-05 1985-06-05 RICHIUMUKYUCHAKUZAINOSHINSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0230737B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283035A (en) * 1985-10-07 1987-04-16 Japan Metals & Chem Co Ltd Preparation of lithium adsorbent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283035A (en) * 1985-10-07 1987-04-16 Japan Metals & Chem Co Ltd Preparation of lithium adsorbent

Also Published As

Publication number Publication date
JPH0230737B2 (en) 1990-07-09

Similar Documents

Publication Publication Date Title
JPH0688277A (en) Lithium recovering method and electrode used therefor
Yoshizuka et al. Selective recovery of lithium from seawater using a novel MnO2 type adsorbent
JP2003245542A (en) Lithium adsorbing agent and method for producing the same, and method for collecting lithium
JPS61283342A (en) Lithium adsorbent and its preparation
JP5110463B2 (en) Method for producing magnetic nanocomplex material having anion adsorptivity and magnetism
JPH0423577B2 (en)
JPS61283341A (en) Novel method for preparing lithium adsorbent
JPH038439A (en) Granular lithium adsorbent and method for recovering lithium by using this adsorbent
JP3321602B2 (en) Selective lithium separating agent and method for producing the same
JPH0222698B2 (en)
Chitrakar et al. Cesium adsorption by synthetic todorokite-type manganese oxides
JP3412003B2 (en) Novel lithium adsorbent and method for producing the same
JPS6362545A (en) Lithium adsorbent and its production and recovering method for lithium by using same
JPS61283339A (en) Preparation of new lithium adsorbent
JPS61278347A (en) Production of li adsorbent
Mishra et al. Inorganic particulates in removal of toxic heavy metal ions: IV. Efficient removal of zinc ions from aqueous solution by hydrous zirconium oxide
JP2001157838A (en) Method for preparing lithium adsorbent
JP2015116551A (en) Lithium-manganese-iron complex oxide for lithium recovering agent, lithium recovering agent comprising the same, and lithium recovery method using the lithium recovering agent
JP2850309B2 (en) Method for producing lithium adsorbent
JPS6380844A (en) Preparation of novel lithium adsorbent
CN109046228A (en) A kind of goethite and its preparation method and application
JPH01203039A (en) Adsorbent indicating new lithium selectivity and manufacture thereof
JPH0632762B2 (en) Method for desorbing lithium from manganese oxide-based lithium adsorbent
JPH0687970B2 (en) Lithium adsorbent and method for producing the same
JPH0618638B2 (en) Adsorbent for potassium and rubidium and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term