JPH038439A - Granular lithium adsorbent and method for recovering lithium by using this adsorbent - Google Patents

Granular lithium adsorbent and method for recovering lithium by using this adsorbent

Info

Publication number
JPH038439A
JPH038439A JP14154589A JP14154589A JPH038439A JP H038439 A JPH038439 A JP H038439A JP 14154589 A JP14154589 A JP 14154589A JP 14154589 A JP14154589 A JP 14154589A JP H038439 A JPH038439 A JP H038439A
Authority
JP
Japan
Prior art keywords
lithium
adsorbent
granular
dilute
manganese oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14154589A
Other languages
Japanese (ja)
Other versions
JPH0626661B2 (en
Inventor
Yoshitaka Miyai
宮井 良孝
Kenta Oi
健太 大井
Shunsaku Kato
俊作 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1141545A priority Critical patent/JPH0626661B2/en
Publication of JPH038439A publication Critical patent/JPH038439A/en
Publication of JPH0626661B2 publication Critical patent/JPH0626661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To efficiently recover lithium from a dilute soln. by using a material in which the lithium is eluted by treating the granular matter of a lithium contg. manganese oxide formed by granulating an org. high-polymer material with an aq. soln. having lithium elutability. CONSTITUTION:The lithium-contg. manganese oxide, such as LiMn2O4 or Li2 MnO3, is added into the soln. prepd. by dissolving the org. high polymer material having a binder function into au org. solvent and is then sufficiently kneaded. The mixture is passed through a capillary in a liquid which has affinity to the org. solvent and is a nonsolvent to the high-polymer material, by which the granular matter is produced. The granular matter is then immersed into an aq. soln. of <=4 pH contg. the acid having the lithium elutability or an oxidative material exhibiting acidity to elute the lithium. The granular lithium adsorbent is thus obtd. This adsorbent is packed into a column where the dilute soln. contg. the lithium is passed to adsorb the lithium on the adsorbent. A soln. for desorbing the lithium is then passed in the column to elute the lithium adsorbed on the adsorbent.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、新規な粒状リチウム吸着剤、及びそれを用い
たリチウム回収方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel granular lithium adsorbent and a lithium recovery method using the same.

さらに詳しくいえば、本発明は、リチウムに対する選択
吸着性に優れ、かつ吸着容量及び吸着速度が大きく、水
溶液中で安定であって、毒性が少ない上、取扱いの容易
な粒状リチウム吸着剤、及びこのものを用いて、希薄溶
液中のリチウムを効率よく回収する方法に関するもので
ある。
More specifically, the present invention provides a granular lithium adsorbent that has excellent selective adsorption for lithium, has a large adsorption capacity and rate, is stable in an aqueous solution, has low toxicity, and is easy to handle. The present invention relates to a method for efficiently recovering lithium from a dilute solution using a device.

従来の技術 近年、リチウム金属やその化合物は、多くの分野におい
て種々の用途、例えばセラミックス、電池、冷媒吸収剤
、医薬品などに用いられており、さらに、将来大容量電
池、アルミニウム合金材料、核融合燃料などとしての利
用が期待されていることから、リチウムの需要の著しい
増大が見込まれている〔「日本鉱業会誌」、第79巻、
第221ページ〕。
Background of the Invention In recent years, lithium metal and its compounds have been used in many fields for various applications, such as ceramics, batteries, refrigerant absorbents, and pharmaceuticals. The demand for lithium is expected to increase significantly as it is expected to be used as fuel, etc. [Journal of the Japan Mining Association, Vol. 79,
Page 221].

前記リチウム金属やその化合物は、現在主としてスポジ
ューメン、アンブリゴナイト、ペタライト、レピドライ
トなどのリチウム含有鉱石及びリチウム濃度の高い塩湖
や地下かん木などを原料として製造されている。
The lithium metal and its compounds are currently produced mainly from lithium-containing ores such as spodumene, ambrigonite, petalite, and lepidolite, as well as salt lakes and underground shrubs with high lithium concentrations.

しかるに、わが国においては、前記のようなリチウム鉱
石資源がなく、リチウム金属やその化合物は全量輸入に
依存しているのが現状である。
However, our country does not have the above-mentioned lithium ore resources, and currently relies entirely on imports for lithium metal and its compounds.

方、わが国の地熱水や温泉水にはかなりのリチウムを含
有するものがあり、また、周囲をとりまく海水中にも微
震のリチウムが含まれている。したがって、これらのリ
チウムを含む希薄溶液から該リチウムを効率よく回収す
る技術を確立することが強く要望されている。
On the other hand, some geothermal water and hot spring water in Japan contain a considerable amount of lithium, and the surrounding seawater also contains small amounts of lithium. Therefore, it is strongly desired to establish a technique for efficiently recovering lithium from these dilute solutions containing lithium.

従来、海水やかん水などのリチウムを含む溶液から、該
リチウムを回収するt;めに、各種の吸着剤が開発され
ている。例えば無定形水酸化アルミニウム(特開昭55
−10541号公報)、含水酸化スズ(特開昭57−6
1623号公報)、アンチモン酸スズ(特開昭58−1
67424号公報)、リン酸ビスマス(特開昭59−1
95525号公報)、チタン酸加熱処理物(特開昭61
−72623号公報)、マンガン酸化物(特開昭61−
171535号公報、同61−228334号公報)な
どが知られている。
Conventionally, various adsorbents have been developed to recover lithium from solutions containing lithium such as seawater and brine. For example, amorphous aluminum hydroxide (Japanese Patent Laid-Open No. 55
-10541), hydrated tin oxide (Japanese Unexamined Patent Publication No. 57-6
1623), tin antimonate (Japanese Unexamined Patent Publication No. 58-1
67424), bismuth phosphate (JP-A-59-1)
95525), titanic acid heat-treated product (JP-A-61
-72623), manganese oxide (JP-A-61-
171535, 61-228334), etc. are known.

これらの吸着剤の中でも、特にマンガン酸化物系吸着剤
は高いリチウム選択性を示し、その吸着量は低品位鉱石
のリチウム含量に匹敵するほどに高められており、実用
化に最も近い吸着剤として期待されている。この吸着剤
は、多孔性マンガン含水酸化物にリチウムイオン又はマ
グネシウムイオンをあらかじめ導入して固定化したのち
、酸処理などにより該リチウムイオン又はマグネシウム
イオンを溶出することによって製造される。したがって
、吸着剤中にリチウムに適した極微細孔が形成されるこ
とを特徴とする。
Among these adsorbents, manganese oxide-based adsorbents in particular exhibit high lithium selectivity, and their adsorption amount is comparable to the lithium content of low-grade ores, making them the closest adsorbent to practical use. It is expected. This adsorbent is produced by introducing lithium ions or magnesium ions into a porous manganese hydrous oxide in advance and fixing them, and then eluting the lithium ions or magnesium ions by acid treatment or the like. Therefore, it is characterized by the formation of extremely fine pores suitable for lithium in the adsorbent.

しかしながら、該吸着剤は通常粉末であるため、多量の
海水やかん水などと接触させて吸着処理を行う場合、溶
液からの分離回収が極めて困難であるという欠点を有し
、このことはリチウム回収プロセスの実用化にとって大
きな阻害要因となっている。
However, since the adsorbent is usually a powder, it has the disadvantage that it is extremely difficult to separate and recover it from the solution when it is brought into contact with a large amount of seawater or brine. This is a major impediment to its practical application.

発明が解決しようとする課題 本発明は、このような従来のリチウム吸着剤が有する欠
点を克服し、リチウムに対する選択吸着性に優れ、かつ
吸着速度や吸着容量が大きい上、希薄リチウム溶液から
の分離回収が容易で、しかも毒性が少なく希薄溶液中で
安定であるなどの特徴をもつ、リチウムを含む海水、地
熱水、地下かん木などの希薄溶液から該リチウムを回収
するための実用的な粒状リチウム吸着剤、及びこのもの
を用いて希薄溶液からリチウムを効率よく回収する方法
を提供することを目的としてなされたものである。
Problems to be Solved by the Invention The present invention overcomes the drawbacks of conventional lithium adsorbents, has excellent selective adsorption for lithium, has a high adsorption rate and adsorption capacity, and is capable of separating dilute lithium solutions. A practical granular form for recovering lithium from dilute solutions such as lithium-containing seawater, geothermal water, and underground bushes, which is easy to recover, has low toxicity, and is stable in dilute solutions. The purpose of this invention is to provide a lithium adsorbent and a method for efficiently recovering lithium from a dilute solution using the adsorbent.

課題を解決するt;めの手段 本発明者らは、前記目的を達成するために鋭意研究を重
ねた結果、リチウム含有マンガン酸化物を有機高分子物
質をバインダーとして粒状体に成形したのち、水溶液中
で該リチウムを溶出させることにより、前記の好ましい
性質を有する粒状リチウム吸着剤が得られること、及び
このものをカラムに充てんし、これにリチウムを含む希
薄溶液を流してリチウムを吸着させたのち、リチウム脱
着能を有する水溶液を用いて吸着剤に吸着されたリチウ
ムを溶離させることにより、希薄溶液からリチウムを効
率よく回収しうろことを見出し、この知見に基づいて本
発明を完成するに至った。
Means for Solving the Problems In order to achieve the above object, the inventors of the present invention have conducted extensive research and found that after forming lithium-containing manganese oxide into granules using an organic polymeric substance as a binder, they formed them into a granular material using an aqueous solution. By eluting the lithium in a column, a granular lithium adsorbent having the above-mentioned desirable properties can be obtained, and after filling a column with this material and flowing a dilute solution containing lithium therein to adsorb lithium, discovered that lithium can be efficiently recovered from a dilute solution by eluting lithium adsorbed on an adsorbent using an aqueous solution that has lithium desorption ability, and based on this knowledge, the present invention was completed. .

すなわち、本発明は、有機高分子物質を用いて造粒して
成るリチウム含有マンガン酸化物の粒状体をリチウム溶
出能を有する水溶液で処理し、該リチウムを溶出させた
ことを特徴とする粒状リチウム吸着剤、及びこの粒状リ
チウム吸着剤をカラムに充てんしたのち、該カラムにリ
チウムを含む希薄溶液を流してリチウムを吸着させ、次
いで希酸溶液又は酸性を示す酸化性化合物を含有する水
溶液を用いて、前記吸着剤に吸着されたリチウムを溶離
させることを特徴とする希薄溶液からのりチウム回収方
法を提供するものである。
That is, the present invention provides a granular lithium characterized in that a granular body of lithium-containing manganese oxide granulated using an organic polymer substance is treated with an aqueous solution having lithium elution ability to elute the lithium. After filling a column with an adsorbent and this granular lithium adsorbent, a dilute solution containing lithium is flowed through the column to adsorb lithium, and then a dilute acid solution or an aqueous solution containing an oxidizing compound exhibiting acidity is used. , provides a method for recovering lithium from a dilute solution, characterized in that lithium adsorbed on the adsorbent is eluted.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のリチウム吸着剤の原料として用いられるマンガ
ン酸化物については、リチウムを含有するものであれば
よく特に制限はないが、LiMn、O。
The manganese oxide used as a raw material for the lithium adsorbent of the present invention is not particularly limited as long as it contains lithium, but examples include LiMn and O.

やLi2MnO3を含むものが好ましく用いられる。こ
のようなリチウム含有マンガン酸化物は、例えば多孔性
のマンガン含水酸化物にリチウムを吸着させたのち、5
00°C以上の温度で加熱処理する方法(特開昭61−
171535号公報)、水酸化酸化マンガンと炭酸リチ
ウムとの混合物を200°C以上の温度において加熱処
理する方法(特開昭63−80844号公報)などによ
り製造することができる。このようにして得られたリチ
ウム含有マンガン酸化物の粒径は、通常帆01−100
μmの範囲にあるが、本発明においては0.1−10μ
mの粒径を有するものが好ましく用いられる。
or Li2MnO3 is preferably used. Such a lithium-containing manganese oxide is produced by adsorbing lithium onto a porous manganese hydrate, for example, and then
Method of heat treatment at a temperature of 00°C or higher
171535), a method in which a mixture of manganese hydroxide oxide and lithium carbonate is heat-treated at a temperature of 200° C. or higher (Japanese Patent Application Laid-open No. 80844/1984), and the like. The particle size of the lithium-containing manganese oxide obtained in this way is usually 01-100.
In the present invention, it is in the range of 0.1-10μm.
Those having a particle size of m are preferably used.

本発明の吸着剤において用いられる有機高分子物質につ
いては、バインダーとしての機能を有するものであれば
よく、特に制限はないが、例えばポリ塩化ビニル、アク
リロニトリル共重合体、ポリスルホン、ポリアミド、ポ
リイミド、ポリエステノ呟アセチルセルロースなどが挙
げられる。
The organic polymer used in the adsorbent of the present invention is not particularly limited as long as it has a function as a binder, but examples include polyvinyl chloride, acrylonitrile copolymer, polysulfone, polyamide, polyimide, polyester, etc. Examples include acetyl cellulose.

本発明の粒状吸着剤を製造するためには、まず原料のリ
チウム含有マンガン酸化物を前記有機高分子物質を用い
て造粒し、粒状体を調製するが、この粒状体は、適当な
有機溶媒に該高分子物質を溶解した溶液中に、リチウム
含有マンガン酸化物を添加して十分に混練し、この混練
物を該有機溶媒に対して親和性を有し、かつ該高分子物
質に対する非溶媒中に細管を通して滴下することにより
調製することができる。この粒状体の粒径は、該細管の
径や滴下速度により調節することができる。
In order to produce the granular adsorbent of the present invention, lithium-containing manganese oxide as a raw material is first granulated using the organic polymer substance described above to prepare granules. A lithium-containing manganese oxide is added to a solution in which the polymeric substance is dissolved and thoroughly kneaded, and the kneaded product is mixed with a solution having an affinity for the organic solvent and a non-solvent for the polymeric substance. It can be prepared by dropping it through a capillary. The particle size of the granules can be adjusted by the diameter of the capillary and the dropping rate.

前記非溶媒としては、例えば水、アセトン、アルコール
などが挙げられるが、取扱いやすさの点から水が好まし
い。また、高分子物質を溶解するのに用いられる有機溶
媒は、前記非溶媒の種類に応じて適宜選ばれ、例えば水
を非溶媒とする場合には、該有機溶媒としては、ジメチ
ルホルムアミド、ホルムアミド、ジメチルスルホキシド
、ジオキサン、テトラヒドロフラン、アセトンなどが好
ましく用いられる。
Examples of the non-solvent include water, acetone, alcohol, etc., and water is preferred from the viewpoint of ease of handling. Further, the organic solvent used to dissolve the polymeric substance is appropriately selected depending on the type of the non-solvent. For example, when water is used as the non-solvent, the organic solvent may be dimethylformamide, formamide, Dimethyl sulfoxide, dioxane, tetrahydrofuran, acetone and the like are preferably used.

前記高分子物質の使用量は、リチウム含有マンガン酸化
物に対して、通常5〜60重量%の範囲で選ばれる。こ
の量が5重量%未満では粒状体中に高分子物質が均一に
分散されず、該粒状体の破砕や粉末化が起りやすいし、
60重量%を超えるとマンガン酸化物中のリチウムの溶
出が困難となり吸着性能が低下する傾向が生じる。
The amount of the polymeric substance used is usually selected in the range of 5 to 60% by weight based on the lithium-containing manganese oxide. If this amount is less than 5% by weight, the polymer substance will not be uniformly dispersed in the granules, and the granules will likely be crushed or powdered.
If it exceeds 60% by weight, it becomes difficult to elute lithium from the manganese oxide, and adsorption performance tends to decrease.

このようにして得られた粒状体は十分に水洗したのち、
リチウム溶出能を有する水溶液中に浸せきして処理し、
その中に含まれているリチウムを溶出させる。該リチウ
ム溶出能を有する水溶液としては、酸又は酸性を示す酸
化性物質を含有するpH4以下の水溶液が好ましく用い
られる。前記酸としては塩酸、硫酸、硝酸、リン酸など
の無機酸が好ましく挙げられるが、特に塩酸が好適であ
る。
After the granules obtained in this way are thoroughly washed with water,
treated by immersion in an aqueous solution having lithium elution ability,
The lithium contained therein is eluted. As the aqueous solution having the ability to elute lithium, an aqueous solution containing an acid or an oxidizing substance exhibiting acidity and having a pH of 4 or less is preferably used. Preferred examples of the acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, with hydrochloric acid being particularly preferred.

これらの酸を含有する水溶液の濃度については特に制限
はないが、通常0.05〜0.5M濃度のものが用いら
れる。処理温度は室温で十分であり、また処理時間は酸
濃度にもよるが、通常数時間以上である。
There are no particular restrictions on the concentration of the aqueous solution containing these acids, but a concentration of 0.05 to 0.5M is usually used. Room temperature is sufficient for the treatment temperature, and the treatment time is usually several hours or more, although it depends on the acid concentration.

一方、酸性を示す酸化性物質については、水溶液中で弱
酸性を示す酸化剤であればよく、特に制限はない。この
ようなものとしては、例えばベルオクソニ硫酸塩や臭素
などが挙げられるが、経済性、取扱い性、溶解度などの
点からベルオクソニ硫酸アンモニウムが好適である。こ
の酸性を示す酸化性物質の濃度については特に制限はな
いが、通常0.1〜IM濃度のものが用いられる。処理
温度は通常40℃ないし沸点の範囲で選ばれる。この温
度が40°C未満ではリチウムの溶出に長時間を要し、
実用的でない。
On the other hand, the oxidizing substance exhibiting acidity is not particularly limited as long as it is an oxidizing agent exhibiting weak acidity in an aqueous solution. Examples of such substances include belloxonisulfate and bromine, but ammonium belloxonisulfate is preferred from the viewpoint of economy, ease of handling, solubility, and the like. Although there is no particular restriction on the concentration of this acidic oxidizing substance, a concentration of 0.1 to IM is usually used. The treatment temperature is usually selected within the range of 40°C to the boiling point. If this temperature is less than 40°C, it will take a long time to elute lithium.
Not practical.

このようにして、該粒状体をリチウム溶出能を有する水
溶液で処理することにより、マンガン酸化物中に含まれ
ているリチウムの約90%以上が溶出されて、粒状リチ
ウム吸着剤が得られる。
By treating the granules with an aqueous solution capable of eluting lithium in this way, about 90% or more of the lithium contained in the manganese oxide is eluted, and a granular lithium adsorbent is obtained.

このようにして得られた本発明の粒状リチウム吸着剤を
用いて、希薄リチウム溶液からリチウムを回収するには
、該粒状リチウム吸着剤をカラムに充てんし、これにリ
チウムを含む希薄溶液を流してリチウムを吸着させ、次
いで希酸溶液又は酸性を示す酸化性物質を含む水溶液を
用いて、該吸着剤に吸着されたリチウムを溶離させれば
よい。
In order to recover lithium from a dilute lithium solution using the granular lithium adsorbent of the present invention thus obtained, the granular lithium adsorbent is packed into a column, and a dilute solution containing lithium is poured into the column. Lithium may be adsorbed, and then the lithium adsorbed on the adsorbent may be eluted using a dilute acid solution or an aqueous solution containing an oxidizing substance exhibiting acidity.

また、本発明の粒状吸着剤はリチウムを含む希薄溶液及
びリチウム脱着用溶液に対する安定性が良好であるので
、該粒状吸着剤を含有するカラムに、リチウムを含む希
薄溶液とリチウム脱着用溶液とを交互に流すことにより
、吸着−脱着の繰り返しが可能である。
Furthermore, since the granular adsorbent of the present invention has good stability against a dilute solution containing lithium and a solution for lithium desorption, a dilute solution containing lithium and a lithium desorption solution are added to a column containing the granular adsorbent. By alternately flowing the water, adsorption and desorption can be repeated.

発明の効果 本発明の粒状リチウム吸着剤は、リチウムに対する選択
吸着性に優れ、かつ吸着容量及び吸着速度が大きい上、
希薄リチウム溶液からの分離回収が容易で、しかも毒性
が少なく、希薄リチウム溶液やリチウム脱着用溶液中で
安定であるなどの特徴を有し、リチウムを含む海水、地
熱水、地下かん木などの希薄溶液からリチウムを回収す
るための実用的なリチウム吸着剤として好適に用いられ
る。
Effects of the Invention The granular lithium adsorbent of the present invention has excellent selective adsorption properties for lithium, and has a large adsorption capacity and adsorption rate.
It is easy to separate and recover from dilute lithium solutions, has low toxicity, and is stable in dilute lithium solutions and lithium desorption solutions. It is suitably used as a practical lithium adsorbent for recovering lithium from dilute solutions.

また、本発明の粒状リチウム吸着剤は、前記したような
優れた特徴を有することがら、該吸着剤をカラムに充填
し、これにリチウムを含む希薄溶液とリチウム脱着用溶
液とを交互に流し、吸着−脱着を繰り返すことにより、
希薄溶液からリチウムを極めて効率よく回収することが
できる。
In addition, since the granular lithium adsorbent of the present invention has the excellent characteristics described above, the adsorbent is packed in a column, and a dilute solution containing lithium and a lithium desorption solution are alternately poured into the column. By repeating adsorption and desorption,
Lithium can be recovered from dilute solutions extremely efficiently.

なお、リチウム含有マンガン酸化物をあらかじめ酸処理
して得た粉末状リチウム吸着剤を、バインダーとして高
分子物質を用いて、前記のようにして粒状化することは
可能であるが、粉末状リチウム吸着剤は有機溶媒に対し
て不安定であるので、粒状化の際活性点が破壊され、得
られた粒状体はほとんどリチウム吸着性を示さない。
Although it is possible to granulate the powdered lithium adsorbent obtained by pre-acid treatment of lithium-containing manganese oxide using a polymeric material as a binder as described above, powdered lithium adsorption is not possible. Since the agent is unstable in organic solvents, the active sites are destroyed during granulation, and the resulting granules exhibit almost no lithium adsorption ability.

実施例 次に、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。
Examples Next, the present invention will be explained in more detail with reference to examples.
The present invention is not limited in any way by these examples.

実施例1 水酸化酸化マンガン500gと炭酸リチウム103gを
粉砕混合したのち、400℃で5時間加熱処理して、M
−ラム含有マンガン縁化物を調製した。このものはX線
分析の結果、LiMn20を相が形成されていることが
確認された。
Example 1 After pulverizing and mixing 500 g of manganese hydroxide oxide and 103 g of lithium carbonate, heat treatment was performed at 400°C for 5 hours to obtain M
- A rum-containing manganese rim was prepared. As a result of X-ray analysis, it was confirmed that a phase of LiMn20 was formed.

次いで、ポリ塩化ビニル(重合度2000) 4 gを
テトラヒドロフラン40m(2及びN、N−ジメチルホ
ルムアミド40mQに溶解したのち、この溶液に前記リ
チウム含有マンガン酸化物logを加え、十分に混練し
、次いでこの懸濁液を直径1.5m++1の細管を通し
て水中に滴下して粒状体を作製した。
Next, 4 g of polyvinyl chloride (polymerization degree 2000) was dissolved in 40 mQ of tetrahydrofuran (2 and N,N-dimethylformamide 40 mQ), and the log of the lithium-containing manganese oxide was added to this solution and thoroughly kneaded. The suspension was dropped into water through a capillary tube with a diameter of 1.5 m++1 to produce granules.

次に、この粒状体5gを室温で0.25Mの塩酸溶液2
Q中に浸せきしてリチウムを溶出させた。第1図に粒状
体のリチウム溶出率の経時変化をグラフで示す。
Next, 5 g of this granule was added to 2 ml of 0.25 M hydrochloric acid solution at room temperature.
The lithium was eluted by dipping in Q. FIG. 1 graphically shows the change over time in the lithium elution rate of the granules.

この第1図から、処理時間4時間で粒状体中のリチウム
の大部分が溶出され、24時間以上で溶出率はほぼ一定
になることが分かる。
From FIG. 1, it can be seen that most of the lithium in the granules is eluted after a treatment time of 4 hours, and the elution rate becomes almost constant over 24 hours.

塩酸処理時間が異なる5種類の粒状吸着剤を製造し、そ
れぞれ1gを直径3 、5c+++のカラムに充てんし
、天然海水を50m12/分の速度で7日間流して海水
からのリチウム吸着実験を行った。その際のリチウム吸
着量を第1表に示す。
Five types of granular adsorbents with different hydrochloric acid treatment times were manufactured, 1 g of each was packed into a column with a diameter of 3.5 cm, and natural sea water was flowed through the column at a rate of 50 m/min for 7 days to conduct an experiment on adsorption of lithium from seawater. . The amount of lithium adsorbed at that time is shown in Table 1.

第     1     表 第1表から分かるように、リチウム吸着量は2.3〜2
.5my/gを示し、良好な結果が得られた。
Table 1 As can be seen from Table 1, the amount of lithium adsorption is between 2.3 and 2.
.. 5 my/g, and a good result was obtained.

実施例2 実施例1と同様にしてリチウム含有マンガン酸化物の粒
状体を作製し、この5gを0.5Mベルオクソニ硫酸ア
ンモニウム水溶液300m12中に入れ700Cで処理
しt;。第2図に処理時間とリチウム溶出率との関係を
グラフで示す。この第2図から、酸性でかつ酸化性を示
すベルオクソニ硫酸アンモニウム((NH,)zszo
a)の場合には、1時間で溶出率が97%以上となり、
極めて短時間の処理でよいことが分かった。
Example 2 A granular material of lithium-containing manganese oxide was prepared in the same manner as in Example 1, and 5 g of the granular material was placed in 300 ml of a 0.5 M aqueous ammonium oxonisulfate solution and treated at 700C. FIG. 2 graphically shows the relationship between treatment time and lithium elution rate. From this Figure 2, it is clear that ammonium oxonisulfate ((NH,)zszo
In the case of a), the dissolution rate is 97% or more in 1 hour,
It turned out that the process can be done in an extremely short time.

次に、処理時間の異なった4種類の粒状吸着剤0.5g
を調製後、ただちに直径3.5cmのカラムに充てんし
、天然海水50mQ1分の流速で7日間流して吸着実験
を行った。また、同一の粒状吸着剤各0.59を1か月
間水中に保存したのち、同一条件での吸着実験に供した
。それらの結果を第2表に示す。
Next, 0.5 g of four types of granular adsorbents with different treatment times
After preparing, it was immediately filled into a column with a diameter of 3.5 cm, and an adsorption experiment was conducted by flowing natural seawater at a flow rate of 50 mQ1 min for 7 days. In addition, each of the same granular adsorbents (0.59 g) was stored in water for one month and then subjected to an adsorption experiment under the same conditions. The results are shown in Table 2.

第    2    表 第2表から分かるように、リチウム吸着量は2.1〜2
.6+++g/gであり、ベルオクソニ硫酸アンモニウ
ムによる処理時間が帆5時間の場合に最も高い吸着量(
2,4〜2.6mg/g)が得られた。また、調製した
吸着剤は安定であり、経時変化による影響はみられなか
った。このように、本発明の粒状吸着剤は優れた性能を
示した。
Table 2 As can be seen from Table 2, the amount of lithium adsorption is between 2.1 and 2.
.. 6+++ g/g, and the highest adsorption amount (
2.4-2.6 mg/g) was obtained. In addition, the prepared adsorbent was stable and no influence due to changes over time was observed. Thus, the granular adsorbent of the present invention showed excellent performance.

実施例3 実施例1と同様にして調製したリチウム含をマンガン酸
化物10gに、ポリ塩化ビニル(重合度700)49を
N、N−ジメチルホルムアミド50mf2に溶解したも
のを加えて十分に混練しI;。これを直径1.5m+R
の細管を通して水とアルコールとの混合液中に滴下して
粒状リチウムマンガン酸化物を得た。
Example 3 To 10 g of lithium-containing manganese oxide prepared in the same manner as in Example 1, a solution of 49 polyvinyl chloride (degree of polymerization 700) dissolved in 50 mf2 of N,N-dimethylformamide was added and thoroughly kneaded. ;. This is 1.5m in diameter + R
was dropped into a mixture of water and alcohol through a thin tube to obtain granular lithium manganese oxide.

次いで、この粒状体5gを0.25M塩酸溶液2Q中に
入れ、かきまぜながら4日間処理してリチウムを溶出さ
せた。第3図に、処理時間とリチウム溶出率との関係を
グラフで示す。この第3図から分かるように、塩酸処理
時間1日でリチウム溶出率90%以上が得られたが、そ
れ以上の時間では、溶出率の変化はほとんどみられなか
った。
Next, 5 g of this granular material was placed in 2Q of 0.25M hydrochloric acid solution, and treated for 4 days with stirring to elute lithium. FIG. 3 shows a graph of the relationship between treatment time and lithium elution rate. As can be seen from FIG. 3, a lithium elution rate of 90% or more was obtained after one day of hydrochloric acid treatment, but little change in the elution rate was observed when the treatment time was longer than that.

次に、処理時間の異なる4種類の粒状吸着剤種59を実
施例2と同様の条件で吸着実験を行った。
Next, an adsorption experiment was conducted under the same conditions as in Example 2 using four types of granular adsorbent species 59 having different treatment times.

その結果を第3表に示す。The results are shown in Table 3.

第    3    表 吸着処理条件は実施例3と同様な条件で行い、脱着処理
は粒状吸着剤を0.25M塩酸溶液50罰中に8時間浸
せきして行った。その結果を第、4表に示す。
Table 3 The adsorption treatment conditions were the same as in Example 3, and the desorption treatment was performed by immersing the granular adsorbent in 0.25M hydrochloric acid solution for 8 hours. The results are shown in Table 4.

第    4    表 リチウム吸着量は2.1〜3.0mg/9を示し、この
値は実施例1及び実施例2と同程度であり、添加ポリ塩
化ビニルの重合度はリチウム吸着性に影響しないことが
分かった。
Table 4 The amount of lithium adsorbed was 2.1 to 3.0 mg/9, and this value was about the same as in Examples 1 and 2, indicating that the degree of polymerization of the added polyvinyl chloride did not affect the lithium adsorption property. I understand.

実施例4 実施例3のNo、llと同じ条件で調製した粒状吸着剤
を用いて吸渚−脱着の繰り返し試験を行った。
Example 4 Using granular adsorbents prepared under the same conditions as No. 1 of Example 3, a repeated absorption-desorption test was conducted.

第4表から分かるように、3回の繰り返し使用において
吸着性能の低下はなく、また脱着率もほぼ一定であり、
良好な結果が得られた。さらに、この処理過程において
、粒状吸着剤の微細化はみられず、安定であった。
As can be seen from Table 4, there was no decrease in adsorption performance after repeated use three times, and the desorption rate remained almost constant.
Good results were obtained. Furthermore, during this treatment process, no finer particles of the granular adsorbent were observed and it was stable.

本発明の粒状吸着剤の使用により、カラム処理が可能と
なり、希薄リチウム溶液からのリチウムの回収を効率よ
く行いうろことが分かった。
It has been found that the use of the particulate adsorbent of the present invention enables column processing to efficiently recover lithium from dilute lithium solutions.

比較例 実施例1と同様にして調製したリチウム含有マンガン酸
化物粉体20gを0.25M塩酸溶液2Q中に入れ、か
きまぜながら4日間処理してリチウムを溶出させ、粉末
状リチウム吸着剤を得た。
Comparative Example 20g of lithium-containing manganese oxide powder prepared in the same manner as in Example 1 was placed in 0.25M hydrochloric acid solution 2Q and treated with stirring for 4 days to elute lithium and obtain a powdered lithium adsorbent. .

次に、この粉末状吸着剤を用いて実施例1と同様な方法
で造粒して粒状体を作製し、この帆5gを直径3.5c
rnのカラムに充てんしたのち、これに天然海水を50
mQ1分の速度で7日間流して海水からのリチウム吸着
実験を行った。この結果、リチウム吸着量はO,1mg
/g以下であり、はとんどリチウム吸着性を示さないこ
とが分かった。
Next, using this powdered adsorbent, granules were prepared by granulating in the same manner as in Example 1, and 5 g of this sail was 3.5 cm in diameter.
After filling the rn column, add 50% natural seawater to it.
A lithium adsorption experiment from seawater was conducted by flowing the water at a rate of mQ 1 min for 7 days. As a result, the amount of lithium adsorbed was O, 1 mg.
/g or less, and it was found that almost no lithium adsorption property was exhibited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第3図は、それぞれ本発明の粒状リ
チウム吸着剤の異なった製造例におけるリチウム含有マ
ンガン酸化物粒状体をリチウム溶出能を有する水溶液で
処理する際の処理時間とリチウム溶出率との関係を示す
グラフである。 第 図 0   1   2  3 (N)4%)z Sz 099−’ 捏B% Fll’
? CB%f%’S)ユo      40     
6゜ HC1赴提蒔P5 (時間) 1    2    3 HC1g!L土g B:間(8)
Figures 1, 2, and 3 respectively show the treatment time and lithium when lithium-containing manganese oxide particles are treated with an aqueous solution having lithium elution ability in different production examples of the granular lithium adsorbent of the present invention. It is a graph showing the relationship with elution rate. Figure 0 1 2 3 (N) 4%)z Sz 099-' Kneading B% Fll'
? CB%f%'S) Yuo 40
6゜HC1 submission P5 (time) 1 2 3 HC1g! L soil g B: between (8)

Claims (1)

【特許請求の範囲】 1 有機高分子物質を用いて造粒して成るリチウム含有
マンガン酸化物の粒状体をリチウム溶出能を有する水溶
液で処理し、該リチウムを溶出させたことを特徴とする
粒状リチウム吸着剤。 2 リチウム含有マンガン酸化物がLiMn_2O_4
又はLi_2MnO_3を含むものである請求項1記載
の粒状リチウム吸着剤。 3 有機高分子物質が水と混合可能な有機溶媒に可溶で
、かつ水又は水とアルコールとの混合溶媒に不溶なもの
である請求項1又は2記載の粒状リチウム吸着剤。 4 リチウム溶出能を有する水溶液が酸又は酸性を示す
酸化性物質を含有するpH4以下のものである請求項1
、2又は3記載の粒状リチウム吸着剤。 5 請求項1記載の粒状リチウム吸着剤をカラムに充て
んしたのち、該カラムにリチウムを含む希薄溶液を流し
てリチウムを吸着させ、次いで希酸溶液又は酸性を示す
酸化性化合物を含有する水溶液を用いて、前記吸着剤に
吸着されたリチウムを溶離させることを特徴とする希薄
溶液からのリチウム回収方法。
[Scope of Claims] 1. Granules characterized in that granules of lithium-containing manganese oxide granulated using an organic polymer substance are treated with an aqueous solution having lithium elution ability to elute the lithium. Lithium adsorbent. 2 Lithium-containing manganese oxide is LiMn_2O_4
The granular lithium adsorbent according to claim 1, which contains Li_2MnO_3. 3. The granular lithium adsorbent according to claim 1 or 2, wherein the organic polymer substance is soluble in an organic solvent miscible with water and insoluble in water or a mixed solvent of water and alcohol. 4. Claim 1, wherein the aqueous solution having lithium elution ability contains an acid or an oxidizing substance exhibiting acidity and has a pH of 4 or less.
, 2 or 3. The granular lithium adsorbent according to . 5. After filling a column with the granular lithium adsorbent according to claim 1, a dilute solution containing lithium is poured into the column to adsorb lithium, and then a dilute acid solution or an aqueous solution containing an oxidizing compound exhibiting acidity is used. A method for recovering lithium from a dilute solution, comprising: eluting lithium adsorbed by the adsorbent.
JP1141545A 1989-06-02 1989-06-02 Granular lithium adsorbent and lithium recovery method using the same Expired - Lifetime JPH0626661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1141545A JPH0626661B2 (en) 1989-06-02 1989-06-02 Granular lithium adsorbent and lithium recovery method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1141545A JPH0626661B2 (en) 1989-06-02 1989-06-02 Granular lithium adsorbent and lithium recovery method using the same

Publications (2)

Publication Number Publication Date
JPH038439A true JPH038439A (en) 1991-01-16
JPH0626661B2 JPH0626661B2 (en) 1994-04-13

Family

ID=15294462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1141545A Expired - Lifetime JPH0626661B2 (en) 1989-06-02 1989-06-02 Granular lithium adsorbent and lithium recovery method using the same

Country Status (1)

Country Link
JP (1) JPH0626661B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101955210A (en) * 2010-09-14 2011-01-26 华东理工大学 Granular lithium ion sieve
JP2012504190A (en) * 2008-09-29 2012-02-16 韓国地質資源研究院 Lithium recovery device using separation membrane reservoir, lithium recovery method using the same, and lithium adsorption / desorption system using the same
JP2013139023A (en) * 2011-12-28 2013-07-18 Industry & Academic Cooperation In Chungnam National Univ Method for producing adsorptive ball for valuable metal recovery, and flow through-continuous deionization apparatus using the same
CN110139712A (en) * 2016-11-14 2019-08-16 锂莱克解决方案公司 It is extracted using the lithium that cladded type ion-exchange particles carry out

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896053B1 (en) * 2007-11-16 2009-05-07 한국지질자원연구원 Ion-exchange type lithium adsorbent using narrow weaved fabric filter and method for preparing the same
KR101466497B1 (en) * 2012-07-13 2014-12-02 이상로 Method of recovering lithium from fly ashes or waste water derived from active material for lithium secondary battery by using electrochemisty process
KR101248551B1 (en) * 2012-09-24 2013-04-03 한국지질자원연구원 Ion-exchange manganese oxide lithium adsorbent using porous structure and method for preparing the same
CN111163852A (en) 2017-08-02 2020-05-15 锂莱克解决方案公司 Lithium extraction using porous ion exchange beads
JP7427598B2 (en) 2018-02-28 2024-02-05 ライラック ソリューションズ,インク. Ion exchange reactor with particle trap for lithium extraction
KR20230023714A (en) 2020-06-09 2023-02-17 리락 솔루션즈, 인크. Lithium extraction in the presence of scalent
DE102021105808A1 (en) 2021-03-10 2022-09-15 EnBW Energie Baden-Württemberg AG Process for extracting lithium from brine or seawater
EP4326413A1 (en) 2021-04-23 2024-02-28 Lilac Solutions, Inc. Ion exchange devices for lithium extraction

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504190A (en) * 2008-09-29 2012-02-16 韓国地質資源研究院 Lithium recovery device using separation membrane reservoir, lithium recovery method using the same, and lithium adsorption / desorption system using the same
US8741150B2 (en) 2008-09-29 2014-06-03 Korea Institute Of Geosciences And Mineral Resources Lithium recovery device using separator reservoir, lithium recovery method and lithium adsorption/desorption system using the same
CN101955210A (en) * 2010-09-14 2011-01-26 华东理工大学 Granular lithium ion sieve
JP2013139023A (en) * 2011-12-28 2013-07-18 Industry & Academic Cooperation In Chungnam National Univ Method for producing adsorptive ball for valuable metal recovery, and flow through-continuous deionization apparatus using the same
US8975207B2 (en) 2011-12-28 2015-03-10 The Industry & Academic Cooperation In Chungnam National University Method for manufacturing adsorptive ball for recovering precious metals and flow through-continuous deionization (FT-CDI) apparatus using the same
CN110139712A (en) * 2016-11-14 2019-08-16 锂莱克解决方案公司 It is extracted using the lithium that cladded type ion-exchange particles carry out
CN110139712B (en) * 2016-11-14 2023-08-15 锂莱克解决方案公司 Lithium extraction using coated ion exchange particles

Also Published As

Publication number Publication date
JPH0626661B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
US8043586B2 (en) Methods of using adsorption media for separating or removing constituents
JPH038439A (en) Granular lithium adsorbent and method for recovering lithium by using this adsorbent
JPS58214338A (en) Composite adsorbent
JPH0445213B2 (en)
CN108525636B (en) Adsorbent for rapid adsorption and desorption, preparation and application in lithium/rubidium adsorption
JP3706842B2 (en) Adsorption method of lithium ion from aqueous solution containing lithium by adsorbent
JP3550661B2 (en) Method for producing porous granular lithium adsorbent
JP3937865B2 (en) Method for producing lithium adsorbent
Parrish et al. Chelating resins from 8-hydroxyquinoline
JP3210956B2 (en) Granular lithium adsorbent and method for producing the same
US8664150B2 (en) Methods of producing adsorption media including a metal oxide
JPS61283342A (en) Lithium adsorbent and its preparation
JPS60153940A (en) Adsorbent of dissolved fluorine ion
KR950009706B1 (en) Method of preparing metal element adsorbent and method of adsorbing and separating metal
CN115254072B (en) Granulating agent for anion adsorbent, preparation method of granulating agent and anion adsorbent
CN109794227A (en) The preparation method of the adsorbent material of bromoiodide in a kind of removal waste water
JPS6362546A (en) Composite type lithium adsorbent and its production
JP3646156B2 (en) Film-like lithium adsorbing material, method for producing the same, and method for recovering lithium using the same
JPH038443A (en) Lithium adsorbent and method for recovering lithium with the same
KR100912095B1 (en) Ion-exchange type lithium adsorbent using uf membrane filter and method for preparing the same
JPS61171535A (en) Lithium adsorbent, its preparation and recovery of lithium using said adsorbent
JP3756770B2 (en) Aromatic hydroxy compound adsorbent and use thereof
JPS6362545A (en) Lithium adsorbent and its production and recovering method for lithium by using same
JPS61278347A (en) Production of li adsorbent
JP2850309B2 (en) Method for producing lithium adsorbent

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term