JPS61283029A - Magnetic alloy material for producing magnetic recording medium and production of magnetic recording medium - Google Patents

Magnetic alloy material for producing magnetic recording medium and production of magnetic recording medium

Info

Publication number
JPS61283029A
JPS61283029A JP12373985A JP12373985A JPS61283029A JP S61283029 A JPS61283029 A JP S61283029A JP 12373985 A JP12373985 A JP 12373985A JP 12373985 A JP12373985 A JP 12373985A JP S61283029 A JPS61283029 A JP S61283029A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
magnetic recording
recording medium
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12373985A
Other languages
Japanese (ja)
Other versions
JPH0766543B2 (en
Inventor
Toshiaki Izumi
泉 俊明
Hitoshi Arai
均 新井
Hiroshi Okayama
岡山 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP60123739A priority Critical patent/JPH0766543B2/en
Publication of JPS61283029A publication Critical patent/JPS61283029A/en
Publication of JPH0766543B2 publication Critical patent/JPH0766543B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To make the composition of a magnetic thin film uniform by forming the magnetic thin film by a vapor-phase coating method with a magnetic alloy material contg. cobalt and chromium and having <=3mm particle diameter as the vaporization source. CONSTITUTION:A magnetic alloy material contg. cobalt and chromium and having <=3mm particle diameter is used as the vaporization source and the material is coated by vapor-phase coating method on a substrate to form a magnetic thin film. The content of chromium is regulated to 18-23wt.%. The control of the composition when the film is formed becomes difficult at >3mm particle diameter. Consequently, the composition of the magnetic thin film is made uniform and stabilized electromagnetic transducing characteristics can be obtained.

Description

【発明の詳細な説明】 ■ 発明の背景 技術分野 本発明は磁気記録媒体製造用磁性合金材料およびこの合
金材料を使用した磁気記録媒体の製造方法に関する。
Detailed Description of the Invention (1) Background of the Invention Technical Field The present invention relates to a magnetic alloy material for manufacturing a magnetic recording medium and a method for manufacturing a magnetic recording medium using this alloy material.

先行技術とその問題点 ビデオ用、−オーディオ用等の磁気記録媒体として、テ
ープ化して巻回したときコンパクト性等から、金属薄膜
型の磁性薄膜を有するものの開発が活発に行われている
Prior art and its problems As magnetic recording media for video, audio, etc., media having a metal thin film type magnetic thin film are being actively developed because of their compactness when wound into tapes.

これらの磁気記録媒体のなかでは、より高密度記録が可
能である垂直磁気記録媒体がなかでも特に注目をあびて
いる。
Among these magnetic recording media, perpendicular magnetic recording media, which are capable of higher density recording, are attracting particular attention.

この垂直磁気記録媒体は、膜面に垂直磁化容易軸を持つ
Co−Cr磁性薄膜を有する。 そしてこの磁性薄膜の
製造方法としては1例えばスパッタ法、真空蒸着法、イ
オンブレーティング法、めっき法等の種々の方法が提案
されている。
This perpendicular magnetic recording medium has a Co--Cr magnetic thin film having a perpendicular easy axis of magnetization on the film surface. Various methods have been proposed for manufacturing this magnetic thin film, such as sputtering, vacuum evaporation, ion blating, and plating.

これらの製造方法については、それぞれ利点と欠点を有
するが、生産性等の点で、成膜速度が大きい真空蒸着法
、イオンブレーティング法が優れている。 しかしなが
ら、その反面、媒体の製造時において、均一な組成を有
する磁性薄膜が長時間安定して得られないという欠点が
ある。
Each of these manufacturing methods has advantages and disadvantages, but in terms of productivity and the like, the vacuum evaporation method and the ion blating method are superior because of their high film formation rate. However, on the other hand, there is a drawback that a magnetic thin film having a uniform composition cannot be stably obtained for a long period of time during the production of the medium.

例えば平常に従い、インゴット状ないしペレット形状を
したGo−Crの合金材料を蒸発源とすると、蒸発源の
Cr量が時間とともに減少し、磁性薄膜のCr量が大幅
にかわってしまう。
For example, if an ingot-shaped or pellet-shaped Go-Cr alloy material is used as an evaporation source, the amount of Cr in the evaporation source decreases over time, and the amount of Cr in the magnetic thin film changes significantly.

他方、例えば蒸発源としてCoとCrとを各々開側に設
けるいわゆる2元蒸着も提案されているが、この場合に
おいても特別な組成コントロールが必要になり、膜組成
はきわめて不安定なものとなる。
On the other hand, so-called binary evaporation, in which Co and Cr are each provided on the open side as evaporation sources, has been proposed, but even in this case, special composition control is required and the film composition becomes extremely unstable. .

II  発明の目的 本発明の目的は、真空蒸着法あるいはイオンブレーティ
ング法で均一組成の磁性薄膜が容易に得られる蒸発源用
の磁性合金材料と、それを使用した磁気記録媒体の製造
方法を提供することにある。
II. OBJECTS OF THE INVENTION An object of the present invention is to provide a magnetic alloy material for an evaporation source that allows a magnetic thin film with a uniform composition to be easily obtained by a vacuum evaporation method or an ion blating method, and a method for manufacturing a magnetic recording medium using the same. It's about doing.

■ 発明の開示 このような目的は下記の本発明によって達成される。■Disclosure of invention These objects are achieved by the invention described below.

すなわち第1の発明は、コバルトとクロムとを含有し1
粒子径が3mm以下であることを特徴とする磁気記録媒
体製造用磁性合金材料である。
That is, the first invention contains cobalt and chromium.
This is a magnetic alloy material for manufacturing magnetic recording media, characterized in that the particle size is 3 mm or less.

また第2の発明は非磁性基板上にコバルトとクロムとを
含有する磁性薄膜を設層する磁気記録媒体の製造方法に
おいて、コバルトとクロムとを含有し、粒子径が3mm
以下の磁性合金材料を蒸発源とし、これを電子ビームで
加熱して蒸気化する気相被着法によって磁性薄膜を設層
することを特徴とする磁気記録媒体の製造方法である。
A second invention is a method for manufacturing a magnetic recording medium in which a magnetic thin film containing cobalt and chromium is formed on a non-magnetic substrate, wherein the magnetic recording medium contains cobalt and chromium and has a particle size of 3 mm.
This method of manufacturing a magnetic recording medium is characterized in that a magnetic thin film is deposited by a vapor phase deposition method in which the following magnetic alloy material is used as an evaporation source and is heated and vaporized with an electron beam.

■ 発明の具体的構成 以下、本発明の具体的構成について詳細に説明する。■Specific structure of the invention Hereinafter, a specific configuration of the present invention will be explained in detail.

本発明は、コバルトとクロムとを含有する磁性薄膜を有
するいわゆる垂直磁気記録媒体の製造用の蒸発源材料と
それを使用した製造方法に関するものである。
The present invention relates to an evaporation source material for manufacturing a so-called perpendicular magnetic recording medium having a magnetic thin film containing cobalt and chromium, and a manufacturing method using the same.

すなわち、非磁性基体上にコバルトとクロムとを含有す
る磁性薄膜を設層するに際し、コバルトとクロムとを含
有する記録媒体製造用の磁性合金材料(以下、合金材料
という、)を蒸発源とし、これを電子ビームで加熱して
蒸気化する気相被着法によって磁性薄膜を設層するもの
である。
That is, when depositing a magnetic thin film containing cobalt and chromium on a non-magnetic substrate, a magnetic alloy material (hereinafter referred to as alloy material) for manufacturing recording media containing cobalt and chromium is used as an evaporation source, The magnetic thin film is deposited by a vapor phase deposition method in which this is heated with an electron beam and vaporized.

蒸発源として用いる合金材料は、コバルトとクロムとを
含有し、その組成比は目的とする磁性薄膜の組成比とほ
ぼ等しくされ、通常はクロムが18〜23fi量%程度
の組成とされる。
The alloy material used as the evaporation source contains cobalt and chromium, the composition ratio of which is approximately equal to the composition ratio of the intended magnetic thin film, and usually has a composition of about 18 to 23 fi % of chromium.

磁性材料は、通常、顆粒体、粉体等の粒子である。 ま
た、これらの粒子の集合体の焼結体であってもよい、 
そして、その粒子径は3mm以下である。
Magnetic materials are usually particles such as granules and powders. Alternatively, it may be a sintered body of an aggregate of these particles.
The particle size is 3 mm or less.

この粒子径が3 m mをこえると、成膜時における組
成コントロールが難しくなってしまう。
If the particle size exceeds 3 mm, it becomes difficult to control the composition during film formation.

本発明で用いる合金材料は、このような粒子径をもつも
のであって、・いわゆる晶粒体あるいは結晶性には関係
なく均一な混合物のかたまりをふるい分けしてつくられ
る顆粒体であってよい。
The alloy material used in the present invention has such a particle size, and may be a so-called crystal grain or a granule produced by sieving a uniform mass of a mixture regardless of crystallinity.

また、一定の大きさのものを粉砕によって小さく粉状に
した粉体であってもよい。
Alternatively, it may be a powder obtained by pulverizing a certain size into a small powder.

この場合、これら粒子の形状は、球状、破砕片状、フレ
ーク状、短繊維等種々のものであってよい。
In this case, the shapes of these particles may be various, such as spherical, crushed pieces, flakes, and short fibers.

さらに、このような粉体等を融点以下または部分的溶融
の程度に加熱して部分的に焼結ないし結体させたもので
あってもよい、 それによって取り扱い性をよくするこ
とができる。
Furthermore, such a powder may be partially sintered or solidified by heating it below its melting point or to a level where it is partially melted, thereby making it easier to handle.

ただし、このときには前記の粒子径の粒子が残存してい
ることが必要である。
However, at this time, it is necessary that particles having the above particle diameter remain.

このような合金材料を蒸発源として用いれば、蒸着法あ
るいはイオンブレーティング法による製造の際に、各粒
子は昇華性の蒸発をするので、蒸発源の組成比が一定と
なり、そのため、組成一定な磁性薄膜を長時間にわたっ
て安定して得ることができる。
If such an alloy material is used as an evaporation source, each particle undergoes sublimation evaporation during production using the vapor deposition method or ion blating method, so the composition ratio of the evaporation source remains constant. A magnetic thin film can be stably obtained over a long period of time.

なお、焼結体として用いる場合、その気孔率は10〜5
0%程度のものを用いるのが好適である。
In addition, when used as a sintered body, its porosity is 10 to 5.
It is preferable to use about 0%.

さらにこのような合金材料には、上述したようなコバル
トとクロム以外に鉄、ニッケル、チタン、炭素、酸素等
を第3成分として含有させ′ることもできる。
Furthermore, such an alloy material may contain iron, nickel, titanium, carbon, oxygen, etc. as a third component in addition to the above-mentioned cobalt and chromium.

このような合金材料を蒸発源として、真空蒸発法、イオ
ンブレーティング法等の気相被着法を用いて磁性薄膜を
設層する。 この場合上記の合金材料を蒸発源として、
その所定量を。
Using such an alloy material as an evaporation source, a magnetic thin film is deposited using a vapor phase deposition method such as a vacuum evaporation method or an ion blating method. In this case, the above alloy material is used as an evaporation source,
the prescribed amount.

ハースの中に入れ電子ビームにより加熱する。Place it in a hearth and heat it with an electron beam.

なお用いる電子銃は公知のものを用いればよく、そして
加熱に用いるビーム等の諸条件には特に制限はない、 
蒸発源を加熱する手段として、電子ビームを用いること
により、合金材料からの昇華が安定に行われる。
Note that any known electron gun may be used, and there are no particular restrictions on the conditions such as the beam used for heating.
By using an electron beam as a means for heating the evaporation source, sublimation from the alloy material can be stably performed.

真空蒸着法、イオンブレーティング法は、公知の種々の
装置を用いればよくまたハース−基体間距離、膜の堆積
速度などの条件設定等も適宜決定すればよく、特に制限
されるものではない。
The vacuum evaporation method and the ion blating method are not particularly limited, as long as various known apparatuses may be used, and conditions such as the distance between the hearth and the substrate and the film deposition rate may be appropriately determined.

ここで真空蒸着法とは蒸発源を1O−5Torr以下の
高真空中で、本発明では、エレクトロンビーム法等によ
り蒸発源を加熱して融”解、蒸発させて、その蒸気を例
えば基体表面に薄膜として凝着させる方法である。 こ
の蒸発時に蒸発粒子が得る運動エネルギーは0.1eV
〜1eV程度である。
Here, in the vacuum evaporation method, the evaporation source is placed in a high vacuum of 10-5 Torr or less, and in the present invention, the evaporation source is heated by an electron beam method or the like to melt and evaporate, and the vapor is applied to the surface of the substrate, for example. This is a method in which the particles are deposited as a thin film.The kinetic energy obtained by the evaporated particles during this evaporation is 0.1 eV.
~1 eV.

また、イオンプレーティン法とは、被膜形成の前および
被膜形成中、十分な運動エネルギーをもって基板表面に
蒸着物資をを射突させる原子論的被膜形成法である。
The ion plating method is an atomistic film forming method in which a vapor deposition material is bombarded with sufficient kinetic energy onto the substrate surface before and during film formation.

その基体mlには、射突イオンによる基板のスパッタ、
加熱、イオン注入などの効果があり、これらが付着力、
蒸着膜の核形成、膜成長に影響を及ぼす。
Sputtering of the substrate by bombarding ions,
There are effects such as heating and ion implantation, which increase adhesion and
Affects nucleation and film growth of deposited films.

このイオンブレーティング法は、作業を行う領域からさ
らにプラズマ法とイオンビーム法の2つに大別される。
This ion blating method is further divided into two types, a plasma method and an ion beam method, depending on the area in which the work is performed.

プラズマ法では、直流グロー放電によって基板(負電位
)をAr◆の衝撃で清浄化した後。
In the plasma method, the substrate (negative potential) is cleaned by Ar◆ bombardment by direct current glow discharge.

蒸発源を加熱し蒸着物質を蒸気化させると、プラズマ中
でイオン化し、基板を取り巻くグロー放電の陰極暗部の
強い電解により加速され、高いエネルギーをもって基板
に射突し蒸着する。
When the evaporation source is heated to vaporize the evaporation material, it is ionized in the plasma, accelerated by strong electrolysis in the dark part of the glow discharge cathode surrounding the substrate, and impinges on the substrate with high energy to be evaporated.

直流印加方式、高周波励起方式およびその併用形と蒸発
源の各種加熱方式との組合せなど多くの形式はいずれも
使用でき、中空陰極プラズマ電子銃を用いるプラズマ電
子ビーム法を用いてもよい。
Many methods can be used, including a direct current application method, a high frequency excitation method, and combinations thereof with various heating methods for the evaporation source, and a plasma electron beam method using a hollow cathode plasma electron gun may also be used.

イオンビーム法では、スパッタ形、電子衝撃形あるいは
デュオプラズマ)effンの改良形などのイオン源で生
成した蒸着物質イオンを高真空領域に引き出し、加速電
圧を調節して基板表面の清浄化と蒸着を引き続いて行う
、 クラスタイオンビーム技術(蒸着と結晶成長)では
、るつぼの噴射ノズルから高真空中に蒸着物質を噴出さ
せ、断熱膨張による過冷却現象を利用して102〜10
3個の原子が互いに緩く結合した塊状原子集団(クラス
タ)を作り、イオン化して用いる。
In the ion beam method, ions of the deposition material generated by an ion source such as a sputter type, electron impact type, or improved version of duo plasma (EFF) are extracted into a high vacuum region, and the acceleration voltage is adjusted to clean and deposit the substrate surface. In the cluster ion beam technology (evaporation and crystal growth), which is performed subsequently, the deposition material is ejected into a high vacuum from the injection nozzle of the crucible, and the supercooling phenomenon caused by adiabatic expansion is used to
Three atoms are loosely bonded to each other to form a cluster of atoms, which is then ionized and used.

さらに、いわゆるアーク放電法を用いてもよい。Furthermore, a so-called arc discharge method may be used.

アーク放電イオンブレーティング法は、蒸発源を加熱し
蒸発してえられた蒸気流に対し、蒸発源近傍の蒸気流の
密度が比較的高いところで、熱電子放出源から放出した
熱電子を衝突させて蒸気流のイオン化を行ない、このイ
オン化された蒸気流を電場や磁場により、被着体に垂直
方向に収束させて成膜するものである。
The arc discharge ion blating method collides the vapor flow obtained by heating and evaporating an evaporation source with thermionic electrons emitted from a thermionic emission source at a place where the density of the vapor flow near the evaporation source is relatively high. In this method, the vapor flow is ionized using an electric field or a magnetic field, and the ionized vapor flow is focused on the adherend in the perpendicular direction to form a film.

イオンブレーティングにおけるイオンの運動エネルギー
は数十eV〜5KeV程度である。
The kinetic energy of ions in ion brating is approximately several tens of eV to 5 KeV.

このような気相被着法によって設層される磁性薄膜の厚
さは、通常、O,OS〜1.5Bm程度とされ、より好
ましくは0.1〜1.O井mである。
The thickness of the magnetic thin film deposited by such a vapor phase deposition method is usually about O.OS to 1.5 Bm, more preferably about 0.1 to 1.5 Bm. It's Oim.

また上述したように成膜条件等は特に制限されるもので
はないが1通常、膜の堆積速度は100〜2.000人
/sec程度、より好ましくは200〜1000λ/ 
s e cとされる。 この速度がlOOλ/ S e
 C未満となると成膜時の残留ガスの影響が無視できな
くなり、再現性、均一性が悪くなる。 また、2000
人/seeをこえると熱集中により、スプラッシュ°(
瞬間的な異常蒸発)が発生することがある。
Furthermore, as mentioned above, there are no particular restrictions on the film formation conditions, etc. 1 Usually, the film deposition rate is about 100 to 2,000 people/sec, more preferably 200 to 1000 λ/sec.
It is considered as sec. This speed is lOOλ/S e
If it is less than C, the influence of residual gas during film formation cannot be ignored, resulting in poor reproducibility and uniformity. Also, 2000
When it exceeds a person/see, the heat concentrates and causes splash °(
(instantaneous abnormal evaporation) may occur.

磁性薄膜が設層される非磁性基体としては、ポリエステ
ル(PET) 、ポリアミド、ポリイミド、ポリフェニ
レンサルファイド、ポリサルフォン、全芳香族ポリエス
テル、ポリエーテJl/エーテルケトン、ポリエーテル
サルフォンおよびポリエーテルイミド等の樹脂、あるい
はAM等の金属、ガラス等を用いればよい、 また、用
いる基体の形状等に制限はない。
Examples of the non-magnetic substrate on which the magnetic thin film is deposited include resins such as polyester (PET), polyamide, polyimide, polyphenylene sulfide, polysulfone, wholly aromatic polyester, polyether Jl/ether ketone, polyether sulfone, and polyether imide; Alternatively, metal such as AM, glass, etc. may be used, and there are no restrictions on the shape of the substrate used.

なお、磁性薄膜上に、あるいは基体と磁性薄膜との間に
、あるいは基体裏面等に、公知の種々の暦を、種々の公
知の設層方法を用いて設層してもよい。
Note that various known calendars may be layered on the magnetic thin film, between the substrate and the magnetic thin film, or on the back surface of the substrate using various known layering methods.

■ 発明の具体的作用効果 本発明によれば、コバルトとクロムとを含有する粒子径
3mm以下の磁気記録媒体製造用磁性合金材料を蒸発源
とし、これを電子ビームで加熱して蒸気化する気相被着
法によって磁性薄膜を設層するので、組成一定な磁性薄
膜を長時間にわたって安定して得ることができる。
■Specific effects of the invention According to the present invention, a magnetic alloy material for manufacturing magnetic recording media containing cobalt and chromium with a particle size of 3 mm or less is used as an evaporation source, and is heated with an electron beam to vaporize it. Since the magnetic thin film is deposited by a phase deposition method, a magnetic thin film having a constant composition can be stably obtained over a long period of time.

従って、得られた磁気記録媒体はきわめて良好でかつ安
定した電磁変換特性を有する。 また生産性にも優れる
ものである。
Therefore, the obtained magnetic recording medium has extremely good and stable electromagnetic conversion characteristics. It also has excellent productivity.

■ 発明の具体的実施例 以下、本発明の具体的実施例を示し、本発明をさらに詳
細に説明する。
(2) Specific Examples of the Invention Hereinafter, specific examples of the present invention will be shown and the present invention will be explained in more detail.

(実施例1) 誘導加熱法によって作製したコバルトとクロムの合金ペ
レット(クロム20wt%)を加圧粉砕して1粒子径が
3mm以下に分布する顆粒体の粒子を得た。
(Example 1) Cobalt and chromium alloy pellets (chromium 20 wt%) produced by an induction heating method were crushed under pressure to obtain granular particles having a particle diameter of 3 mm or less.

内容積30cm3の水冷銅ハースの中に、これを100
.gおさめて蒸発源材料とした。
100 pieces of this were placed in a water-cooled copper hearth with an internal volume of 30 cm3.
.. g was collected and used as an evaporation source material.

非磁性基体として、フィルム状のポリエステル(PET
)ベースを配設した後、真空槽を2XIC)6Torr
とし、電子銃によって上記蒸発源材料を加熱蒸発させた
A film-like polyester (PET) is used as a non-magnetic substrate.
) After installing the base, set the vacuum chamber to 2XIC)6 Torr.
Then, the evaporation source material was heated and evaporated using an electron gun.

蒸着時の圧力は2X10−5Torr、キャンは水冷し
た(キャン温度T<30℃)。
The pressure during vapor deposition was 2×10 −5 Torr, and the can was water-cooled (can temperature T<30° C.).

ベース−蒸発源の距離を30cmとし、電子ビームのパ
ワーを一定として、膜厚0.47Lmのコバルト−クロ
ムの薄膜を20mにわたって得た。
A cobalt-chromium thin film having a thickness of 0.47 Lm was obtained over a distance of 20 m by setting the distance between the base and the evaporation source to 30 cm and keeping the power of the electron beam constant.

得られたサンプルを長さ方向にわたって1mごとに組成
分析を行い第1図に示されるような結果を得た。
The composition of the obtained sample was analyzed every 1 m along its length, and the results shown in FIG. 1 were obtained.

なお、組成分析は蛍光X線のCo、Crの強度を使って
測定した。
Note that the compositional analysis was measured using the intensity of Co and Cr of fluorescent X-rays.

(比較例1) 蒸発源材料を25mmφX25mmbのコバルトとり咽
ム合金ペレット(クロム20wt%)とした、 その他
は実施例1の場合と同様にしてサンプルを得た。
(Comparative Example 1) A sample was obtained in the same manner as in Example 1 except that the evaporation source material was a 25 mmφ x 25 mmb cobalt pharyngeal alloy pellet (chromium 20 wt%).

得られたサンプルも同様に組成分析を行い、第2図に示
されるような結果を得た。
The obtained sample was similarly analyzed for its composition, and the results shown in FIG. 2 were obtained.

(比較例2) 蒸発源材料として用いるコバルトとクロムを別々のハー
スにいれた。 コバルトはブロック状、クロムは粒径が
3mm以下に分布する顆粒とした。
(Comparative Example 2) Cobalt and chromium used as evaporation source materials were placed in separate hearths. Cobalt was made into a block shape, and chromium was made into granules with a particle size distribution of 3 mm or less.

3ポイント式のジャンピング機構のある電子銃を用い、
それぞれの投入パワーを制御した。
Using an electron gun with a 3-point jumping mechanism,
The input power of each was controlled.

その他は実施例1の場合と同様とした。The rest was the same as in Example 1.

第3図に、得られた組成分析の結果を示す。FIG. 3 shows the results of the compositional analysis obtained.

(実施例2) 実施例1において、気相被着法として用いた蒸着法にか
えてアーク放電イオンブレーティング法を用いた他は、
実施例1に準じてサンプルを作製した。
(Example 2) In Example 1, the arc discharge ion blating method was used instead of the vapor deposition method used as the vapor phase deposition method.
A sample was prepared according to Example 1.

得られたサンプルを実施例1の場合と同様に長さ方向に
わたってInごとに組成分析を行い、Cr/Co+Cr
量の変動中を組成変動率(%)として算出したところ実
施例1の場合と同様に±2%であった。
The composition of the obtained sample was analyzed for each In in the length direction in the same manner as in Example 1, and Cr/Co+Cr
When the composition fluctuation rate (%) was calculated during the amount fluctuation, it was ±2% as in Example 1.

これらの結果より本発明の効果が明らかである。These results clearly demonstrate the effects of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の実施例および比較例における
サンプル位置とCr組成量との関係を示すグラフである
。 FIG、1 サンプル位N(m) FIG、2 サンプル位置(m)
1 to 3 are graphs showing the relationship between sample position and Cr composition amount in Examples and Comparative Examples of the present invention. FIG, 1 Sample position N (m) FIG, 2 Sample position (m)

Claims (4)

【特許請求の範囲】[Claims] (1)コバルトとクロムとを含有し、粒子径が3mm以
下であることを特徴とする磁気記録媒体製造用磁性合金
材料。
(1) A magnetic alloy material for manufacturing magnetic recording media, which contains cobalt and chromium and has a particle size of 3 mm or less.
(2)クロム含有量が18〜23重量%である特許請求
の範囲第1項に記載の磁気記録媒体製造用磁性合金材料
(2) The magnetic alloy material for manufacturing magnetic recording media according to claim 1, which has a chromium content of 18 to 23% by weight.
(3)非磁性基板上にコバルトとクロムとを含有する磁
性薄膜を設層する磁気記録媒体の製造方法において、 コバルトとクロムとを含有し、粒子径が3mm以下の磁
性合金材料を蒸発源とし、これを電子ビームで加熱して
蒸気化する気相被着法によって磁性薄膜を設層すること
を特徴とする磁気記録媒体の製造方法。
(3) In a method for manufacturing a magnetic recording medium in which a magnetic thin film containing cobalt and chromium is deposited on a non-magnetic substrate, a magnetic alloy material containing cobalt and chromium and having a particle size of 3 mm or less is used as an evaporation source. A method for manufacturing a magnetic recording medium, characterized in that a magnetic thin film is deposited by a vapor phase deposition method in which the magnetic thin film is heated and vaporized with an electron beam.
(4)気相被着法が真空蒸着法またはイオンブレーティ
ング法である特許請求の範囲第3項に記載の磁気記録媒
体の製造方法。
(4) The method for manufacturing a magnetic recording medium according to claim 3, wherein the vapor phase deposition method is a vacuum evaporation method or an ion blating method.
JP60123739A 1985-06-07 1985-06-07 Magnetic alloy material for producing magnetic recording medium and method for producing magnetic recording medium Expired - Lifetime JPH0766543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60123739A JPH0766543B2 (en) 1985-06-07 1985-06-07 Magnetic alloy material for producing magnetic recording medium and method for producing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60123739A JPH0766543B2 (en) 1985-06-07 1985-06-07 Magnetic alloy material for producing magnetic recording medium and method for producing magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61283029A true JPS61283029A (en) 1986-12-13
JPH0766543B2 JPH0766543B2 (en) 1995-07-19

Family

ID=14868135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60123739A Expired - Lifetime JPH0766543B2 (en) 1985-06-07 1985-06-07 Magnetic alloy material for producing magnetic recording medium and method for producing magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0766543B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202658A (en) * 1990-11-30 1992-07-23 Riken Corp Ion-plating method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165931A (en) * 1980-05-23 1981-12-19 Toshiba Corp Production of magnetic recording body
JPS5712423A (en) * 1980-06-26 1982-01-22 Toshiba Corp Production of magnetic recorder
JPS58113340A (en) * 1981-12-28 1983-07-06 Mitsubishi Metal Corp Co alloy for magnetic recording medium
JPS58125236A (en) * 1982-01-19 1983-07-26 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium
JPS5936329A (en) * 1982-08-20 1984-02-28 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium
JPS59117738A (en) * 1982-12-24 1984-07-07 Matsushita Electric Ind Co Ltd Manufacture of vertical magnetic recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165931A (en) * 1980-05-23 1981-12-19 Toshiba Corp Production of magnetic recording body
JPS5712423A (en) * 1980-06-26 1982-01-22 Toshiba Corp Production of magnetic recorder
JPS58113340A (en) * 1981-12-28 1983-07-06 Mitsubishi Metal Corp Co alloy for magnetic recording medium
JPS58125236A (en) * 1982-01-19 1983-07-26 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium
JPS5936329A (en) * 1982-08-20 1984-02-28 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium
JPS59117738A (en) * 1982-12-24 1984-07-07 Matsushita Electric Ind Co Ltd Manufacture of vertical magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202658A (en) * 1990-11-30 1992-07-23 Riken Corp Ion-plating method

Also Published As

Publication number Publication date
JPH0766543B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
Mattox Physical vapor deposition (PVD) processes
Haberland et al. Energetic cluster impact (ECI): A new method for thin-film formation.
JPH01502277A (en) Arc coating of refractory metal compounds
Vyskočil et al. Arc evaporation of hard coatings: process and film properties
Selinder et al. Resputtering effects on the stoichiometry of YBa2Cu3O x thin films
Spalvins Survey of ion plating sources
JPS61283029A (en) Magnetic alloy material for producing magnetic recording medium and production of magnetic recording medium
JPH0152472B2 (en)
US4476000A (en) Method of making a magnetic film target for sputtering
JPH05320885A (en) Evaporating material for ion plating
JPS6260876A (en) Device for vapor-depositing thin film
RU207556U1 (en) Sputtered magnetron assembly for deposition of a FexNi1-x binary alloy film in the range 0.23 &lt;x &lt;0.27
JP2752179B2 (en) Perpendicular magnetic recording medium and method of manufacturing the same
JPS5836908A (en) Manufacture of magnetic body of thin nitride film
Haberland et al. A new low temperature thin film deposition process: Energetic cluster impact (ECI)
US4386113A (en) Method of making a magnetic recording medium
JPS61120348A (en) Apparatus for producing magnetic recording medium
JPS59175037A (en) Production of magnetic recording medium
JPS628409A (en) Formation of transparent conducting metal oxide film
JP2634487B2 (en) Abrasion resistant film formation method by ion plating
JPH0223525A (en) Production of magnetic recording medium
RU2122243C1 (en) Method for production of magnetically soft heat-resistant amorphous condensate of 3d metals
JP2686139B2 (en) Magnetic recording medium and method of manufacturing the same
JPS58100672A (en) Method and device for formation of thin film
JPH08316083A (en) Production of magnetic recording medium