JPS5936329A - Manufacture of magnetic recording medium - Google Patents

Manufacture of magnetic recording medium

Info

Publication number
JPS5936329A
JPS5936329A JP14500982A JP14500982A JPS5936329A JP S5936329 A JPS5936329 A JP S5936329A JP 14500982 A JP14500982 A JP 14500982A JP 14500982 A JP14500982 A JP 14500982A JP S5936329 A JPS5936329 A JP S5936329A
Authority
JP
Japan
Prior art keywords
source
evaporation source
substrate
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14500982A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Honda
和義 本田
Kenji Kanai
金井 謙二
Kiyoshi Sasaki
清志 佐々木
Takeshi Takahashi
健 高橋
Ryuji Sugita
龍二 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14500982A priority Critical patent/JPS5936329A/en
Publication of JPS5936329A publication Critical patent/JPS5936329A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a homogeneously composed magnetic recording medium, by supplying continuously Cr particles in the range of specified diameters to an evaporation source, when Co and Cr are evaporated by electron-beam irradiation and a magnetic film consisting of Co and Cr as the main components is formed on a moving substrate. CONSTITUTION:A substrate 1 is transferred from a wind-off system 3 along a can 2, Co-Cr alloy powders 15 in the range of 2-6mm. average particle diameters are supplied to an evaporation source of the alloy 5 from an additional charging equipment, and an electron beam 9 is irradiated from an electron gun to deposit the generated vapor on the substrate 1 at an aperture of a mask 8. Otherwise, the evaporation source is divided into a Cr source 6 and a Co source 7, and the powdered Cr is feeded to the source 6 in the same manner. By this method, a change of the composition of a magnetic layer due to a decrease of Cr in the evaporation source which is based on the difference between the vapor pressures of Cr and Co is suppressed to a <=5% variation of the required composition, and a homogeneous ferromagnetic film extended over a long range is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は例えば垂直磁気記録に適した磁気記録媒体の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a magnetic recording medium suitable for, for example, perpendicular magnetic recording.

従来例の構成とその問題点 記録波長の短い磁気記録を行なう際には、垂直磁気記録
が有効である。垂直磁気記録用記録媒体としては、磁化
容易方向が膜面に垂直となる様な記録媒体がある。この
様な特性をもつ記録媒体の一つとして磁性膜がCOとC
rを主成分とした記録媒体が用いられる(以下この膜を
Co−Cr膜と呼ぶ)。
Conventional configuration and its problems Perpendicular magnetic recording is effective when performing magnetic recording with a short recording wavelength. As a recording medium for perpendicular magnetic recording, there is a recording medium in which the direction of easy magnetization is perpendicular to the film surface. One of the recording media with such characteristics is a magnetic film that contains CO and C.
A recording medium containing r as a main component is used (hereinafter, this film will be referred to as a Co--Cr film).

Co−Crはスパッタリング法、真空蒸着法のいずれの
方法によっても作製できる。特に後者の方法は膜の形成
速度を数1000人/秒にすることが可能であり高い生
産性を持つ。第1図は真空蒸着法でCo −Cr 1l
I(I”長尺の基板」−に作製する方法の例を示し、排
気系12によって高真空に排気された真空槽11中にお
いて、巻出系3から回転方向13にそって巻出された基
板1はキャン2に沿って移動し、マスク8の開口部で電
子銃10から電子ビーム9を入射されているCoCr合
金蒸発源5によってCo−Cr膜を真空蒸着されて巻取
系4Vζ巻取られる。一方、第2図に示す様に蒸発源を
Cr蒸発源6及びCO蒸発源7の2つの蒸発源から構成
してCo−Cr膜全全長尺基板上に作製することも可能
である。以下第1図の様に蒸発源をCoCr合金蒸発源
とする力広ヲー源蒸着法、第2図の様に蒸発源をCO蒸
発源とCr蒸発源とから構成する方法全二源蒸着法と呼
ぶ。
Co--Cr can be produced by either a sputtering method or a vacuum evaporation method. Particularly, the latter method can increase the film formation rate to several thousand people/second and has high productivity. Figure 1 shows Co-Cr 1l by vacuum evaporation method.
An example of a method for manufacturing a long substrate is shown, and the substrate is unwound along the rotation direction 13 from the unwinding system 3 in a vacuum chamber 11 evacuated to a high vacuum by an exhaust system 12. The substrate 1 moves along the can 2, and is vacuum-deposited with a Co-Cr film by the CoCr alloy evaporation source 5 into which an electron beam 9 is incident from the electron gun 10 at the opening of the mask 8, and then transferred to the winding system 4Vζ winding system. On the other hand, as shown in FIG. 2, it is also possible to construct the evaporation source from two evaporation sources, a Cr evaporation source 6 and a CO evaporation source 7, and fabricate the Co--Cr film on the entire length substrate. Below, as shown in Fig. 1, there is a wide-source evaporation method in which the evaporation source is a CoCr alloy evaporation source, a method in which the evaporation source is composed of a CO evaporation source and a Cr evaporation source as shown in Fig. 2, and a full two-source evaporation method. call.

一源誓着法ではCOとCrの蒸気圧の差が大きい為に蒸
着時間の経過に伴って蒸発源のCr成分が減少し、従っ
て長尺のCo−Cr膜を作製すると膜は]7だいにCr
成分の少ない組成を持つ様になる。一方、二源蒸着法で
はCO蒸発源及びCr蒸発源の温度を独立に制御できる
だめ、長尺にわたって組成安定な膜の作製に有利である
In the one-source deposition method, since the difference in vapor pressure between CO and Cr is large, the Cr component in the evaporation source decreases as the evaporation time progresses. Therefore, when a long Co-Cr film is produced, the film is to Cr
It comes to have a composition with few components. On the other hand, the two-source vapor deposition method allows the temperatures of the CO evaporation source and the Cr evaporation source to be controlled independently, which is advantageous for producing a film whose composition is stable over a long length.

(〜かじなからCrが昇華性金属であるため、−源蒸着
法VCよってCo−Cr膜全全作し7ようとすると第3
図に示す様に、蒸着開始時Vこ・・−ス16内のCr表
面18の形状が平らであっても、電子ビーム9によ−)
てCr17の表面が掘り下げられ時間経過後のCr表面
19は凹凸となる。これに伴い蒸着開始時のCt蒸気分
布曲線20は時間経過後のCr蒸気分イVitill線
21の様に変化し、基板」二に析出する膜の組成変動を
引き起こす。垂直磁気記録媒体として十分な配録再生特
性を持たせる為にはCo−Cr膜の組成変動を長尺膜全
長にわたって±1%以内に押さえなければならない。今
Co −Cr IIKの組成をCo−Cr垂直膜として
一般的な重量組成Cr 20COs。
(Since Cr is a sublimable metal, if you try to make the entire Co-Cr film by -source evaporation method VC, the third
As shown in the figure, even if the shape of the Cr surface 18 in the V-coat 16 is flat at the start of vapor deposition, the electron beam 9
The surface of the Cr 17 is dug down, and the Cr surface 19 becomes uneven after a period of time. Accordingly, the Ct vapor distribution curve 20 at the start of vapor deposition changes like the Vitill line 21 for the Cr vapor after time elapses, causing a compositional change in the film deposited on the substrate. In order to have sufficient recording and reproducing characteristics as a perpendicular magnetic recording medium, the compositional fluctuation of the Co--Cr film must be suppressed to within ±1% over the entire length of the long film. Now the composition of Co-Cr IIK is the general weight composition Cr20COs as a Co-Cr vertical film.

とすると、組成変動を±1係とずZ)為にはCrの析出
速度の変動1d、Co −Cr長尺膜全長にわ/3−っ
て±5チ以内程度と1゛る必要かある。
Then, in order to keep the composition variation within ±1 factor (Z), it is necessary that the variation in Cr precipitation rate be 1d, and the total length of the Co-Cr long film should be within ±5 inches. .

発明の目的 本発明は真空蒸着によりCOとCrを主成分とする例オ
ーば垂直記録用強磁性膜を形成する際、長尺にわたって
組成が均一な強磁性膜か容易に得られるようにすること
を目的とする。
Purpose of the Invention The present invention provides a means to easily obtain a ferromagnetic film with a uniform composition over a long length when forming a ferromagnetic film for perpendicular recording, for example, containing CO and Cr as main components by vacuum evaporation. With the goal.

発明の構成 本発明は一源蒸着法あるいは二蒜着法しこよりC。Composition of the invention The present invention uses a single-source deposition method or a two-source deposition method.

とCrの蒸発源を電子ビーム照射し加熱して蒸気を発生
させ、移動中の基板」二にCoどCr′l(!l−主成
分とする例えば垂直記録用の強磁性膜を形成する際、C
oCx 合金あるいはCr単独の蒸発源Vこ粒状のCr
を連続的に追加投入すなわち補給するものである。
An evaporation source of Cr and Cr is irradiated with an electron beam and heated to generate vapor, and when forming a ferromagnetic film for perpendicular recording using Co, Cr'l (!l- as the main component) on a moving substrate. , C
oCx Alloy or Cr sole evaporation source V Granular Cr
This is to continuously add or replenish.

実施例の説明 本発明によると、−源蒸N法VCおいては、粒状Crを
連続投入することにより、蒸発源の組成を一定シこ保つ
ことが「1丁能であり、従って長尺基板−にに組成一定
のCo−Cr膜を作製することができる。
DESCRIPTION OF EMBODIMENTS According to the present invention, in the source evaporation N method VC, it is possible to keep the composition of the evaporation source constant by continuously adding granular Cr, and therefore it is possible to keep the composition of the evaporation source constant. - A Co--Cr film with a constant composition can be produced.

ま/杜二源蒸H法においては、Crの蒸発源に粒状Cr
を連続投入することにより、Cr蒸発源の表面Vこ電子
ビーノ、による凹凸が生じるのを防ぎ、Crの蒸気分布
の形を一定Vこ保つことか可能でありこれを用いて長尺
基板上に組成一定のCo−Cr膜全全作製ることかでき
る。
In the Ma/Dori source vapor H method, granular Cr is used as the Cr evaporation source.
By continuously supplying Cr, it is possible to prevent unevenness from occurring on the surface of the Cr evaporation source due to the electronic bean and to maintain a constant Cr vapor distribution shape. It is possible to fabricate a Co--Cr film with a constant composition.

そして追加するCrの形状は、追加投入時にCrの蒸気
分布の形にIジえる影響を小さくするために粒状が最も
好ましいことが実験の結果明らかとなった。寸た粒径に
ついては、粒径が小さいもの程熱容量が小さく、追加投
入された粒状Crが周囲のCrの温度に影響を及ぼさな
いことが確認された。
As a result of experiments, it has been found that the shape of the added Cr is most preferably granular in order to reduce the influence of Cr on the shape of the vapor distribution when the Cr is added. Regarding the particle size, it was confirmed that the smaller the particle size, the smaller the heat capacity, and that the additionally added granular Cr did not affect the temperature of the surrounding Cr.

一方、粒径をあまり小さくしすぎると、電子ビームの衝
撃によって粒状Crが飛散する度合が大きくなり、基板
に熱損傷を内える等、好ましくないびが実験の結果分っ
た。したがって、追加投入するCrの粒径には最適範囲
が存在する。この最適粒径を吟味するために実験したと
ころ、平均粒(’J 4 mm。
On the other hand, experiments have shown that if the particle size is made too small, the degree of scattering of the granular Cr by the impact of the electron beam becomes large, resulting in undesirable effects such as thermal damage to the substrate. Therefore, there is an optimum range for the particle size of the additionally added Cr. When we conducted an experiment to examine the optimum particle size, we found that the average particle size ('J 4 mm).

標準偏差2mm程度&することが好ましいことが分った
。第4図は横軸に粒径、縦軸に蒸発源の真上4Cmに位
置させた基板上でのCrの析出速度の変動率を、平均析
出速度600八/秒の場合VCついて示しだものである
。第4図から分る様に追加投入Cr粒径4wn±2 m
mの範囲では析出変動率は±0.5係以内に押さえるこ
とが可能であった。まだ、追加投入Cr粒径2mm未満
では電子ビーム衝撃Vこよる粒状Crの飛散の度合が大
きずぎて基板に熱損傷が起きた。
It was found that it is preferable to have a standard deviation of about 2 mm. Figure 4 shows the particle size on the horizontal axis and the fluctuation rate of the Cr precipitation rate on a substrate positioned 4 cm directly above the evaporation source on the vertical axis, with respect to VC when the average precipitation rate is 6008/sec. It is. As can be seen from Figure 4, the additionally charged Cr grain size was 4wn±2m.
In the range of m, it was possible to suppress the precipitation fluctuation rate within ±0.5 factors. However, when the additional Cr particles had a diameter of less than 2 mm, the degree of scattering of granular Cr due to the electron beam impact V was too large, causing thermal damage to the substrate.

次に本発明より具体的な実施例を説明する。第6図は一
源蒸着法を用いた連続巻取真空蒸着において、Cr0劾
(1投入を行なった例を示す。
Next, more specific embodiments of the present invention will be described. FIG. 6 shows an example in which one input of Cr0 is carried out in continuous winding vacuum deposition using a one-source deposition method.

図に示すように、巻出系3から巻出されプこ基板1はキ
ャン2に沿って移動し、マスク8の開1−j部でCr追
加投入装@14によって粒状Cr15の追加投入を受り
ているCoCr合金蒸発源SによってCo−Cr膜を真
空蒸着されて巻取系4vこ巻取られる。
As shown in the figure, the pudding substrate 1 unwound from the unwinding system 3 moves along the can 2, and receives additional injection of granular Cr15 by the Cr additional injection device @14 at the opening 1-j of the mask 8. A Co--Cr film is vacuum-deposited by a Co--Cr alloy evaporation source S, and then wound up by a winding system 4V.

第6図は二階蒸着法を用いた連続真空蒸着においてCr
の追加投入を行な)だ例を示す。
Figure 6 shows how Cr was deposited during continuous vacuum evaporation using the second-stage evaporation method.
An example is shown below.

なお、Crの追加投入量があ1り多いと、温度」ニガに
時間がかかり、蒸発速度の変動か大きくなる。
It should be noted that if the additional amount of Cr added is too large, it will take time to increase the temperature, and the fluctuation in the evaporation rate will increase.

出力10KWの電子ヒーム装置をIt−]いてCrを蒸
発させた場合、追加投入量か5 yAnI71の時蒸発
源の真−) 4 cm、 K位置させた基板上でのCr
の析出速度は±0.5係の変動となり、追加投入量が5
0y /minの時はCrの析出速度は±10%の変動
をもつことか実験の結果分った。
When Cr is evaporated using an electron beam device with an output of 10 KW, the additional amount of input is 5 yAnI71, the height of the evaporation source is 4 cm, and the Cr on the substrate is positioned at K.
The precipitation rate fluctuates by a factor of ±0.5, and the additional input amount is 5
As a result of experiments, it was found that the Cr precipitation rate fluctuated by ±10% at 0y/min.

以」二の様しこ、本発明に従ってOr全追加投入しつつ
連続巻取真空蒸HによりCo−Cr膜を作製した結果、
長尺にわたって組成が均一な嘆か得られることが分っ/
仁。−源蒸着法の場合、Crを追加投入すると同時に電
子ビーム出力を制御することVこより、長さ約160m
の基板」二Vこ組成変動±i、o係のCo−Cr膜が得
られた。また二階蒸着法の場合、Crf、H追加投入す
ると同時に、Coの蒸発源の電子ビーム出力を制御する
ことにより、長さ約200 ynの基板」−に組成変動
±o、9%のCo−Cr膜が得られた。
As a result of producing a Co-Cr film by continuous winding vacuum steaming with additional addition of Or according to the present invention,
It was found that a uniform composition could be obtained over a long length.
Jin. - In the case of the source evaporation method, the length is about 160 m by adding additional Cr and controlling the electron beam output at the same time.
A Co--Cr film having a compositional variation of ±i, o was obtained. In addition, in the case of the second-stage evaporation method, by adding additional Crf and H and simultaneously controlling the electron beam output of the Co evaporation source, a substrate with a length of about 200 yn can be coated with composition fluctuations of ±o and 9% Co-Cr. A membrane was obtained.

発明の効果 本発明は、以上の説明から明らかなように、長尺Vこわ
たり組成が均一なCo−Cr強磁性膜を容易に得るもの
で、したかって品質の安定した磁気記録媒体を量産する
上で極めて有用である。
Effects of the Invention As is clear from the above description, the present invention makes it possible to easily obtain a long Co--Cr ferromagnetic film with a uniform V-stiffness composition, thereby mass-producing magnetic recording media with stable quality. This is extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の磁気記録媒体の製造方法を説明
するだめの図、第3図は従来の磁気記録媒体の製造方法
の二階蒸着法におけるCr蒸発源の状態を示す図、第4
図は本発明の作I■Jを一説明するためのもので、追加
投入するCrの粒径と基板上でのCrの析出量変動半値
+iJとの関係を示す図、第5図、第6図は本発明によ
−る磁気記録媒体の製造方法を説明するだめの図である
。 1・・・・・基板、2 ・・キャン、3・・ 巻出系、
4・・・・巻取系、5・・・CoCr合金蒸発源、6 
・・・Cr蒸発源、7・・・・・Co蒸発源、8・・ 
マスク、9・・電子ビーム、10 ・・・電子銃、11
 ・真空槽、12 ・・・排気系、14・・・・Cr追
加投入装置、15・・・・・・粒状Cr、16・・・・
・ノ・−ス。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 WJ3図 第4図 132− 第5図
1 and 2 are diagrams for explaining the conventional method for manufacturing magnetic recording media, and FIG. 4
The figures are for explaining the production IJ of the present invention, and are diagrams showing the relationship between the grain size of additionally added Cr and the half value +iJ of the variation in the amount of Cr precipitated on the substrate, Figures 5 and 6. The figure is a diagram for explaining the method of manufacturing a magnetic recording medium according to the present invention. 1... Board, 2... Can, 3... Unwinding system,
4... Winding system, 5... CoCr alloy evaporation source, 6
...Cr evaporation source, 7...Co evaporation source, 8...
Mask, 9...Electron beam, 10...Electron gun, 11
・Vacuum chamber, 12... Exhaust system, 14... Cr additional injection device, 15... Granular Cr, 16...
・No. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 WJ3 Figure 4 Figure 132- Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)  CoとCrの蒸発源を電子ビーム照射により
加熱して蒸気を発生させ移動中の基板上にCoとCrを
主成分とする強磁性膜を形成するとともに、前記Crの
蒸発源には粒状のCrを連続的に補給することを特徴と
する磁気記録媒体の製造方法。
(1) A Co and Cr evaporation source is heated by electron beam irradiation to generate vapor to form a ferromagnetic film containing Co and Cr as main components on a moving substrate, and the Cr evaporation source is A method for manufacturing a magnetic recording medium, characterized in that granular Cr is continuously replenished.
(2)粒状のCrの平均粒径が2〜6市の範囲にあるこ
とを特徴とする特許請求の範囲第1項記載の磁気記録媒
体の製造方法。
(2) The method for manufacturing a magnetic recording medium according to claim 1, wherein the average particle size of the granular Cr is in the range of 2 to 6 mm.
(3)強磁性膜が膜面に垂直な方向に磁化容易な垂直磁
化膜からなることを特徴とする特許請求の範囲第1項記
載の磁気記録媒体の製造方法。
(3) The method for manufacturing a magnetic recording medium according to claim 1, wherein the ferromagnetic film is a perpendicular magnetization film that is easily magnetized in a direction perpendicular to the film surface.
JP14500982A 1982-08-20 1982-08-20 Manufacture of magnetic recording medium Pending JPS5936329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14500982A JPS5936329A (en) 1982-08-20 1982-08-20 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14500982A JPS5936329A (en) 1982-08-20 1982-08-20 Manufacture of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS5936329A true JPS5936329A (en) 1984-02-28

Family

ID=15375332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14500982A Pending JPS5936329A (en) 1982-08-20 1982-08-20 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5936329A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283029A (en) * 1985-06-07 1986-12-13 Tdk Corp Magnetic alloy material for producing magnetic recording medium and production of magnetic recording medium
JPS62217466A (en) * 1986-03-14 1987-09-24 Fujitsu Ltd Confirmation system for flaw position of magnetic disk

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283029A (en) * 1985-06-07 1986-12-13 Tdk Corp Magnetic alloy material for producing magnetic recording medium and production of magnetic recording medium
JPS62217466A (en) * 1986-03-14 1987-09-24 Fujitsu Ltd Confirmation system for flaw position of magnetic disk

Similar Documents

Publication Publication Date Title
US3342632A (en) Magnetic coating
US3342633A (en) Magnetic coating
US4990361A (en) Method for producing magnetic recording medium
JPS5936329A (en) Manufacture of magnetic recording medium
JP2894253B2 (en) Manufacturing method of highly functional thin film
JPH0227732B2 (en)
JPS61276124A (en) Production of vertical magnetic recording medium
JP2605803B2 (en) Magnetic recording media
JPH01211240A (en) Manufacture of thin film type magnetic recording medium
JPS5814329A (en) Production of magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPS5994241A (en) Production of vertical magnetic recording medium
JPS58179943A (en) Production of magnetic recording medium
JPH04328324A (en) Manufacture of magnetic recording medium
JPH0925576A (en) Film forming method and film forming device
JPH0334614B2 (en)
JPS63237219A (en) Production of magnetic recording medium
JPS6079532A (en) Manufacture of magnetic recording medium
JPH0467433A (en) Production of magnetic recording medium
JPS621121A (en) Production of magnetic recording medium
JPS60209927A (en) Magnetic recording medium and its production
JPH0798831A (en) Magnetic recording medium, its production and producing device
JPH0630134B2 (en) Magnetic recording medium
JPS5992440A (en) Production of vertical magnetic recording medium
JPH06251977A (en) Forming method of soft magnetic fealsi alloy thin film for magnetic head