JPS61279138A - Mounting structure of semiconductor device - Google Patents
Mounting structure of semiconductor deviceInfo
- Publication number
- JPS61279138A JPS61279138A JP60120894A JP12089485A JPS61279138A JP S61279138 A JPS61279138 A JP S61279138A JP 60120894 A JP60120894 A JP 60120894A JP 12089485 A JP12089485 A JP 12089485A JP S61279138 A JPS61279138 A JP S61279138A
- Authority
- JP
- Japan
- Prior art keywords
- solder
- bump
- bonding
- substrate
- mounting structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Wire Bonding (AREA)
Abstract
Description
【発明の詳細な説明】
〔並業上の利用分野〕
この発明は、フェースダウンボンティング方式の半導体
装置の実装構造に係り、特に腕時計用回路ブロックの如
き樹脂基板を主体とした小型半導体装置の実装構造に関
する。[Detailed Description of the Invention] [Field of Application in Parallel Work] The present invention relates to a mounting structure of a face-down bonding type semiconductor device, and particularly to a mounting structure of a small semiconductor device mainly made of a resin substrate such as a circuit block for a wristwatch. Regarding the implementation structure.
従来、第8図に示すように工Cチップ13上のパッシベ
ーション4に明けたコンタクトホール5がらクロム、@
等のバリアメタルを蒸看、スパッタリング、メッキ等の
方法により成長せしめ、更゛にこの上にメッキ又は蒸溜
等の方法でPb:8%の比95:5又は4二6の半田層
12ヲ形成し、フェースダウンボンディング用の半田バ
ンプを形成して米たが、#!−田パンツの寸法的な仕様
面つまり第8図で云う下地金属芯11の厚さTI、及び
半田バンプの高さT!及び半田の体積などは、半田バン
プを周込たフェースダウン実装構造が主にセラミック基
板を用いた産業用混成集積回路から応用され始めたこと
から、セラミック基板との整合性を考慮して決められ、
その他の基板へ半田バンプを用いたフェースダウン実装
を実施する際にも前記仕様が指標となって来た。Conventionally, as shown in FIG.
A barrier metal such as the following is grown by a method such as vaporization, sputtering, or plating, and then a solder layer 12 of Pb:8% with a ratio of 95:5 or 426 is formed thereon by a method such as plating or distillation. Then, I formed solder bumps for face-down bonding, but #! - The dimensional specifications of the pants, that is, the thickness TI of the base metal core 11 and the height T of the solder bump as shown in FIG. The volume of the solder and solder are determined by taking into account compatibility with the ceramic substrate, since the face-down mounting structure that includes solder bumps has begun to be applied mainly to industrial hybrid integrated circuits using ceramic substrates. ,
The above specifications have also been used as a guideline when implementing face-down mounting using solder bumps on other boards.
即ち、第4図(ハ)に示すようにセラミック基板17上
の導電パターン14に予め半田流れ防止提防20を設け
ておき工013をフェースダウンで位置合わせ後刀口熱
接合する為、半田バンプ18の半田はノくターン上を流
れることなく接合後のバンプ高さは11ぼ100μを維
持できる。又、半田バンプ18自体半田の有効体積をな
るべく多く確保するように、銅等の下地金属層を数μ程
度と薄くしており、これらの結果基板と工0チップとの
熱膨張係数差による熱応力を半田バンプにて吸収し、接
合部の信頼性を確保するとの原理によってバンプ仕様が
決まっている。That is, as shown in FIG. 4(C), a solder flow prevention guard 20 is provided in advance on the conductive pattern 14 on the ceramic substrate 17, and the solder bumps 18 are aligned face-down and then thermally bonded. The solder does not flow over the turns and the height of the bump after bonding can be maintained at about 11 to 100 microns. In addition, in order to secure as much effective solder volume as possible for the solder bump 18 itself, the base metal layer such as copper is made as thin as several micrometers. Bump specifications are determined based on the principle that stress is absorbed by the solder bump and the reliability of the joint is ensured.
しかし従来の半田バンプ上用いたフェースダウンボンデ
ィング方式を樹脂基板を主体とした腕時計用回路実装等
に応用しようとした際に2時計用基板としての要求であ
る廉価性という点から半田流れ防止用ダムを設けるのが
難しい(工程増、コストアップ)シ、又樹脂基板上のパ
ターンに対する適当な(位置精度が良く、簡便で安い)
ダム形成法もないということが判った。例えばノ(ター
ニング後に半田レジストヲ印刷する方法は簡便であるが
、それなりの費用がかかり、印刷位置精度が±0.3調
前後(樹脂のダレも考慮)と第4図(ωを実現する為の
±0゜1闘以下とは程遠い。いずれにしてもガラスエポ
キシ、ポリイミド等の樹脂基板の製法プロセスから見て
廉価で精度のいいダム形成法が見つかってい永いの・が
実状である。又、前記第1図の仕様の半田バンプを用い
て、第4図(b)に示す如く樹脂基板16上の半田流れ
防止ダムを設けないパターン14上に工0]3をフェー
スダウンボンディング(この場合はりフロー接合法であ
り基板下側から加熱)すると半田はパターン14に沿っ
て流れ、先端はパターン上の金を食うが如く薄く侵透し
2丁度20チツプの端19に流れ出した半田が貯まり第
8図に示すパシベーション膜4の下のS(チップ本体と
接触し電気的不良を来たすことが判明した。発生率は、
第8図に示す11”、1としては5〜10μとし、T、
は60〜100μまで変化嘔せ半田体積を調差した場合
で20チ〜5チ位であり、バンプの寸法公差、基板パタ
ーンの表面処理状態のバラツキ等を考えると量産として
安定して使える構造ではない。以上のように従来。However, when trying to apply the conventional face-down bonding method used on solder bumps to circuit mounting for wristwatches mainly using resin substrates, we decided to use dams to prevent solder flow due to the low cost required for watch substrates. It is difficult to provide a pattern (increase in process and cost), and it is difficult to provide a pattern suitable for the pattern on a resin substrate (good positioning accuracy, simple and cheap).
It turned out that there was no way to form a dam. For example, the method of printing the solder resist after turning is simple, but it costs a certain amount of money, and the printing position accuracy is around ±0.3 (taking into account resin sag). It is far from less than ±0°1.In any case, from the viewpoint of the manufacturing process of resin substrates such as glass epoxy and polyimide, the reality is that an inexpensive and accurate dam forming method has been found for a long time. Using solder bumps having the specifications shown in Fig. 1, face-down bonding (in this case, solder bumps) is performed on the pattern 14 without a solder flow prevention dam on the resin substrate 16 as shown in Fig. 4(b). When the solder flows along the pattern 14 and the tip penetrates thinly as if eating the gold on the pattern, the solder that flows out is collected at the edge 19 of exactly 20 chips, as shown in Figure 8. It was found that the S under the passivation film 4 (shown in Figure 1) contacts the chip body and causes electrical failure.The incidence rate is
11" shown in FIG. 8, 1 is 5 to 10μ, T,
It varies from 60 to 100μ, and when adjusting the solder volume, it is about 20 to 5 inches, and considering the dimensional tolerance of bumps, variations in the surface treatment state of the board pattern, etc., it is not a structure that can be used stably for mass production. do not have. Conventional as above.
半田バンプ構造が主にセラミック基板との関係に於いて
決められ、それがそのまま他材質基板へも流用されてい
た為、半田流れ防止ダムを設けない廉価基板へ適用する
とパターンに沿って流れ、滞留した半田とIC端が電気
的にショートするという欠点があった。The solder bump structure was mainly determined based on the relationship with ceramic substrates, and was used as is for substrates made of other materials, so when applied to inexpensive substrates that do not have solder flow prevention dams, solder flows along the pattern and stagnates. There was a drawback that an electrical short could occur between the solder and the IC end.
そこで本発明は従来のこのような欠点を解決する為、樹
脂基基板との熱応力整合性を確保しつつ、半田流れ防止
ダムを持たない基板でも工0端と半田とのエツジショー
トが起こらない半田バンプ何重0の実装構造を提供する
ことを目的としている。Therefore, in order to solve these conventional drawbacks, the present invention secures thermal stress consistency with the resin-based substrate and prevents edge shorting between the solder end and the solder even on a substrate that does not have a solder flow prevention dam. The purpose is to provide a mounting structure with zero layers of solder bumps.
上記問題点を解決する為に不発明は、半田バンプ中に内
在する下地金属層を厚くシ、又、1バンプ中の半田体積
を減じてIC端と半田とのエツジショートが起こりにく
いようにするとともに、基板とICとの熱膨張差による
応力も緩和できるような半田体PAヲ選定し民生用の半
導体装置としての信頼性を確保するようにした。In order to solve the above problems, the invention is to thicken the underlying metal layer in the solder bumps, and to reduce the solder volume in one bump so that edge shorts between the IC ends and the solder are less likely to occur. At the same time, the solder body PA was selected to be able to alleviate the stress caused by the difference in thermal expansion between the substrate and the IC, thereby ensuring reliability as a consumer semiconductor device.
上記のように構成された半田バンプを基板の下方から加
熱するりフロー接合法等によってフェースダウンボンデ
ィングすると、半田ノぐンブの半田は先ず基板の導電パ
ターンに沿って流れるが、半田バンプ中に内在する銅等
の下地金属層〔芯〕の上面が平坦である為、半田の光面
張力により、この金属芯とバンプ直下の導電パターン間
に数十μの半田層が残留しく工0には直接外力が加わっ
ていないので、工Oはとけた半田バンプ上をフローティ
ングしている状態になる)、接合の終了と共に固化する
。上記数十μの半田層が存在することによって工aと樹
脂基板間の接合後の応力を十分とは言えないまでに緩和
し、樹脂基板自体がセラミックに比べれば、熱軟化性が
あること、更に通常の時計用回路実装では樹脂によって
ICを封止、補強することが和項って熱応力等の応力に
対する接合の信頼性を得ることができる。又、下地金属
層(芯〕の厚さが増したことと、上記素子十μの半田層
の残留、及び半田の体積が減じたことから工C端と導電
パターン上の半田のエツジショートを防止することが出
来るのである。When a solder bump configured as described above is heated from below the substrate or is face-down bonded by a flow bonding method, the solder in the solder first flows along the conductive pattern of the substrate, but the solder solder flows inside the solder bump. Since the upper surface of the base metal layer (core) such as copper is flat, a solder layer of several tens of microns remains between this metal core and the conductive pattern directly under the bump due to the optical surface tension of the solder, which causes the solder layer to remain directly in the process. Since no external force is applied, the solder O is in a state of floating on the melted solder bump), and solidifies upon completion of the bonding. The presence of the solder layer of several tens of micrometers relieves the stress after bonding between the workpiece and the resin substrate to a degree that cannot be said to be sufficient, and the resin substrate itself has thermal softening properties compared to ceramic. Furthermore, in ordinary circuit packaging for watches, sealing and reinforcing the IC with resin makes it possible to obtain bonding reliability against stress such as thermal stress. In addition, because the thickness of the base metal layer (core) has increased, the solder layer of 10 μm remains on the element, and the volume of solder has decreased, edge shorts between the C edge and the solder on the conductive pattern are prevented. It is possible to do so.
以下に本発明の実施例全図面にもとづいて説明する1、
第1図において、ICチップ8上の半田バンプは銅等の
下地金属芯1と半田層2とから成り図中111.lは3
0μ、T8は85μである。なお工○の大きさはアナロ
グ用腕時計にあっては2rrrm O〜3 mm ”で
おり、接合時の熱応力の影響は比較的小さいと言えるだ
ろう。次に第2図で本発明の実装構造例を説明すると、
耐熱性のガラスエポキシ又はガラスポリイミドのような
樹脂基材の印刷配線板6上の接合用配線パターン7にフ
ェースダウン状態で半田バンプ付き工08’に載置し、
基板の下方から加熱するりフロ一方式等で接合行為をす
ると前記作用の項にて説明した通り、半田の表面張力に
より下地金属芯1とパターン7の間に約20μの半田層
が残留する。即ちt’=20μ、従ってt=約50μと
なり、ICチップと基板上の配線パターン7との間は確
実に50μのすきまが確保され、半田体積も本実施例に
於いては後述するように40〜120xlO””’順3
となる為(従来の半田体積は200 XIC”” tr
an’前后〕IC端とパターン7上の半田とのエツジシ
ョートの心配は不要となった。Embodiments of the present invention will be described below based on all the drawings.
In FIG. 1, a solder bump on an IC chip 8 consists of a base metal core 1 such as copper and a solder layer 2, and is numeral 111 in the figure. l is 3
0μ, T8 is 85μ. Note that the size of the hole is 2rrrm 0 to 3 mm for analog wristwatches, so it can be said that the influence of thermal stress during bonding is relatively small.Next, Figure 2 shows the mounting structure of the present invention. For example,
Place the bonding wiring pattern 7 face-down on a solder bump attachment 08' on a printed wiring board 6 made of a resin base material such as heat-resistant glass epoxy or glass polyimide, and
When bonding is performed by heating the substrate from below or using a flow method, as explained in the section of the above-mentioned operation, a solder layer of about 20 μm remains between the base metal core 1 and the pattern 7 due to the surface tension of the solder. That is, t'=20μ, therefore t=approximately 50μ, ensuring a gap of 50μ between the IC chip and the wiring pattern 7 on the board, and the solder volume also being 40μ as described later. ~120xlO""'Order 3
(Conventional solder volume is 200 XIC"" tr
An' before and after] There is no need to worry about edge shorts between the IC end and the solder on pattern 7.
半田流れ防止ダムのない基板上への半田バンプ付き工O
の接合に於いて銅等の下地金属層を厚くすることはエツ
ジショート防止の必須条件であるがその厚さの推奨範囲
は、メッキ工程のバラツキとエツジショート防止の実効
果から最底20μ、最高35μであることがテスト等に
より確認されている。その時の下地金属芯体積(■1〕
と半田体積(V)との関係は第5図に示す通りであり。Work with solder bumps on boards without solder flow prevention dams
In bonding, thickening the underlying metal layer such as copper is an essential condition for preventing edge shorts, but the recommended range of thickness is from 20μ at the bottom to 20μ at the highest due to variations in the plating process and the actual effect of preventing edge shorts. It has been confirmed through tests etc. that it is 35μ. Base metal core volume at that time (■1)
The relationship between and the solder volume (V) is as shown in FIG.
下地金属芯厚さ 20〜35μ
半田バンプ高さ 75〜100μ
下地金属芯径 φ160μ士メッキバラツキ
とした時のエツジショートし7よい範囲は図中斜線部の
如く寿る。即ち半田体積が40〜120xlO−813
であることも必要条件となって来る。その時のV :
V、の比2.5:1〜0゜5:1の範囲は、下地金属芯
の厚さ、とか半田体積々どのパラメーターが与えられた
場合の他のパラメーター算出(例えばバンプ径とか)の
目安となる。Base metal core thickness: 20-35μ Solder bump height: 75-100μ Base metal core diameter: φ160μ When the plating is varied, the range in which edge shorting is good is shown in the shaded area in the figure. That is, the solder volume is 40 to 120xlO-813
It is also a necessary condition. V at that time:
The range of the ratio of V from 2.5:1 to 0°5:1 is a guideline for calculating other parameters (for example, bump diameter) when parameters such as the thickness of the base metal core and the solder volume are given. becomes.
次に特に図示しないが、フェースダウンポンディングに
於いて、ICチップの裏面(第2図で上方カラ〕からヒ
ーターチップで加熱してリフロー接合する場合も、ある
程度の加圧力がバンプに加わる(50〜150.97′
)のであるが、接合温度、半田体積を半田が流れ過ぎな
いよう適正に設定すればやはり金属芯の厚み分は確実に
、工0と基板パターン間のすきまを確保することができ
るので、金属芯の厚さを少なくとも5μ以上とすればエ
ツジショートの発生は抑えられる。以上のヒーターチッ
プによる方法はポリイミド等のフレキシブル印刷配線板
へのフェースダウン接合にも適用できることは言うまで
もない。Next, although not particularly shown, in face-down bonding, when reflow bonding is performed by heating the IC chip from the back side (upper collar in Figure 2) with a heater chip, a certain amount of pressure is applied to the bumps (50°C). ~150.97'
), but if you set the bonding temperature and solder volume appropriately so that the solder does not flow too much, you can ensure the thickness of the metal core and ensure the gap between the workpiece 0 and the board pattern. The occurrence of edge shorts can be suppressed by making the thickness at least 5 μm or more. It goes without saying that the above method using a heater chip can also be applied to face-down bonding to a flexible printed wiring board made of polyimide or the like.
本発明は以上説明したような実装構造とすることにより
、半田流れ防止ダムを設けていない℃うな廉価な材脂基
板に、半田バンプ方式のフェースダウンボンディングを
適用した場合でも、IC端とパターン上に流れた半田と
のエツジショートを未然に防ぐ品質の向上効果が顕著で
あり、又腕時計等の民生用として十分な接合信頼性も確
保することができる。By adopting the mounting structure as described above, the present invention has the advantage that even when face-down bonding using the solder bump method is applied to a substrate made of an inexpensive material such as °C that does not have a dam to prevent solder flow, IC edges and patterns can be easily bonded. This has a remarkable effect of improving quality by preventing edge shorts with solder that has flowed into the solder, and also ensures sufficient bonding reliability for consumer use such as wristwatches.
第1図に本発明にかかる半田バンプの断面図。
第2図は本発明にかかる実装構造門弟8図は従来の半田
バンプの断面図、第4図は従来の実装構造、第5図は本
発明にかかる半田体積と、下地金属芯体積の関係図であ
る。
1 、11 、 、下地金属芯 2.+2.、半田層8
.13.、工○テツ7”6,16.、基板7.14.、
配線パターン 以上出願人 セイコー電子
工業抹式会社
第1図
身
第2図
/3 II 5
°゛ふ゛°゛゛、゛ ・ T2′
A /2 ”” ・、T2
第4図
τ lム \、、/1
第3図
第5図FIG. 1 is a sectional view of a solder bump according to the present invention. Fig. 2 is a mounting structure according to the present invention. Fig. 8 is a cross-sectional view of a conventional solder bump, Fig. 4 is a conventional mounting structure, and Fig. 5 is a diagram of the relationship between solder volume and base metal core volume according to the present invention. It is. 1, 11, Base metal core 2. +2. , solder layer 8
.. 13. , Engineering ○ Tetsu 7”6, 16., Board 7.14.,
Wiring pattern Applicant: Seiko Electronics Industry Co., Ltd. Figure 1 Figure 2/3 1 Figure 3 Figure 5
Claims (3)
回路基板にフェースダウンボンディングしてなる半導体
装置に於いて、半田バンプ中に内在する銅等の下地金属
芯の厚さが20〜35μmであることを特徴とする半導
体装置の実装構造。(1) In a semiconductor device formed by face-down bonding an IC with solder bumps to a resin circuit board having a conductive pattern, the thickness of the base metal core such as copper contained in the solder bumps must be 20 to 35 μm. A mounting structure for a semiconductor device characterized by:
る特許請求の範囲第1項記載の半導体装置の実装構造。(2) The semiconductor device mounting structure according to claim 1, wherein the upper surface of the base metal core is flat.
40〜120(×10^−^5mm^3)であることを
特徴とする特許請求の範囲第1項記載の半導体装置の実
装構造。(3) The mounting structure for a semiconductor device according to claim 1, wherein the volume of solder constituting the solder bumps is 40 to 120 (×10^-^5 mm^3) per bump.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60120894A JPS61279138A (en) | 1985-06-04 | 1985-06-04 | Mounting structure of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60120894A JPS61279138A (en) | 1985-06-04 | 1985-06-04 | Mounting structure of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61279138A true JPS61279138A (en) | 1986-12-09 |
Family
ID=14797620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60120894A Pending JPS61279138A (en) | 1985-06-04 | 1985-06-04 | Mounting structure of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61279138A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6068637A (en) * | 1983-09-26 | 1985-04-19 | Oki Electric Ind Co Ltd | Bump electrode of semiconductor |
-
1985
- 1985-06-04 JP JP60120894A patent/JPS61279138A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6068637A (en) * | 1983-09-26 | 1985-04-19 | Oki Electric Ind Co Ltd | Bump electrode of semiconductor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6127735A (en) | Interconnect for low temperature chip attachment | |
JPH07302797A (en) | Semiconductor element, its manufacturing and method of application | |
JPH02224248A (en) | Manufacture and construction of solder bump | |
KR0123187B1 (en) | Tape carrier and tape carrier device using thereof | |
JPS61279138A (en) | Mounting structure of semiconductor device | |
JP2650499B2 (en) | Method of forming electrical connection contact and method of mounting electronic component | |
JPH0357617B2 (en) | ||
JPH04264731A (en) | Formation of electrical connection contact and mounting board using it | |
JPH063821B2 (en) | Double-sided protective coat type TAB tape carrier | |
JPH01145630A (en) | Liquid crystal display element | |
JPS5958843A (en) | Manufacture of bump for flip chip | |
JPS58202540A (en) | Method of bonding fine positioning by stand-off | |
JPH11135567A (en) | Anisotropic conductive film and manufacture of semiconductor device | |
JPH02163950A (en) | Mounting of semiconductor device | |
TWI279887B (en) | Manufacturing method of flip chip electronic device | |
JPH04273464A (en) | Mounting of semiconductor chip | |
JPS63114081A (en) | Construction of wire pattern | |
JPH0529363A (en) | Wiring board | |
JPS63168028A (en) | Fine connection structure | |
JPS62287647A (en) | Connecting bump semiconductor chip | |
TW200532879A (en) | Circuit substrate and method for mounting electronic element | |
JPH0870019A (en) | Connector structure of electronic parts and connection thereof | |
JPS5953708B2 (en) | Flip chip face bonding method | |
JPH02187045A (en) | Formation of facedown bonding pad | |
JPH05136201A (en) | Electrode for semiconductor device and mounting body |