JPS6127896B2 - - Google Patents

Info

Publication number
JPS6127896B2
JPS6127896B2 JP12369279A JP12369279A JPS6127896B2 JP S6127896 B2 JPS6127896 B2 JP S6127896B2 JP 12369279 A JP12369279 A JP 12369279A JP 12369279 A JP12369279 A JP 12369279A JP S6127896 B2 JPS6127896 B2 JP S6127896B2
Authority
JP
Japan
Prior art keywords
tube
joint
furnace
core tube
gas introduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12369279A
Other languages
Japanese (ja)
Other versions
JPS5648130A (en
Inventor
Kazunori Meguro
Masayoshi Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP12369279A priority Critical patent/JPS5648130A/en
Publication of JPS5648130A publication Critical patent/JPS5648130A/en
Publication of JPS6127896B2 publication Critical patent/JPS6127896B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 この発明は半導体拡散炉用炉芯管の構造に関
し、とくにその接合部の構造に係るものである。
従来から、半導体の製造工程で用いられる拡散炉
のプロセスチユーブには石英ガラスの炉芯管が使
用されて来た。そして、このプロセスチユーブと
その管側端部における石英ガラス管との接合の仕
方には、第1図(a),(b)に示すように球面すり合わ
せの接続、或いははめ込みが普通であつた。 しかるに近時、ウエハの大型化、拡散炉の自動
化にともなつて、炭化硅素、更には窒化硅素、硅
素又はこれらの複合材料からなるプロセスチユー
ブが広く使用されるようになつて来た。ところが
このような炭化硅素等のプロセスチユーブを使用
すると、これと接続する石英ガラス接続管とのシ
ールが不充分となる、という新たな問題が生じて
来た。即ち、プロセスチユーブのガス導入管側端
部のジヨイントを、従来の石英ガラスのプロセス
チユーブ或いは第2図(a),(b)に示す如く、最近使
用される炭化硅素等のプロセスチユーブで現に行
つている方式を採用すると、熱膨脹差等によりい
づれもシールを完全に行なうことは困難であつ
た。そして、ここにおけるシール不完全によるガ
スもれは、不良ウエハの発生、具体的には積層欠
陥の発生ライフタイムの増加、リーク電流の増
加、MOSVaractor checkによるΔNFB値の増加
といつたことをもたらすばかりか、通常の使用ガ
スHclのリーク、ドーピングガスのリーク等で人
体に有害、周辺機器の損傷ということにもなつて
いた。今後LSI、超LSIといつた高集積、高性能
の素子においては、これらの不良発生はぜひ回避
しなければならない課題となつている。こうした
炭化硅素等プロセスチユーブにおけるガスリーク
の原因は、これら炭化硅素等を如何に研摩しても
石英ガラスの如く高精度の平滑面を得難いという
ことの外に、仮に完全な平滑面が得られたとして
も、炭化硅素等と石英ガラスの膨張差によつて高
温使用時ここに微少の空隙が生ずるためと考えら
れる。こうしたことから、従来もこの改善に各種
の試みがなされ、例えばここに耐熱パツキンの使
用が考えられたが、炉内温度が1200℃以上もの高
温になるところから、ジヨイント部も250〜300℃
にもなつて、目下のところかかる高熱に十分耐え
るパツキンに適当なものがないというのが実情で
ある。そこで更に改良を加え、プロセスチユーブ
の管側端部を延長させて、パツキンの挿入される
ジヨイント部を遠方に位置させることによつて、
ここでの温度低下を図ることも試みられている。
しかしながら、そうすると例えば炉内温度1280℃
の場合、接合部温度を200℃ににするためには管
側端部の長さを300〜350mmにもしなければなら
ず、それだけ炉芯管が大きくなることによつて、
セツトに著るしい不便をきたすとともに、スペー
スも要することになるといつた問題が生じてい
た。 この発明は従来の上記した問題を解決しようと
したもので、炭化硅素のプロセスチユーブのガス
導入管側端部(枝管部)に冷却フインを取付け、
もつて石英ガラス管との接合部の温度を下げここ
での熱膨張を回避させ、ここでのガスリークを完
全に防止せんとしたものである。 すなわちこの発明は、ガス導入管側端部に多数
のフインを設けた炭化硅素、窒化硅素、硅素又は
これらの複合材料からなる拡散炉用の炉芯管と、
これと接続する石英ガラス接合管とから成るもの
で、これに更に必要に応じてその接合部に耐熱性
パツキンを挿入したことを特徴とした半導体拡散
炉用炉芯管の構造である。以下にこの発明の詳細
を図示した実施例にもとづいて説明する。 第3図はこの発明になる炉芯管の1実施例の断
面図であつて、1は炉芯管であつて炭化硅素で出
来ている。炉芯管1のガス導入管側端部2にはフ
イン3,3が多数設けられ、外側端にフランジ4
が形成されている。 かかるガス導入管側端部2の1例をいえば、外
径32φ×内径22φ×高さ300(mm)で、フラン
ジ及びフインは、70φ×5t(mm)で、フインの数
は10枚である。プロセスチユーブのガス導入管側
端部2のフランジ4は、テフロン、フツ素ゴム、
シリコンゴムで出来たパツキン5を介してもよ
く、石英ガラスのガス接合管6と接続されたのち
はその外周を止め金7を用いて一体に固定する。 第4図は本発明の他の実施例を示すもので、ジ
ヨイント部の構造をボールジヨイントを用いた点
のみ相違し他は全く同様である。なお、本発明に
なる炉芯管は、空冷フアンとの組合せで使用する
ことによつて一層効果を発揮する。 上記例示の炉芯管を用いて炉内温度1280℃にし
た実験によれば、各種条件下でのガス導入管の表
面温度(ジヨイント部)は第5図の如きであつ
た。同図によつても明らかなように、市販の耐熱
パツキンの安全使用温度上限とみられる約150℃
を保持するための、ガス導入管側端部の長さは、
フインを設けない場合と対比してフインを設ける
ことによつて大巾に短縮出来るとともに、これと
更に空冷フアンを組合せることによつて約1/3に
も出来ることになる。ガス導入管側端部の長さは
200mm程度の限度であれば作業上の支障は余りな
いが、耐熱パツキンを使用する場合は、その長期
使用の出来ることが不可欠である。本発明による
ときは、後記実施例に示すようにパツキンの長期
使用が確認されている。なお、フインの構造は放
熱可能ならば特に限定されるものでなく、例えば
アルミニウムその他の金属板でフインを別体に形
成し、これをガス導入管側端部に挿入したもので
もよい。 以上この発明によると、半導体拡散炉用炉芯管
のガス導入側端部における石英ガラス接合管との
ジヨイントシールが完全となり、ジヨイントシー
ルが満足すべき状態となり使用時外部ガスの吸込
みや使用前の塩酸洗浄に際してのガスもれを略完
全に回避出来るようになつた。このため処理ウエ
ア不良発生は極度に減じ、併せて周辺機器の損
傷、人体に有害といつた従来の問題も一挙に解決
出来ることになつた。更に、この発明で耐熱パツ
キンを使用すれば、ジヨイントシールは尚一層完
壁になり、プロセスチユーブのガス導入側端部を
更に大巾に短縮し、機器の装着の際の不便、例え
ば破損等を著るしく改善出来る。 実施例 1 第3図に示す炭化硅素の半導体炉芯管でガス導
入側端部の形状は前述のものとし、石英ガラス接
続管をテフロンのパツキンを介して接続し前洗浄
を行つた。使用ガスは、Hcl0.3l/min+O210l
minで、温度1300℃とした。この場合のガスリー
クを調べるため、ジヨイント部にリトマス紙を巻
きつけ、変色による検出するリトマス法を行つた
ところ、60日間経過後でも何んら変色は認められ
なかつた。またパツキンの異常も認められなかつ
た。 実施例 2 実施例1において耐熱パツキンを取り除いて同
様の実験を30日間行つたところ、リトマス紙の変
色は認められなかつた。 実施例 3 ウエハによるMOS―Varactor―check(C―V
法による可動性正電荷のチエツク) 実施例1と同様の炭化硅素チユーブを用い、チユ
ーブと石英ガラス接続管との接合部にテフロンパ
ツキンを使用した場合と、パツキンを使用しない
場合の結果を求めたところ、結果は下表の如くで
あつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a furnace core tube for a semiconductor diffusion furnace, and particularly to the structure of its joint portion.
Conventionally, quartz glass furnace core tubes have been used in the process tubes of diffusion furnaces used in semiconductor manufacturing processes. The process tube and the quartz glass tube at the tube end are usually connected by spherical mating connection or fitting, as shown in FIGS. 1(a) and 1(b). However, in recent years, as wafers have become larger and diffusion furnaces have become more automated, process tubes made of silicon carbide, silicon nitride, silicon, or composite materials thereof have come into wide use. However, when such a process tube made of silicon carbide or the like is used, a new problem has arisen in that the sealing between the process tube and the quartz glass connecting tube to which it is connected is insufficient. In other words, the joint at the end of the process tube on the gas inlet pipe side is currently made using a conventional quartz glass process tube or a recently used process tube made of silicon carbide, etc., as shown in Figures 2(a) and (b). If a sealing method is adopted, it is difficult to achieve a complete seal due to differences in thermal expansion, etc. Gas leakage due to incomplete sealing here only results in the generation of defective wafers, specifically an increase in the lifetime of stacking faults, an increase in leakage current, and an increase in the ΔNFB value due to MOSVaractor check. Furthermore, leaks of the normally used gas HCl and doping gas caused harm to the human body and damage to peripheral equipment. In the future, the occurrence of these defects will become an issue that must be avoided in highly integrated, high-performance devices such as LSI and VLSI. The cause of gas leaks in silicon carbide process tubes is that no matter how much you polish silicon carbide, it is difficult to obtain a smooth surface as precise as quartz glass, and even if a perfectly smooth surface could be obtained. This is also thought to be due to the difference in expansion between silicon carbide and quartz glass, which creates minute voids here during high-temperature use. For this reason, various attempts have been made to improve this problem, for example, the use of heat-resistant packing was considered, but since the temperature inside the furnace is as high as 1200℃ or more, the joint part is also heated to 250 to 300℃.
The reality is that there is currently no suitable gasket that can withstand the high heat that occurs. Therefore, we made further improvements by extending the tube side end of the process tube and positioning the joint part where the packing is inserted further away.
Attempts have also been made to lower the temperature here.
However, if you do that, for example, the temperature inside the furnace is 1280℃.
In this case, in order to achieve a joint temperature of 200℃, the length of the tube side end must be increased to 300 to 350 mm, and as the furnace core tube becomes larger,
Problems arose in that it was extremely inconvenient to set up and took up a lot of space. This invention is an attempt to solve the above-mentioned problems of the conventional technology.A cooling fin is attached to the gas introduction pipe side end (branch pipe part) of a silicon carbide process tube.
This is intended to lower the temperature at the joint with the quartz glass tube to avoid thermal expansion there, and to completely prevent gas leaks here. That is, the present invention provides a furnace core tube for a diffusion furnace made of silicon carbide, silicon nitride, silicon, or a composite material thereof, which is provided with a large number of fins at the end of the gas introduction tube side;
This is a structure of a furnace core tube for a semiconductor diffusion furnace, which consists of a quartz glass joint tube connected to the core tube, and a heat-resistant packing is further inserted into the joint portion as necessary. The details of the present invention will be explained below based on illustrated embodiments. FIG. 3 is a sectional view of one embodiment of the furnace core tube according to the present invention, in which 1 is the furnace core tube and is made of silicon carbide. A large number of fins 3 are provided at the gas introduction pipe side end 2 of the furnace core tube 1, and a flange 4 is provided at the outer end.
is formed. An example of such a gas introduction pipe side end 2 is an outer diameter of 32φ x inner diameter of 22φ x height of 300 (mm), the flange and fins are 70φ x 5t (mm), and the number of fins is 10. be. The flange 4 on the gas introduction pipe side end 2 of the process tube is made of Teflon, fluoro rubber,
A gasket 5 made of silicone rubber may be used, and after it is connected to a gas joint tube 6 made of quartz glass, its outer periphery is fixed together with a stopper 7. FIG. 4 shows another embodiment of the present invention, in which the only difference is that a ball joint is used for the structure of the joint part, and the other embodiments are completely the same. Note that the furnace core tube according to the present invention exhibits even more effects when used in combination with an air cooling fan. According to an experiment in which the temperature inside the furnace was set to 1280° C. using the above-mentioned furnace core tube, the surface temperature (joint portion) of the gas introduction tube under various conditions was as shown in FIG. As is clear from the same figure, approximately 150℃ is considered to be the upper limit of safe usage temperature for commercially available heat-resistant packing.
The length of the end of the gas introduction tube to hold the
By providing fins, the width can be significantly shortened compared to the case without fins, and by further combining this with an air cooling fan, the width can be reduced to about 1/3. The length of the gas introduction pipe side end is
If it is within the limit of about 200 mm, it will not cause much trouble during work, but when using heat-resistant packing, it is essential that it can be used for a long period of time. According to the present invention, long-term use of the packing has been confirmed as shown in Examples below. The structure of the fins is not particularly limited as long as it can dissipate heat; for example, the fins may be formed separately from an aluminum or other metal plate and inserted into the end of the gas introduction tube. As described above, according to this invention, the joint seal with the quartz glass joint tube at the gas introduction side end of the furnace core tube for a semiconductor diffusion furnace is perfect, and the joint seal is in a satisfactory state, so that external gas can be sucked in during use. Gas leakage during the previous hydrochloric acid cleaning can now be almost completely avoided. As a result, the occurrence of defective processing ware has been greatly reduced, and the conventional problems of damage to peripheral equipment and harm to the human body have been solved all at once. Furthermore, if a heat-resistant packing is used in this invention, the joint seal will be even more complete, and the gas inlet end of the process tube will be further shortened, which will reduce inconveniences such as damage when installing equipment. can be significantly improved. Example 1 A semiconductor furnace core tube made of silicon carbide shown in FIG. 3 had the shape of the end on the gas introduction side as described above, and a quartz glass connecting tube was connected through a Teflon packing for pre-cleaning. The gas used is Hcl0.3 l /min + O 2 10 l /
min, and the temperature was 1300°C. In order to investigate gas leaks in this case, we wrapped litmus paper around the joint and performed a litmus method to detect the change in color, but no change in color was observed even after 60 days had passed. Also, no abnormalities in the skin were observed. Example 2 When the same experiment as in Example 1 was conducted for 30 days with the heat-resistant packing removed, no discoloration of the litmus paper was observed. Example 3 MOS-Varactor-check (C-V
Using the same silicon carbide tube as in Example 1, the results were obtained when a Teflon packing was used at the joint between the tube and the quartz glass connection tube and when no packing was used. However, the results were as shown in the table below. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a),(b)は共に従来の石英ガラスのプロセ
スチユーブと石英ガラス接合管との接合状態を示
す説明図、第2図(a),(b)は共に炭化硅素のプロセ
スチユーブと石英ガラス接合管との従来の接合状
態を示す説明図、第3図、第4図は共に本発明に
なる炉芯管の接合構造を示す断面図、第5図はガ
ス導入管側端部の長さに対するガス導入管の表面
温度を示した線図である。 1…プロセスチユーブ、2…ガス導入管側端
部、3…フイン、4…フランジ、5…パツキン、
7…石英ガラス接合管。
Figures 1 (a) and (b) are both explanatory diagrams showing the bonding state of a conventional quartz glass process tube and a quartz glass joint tube, and Figures 2 (a) and (b) are both silicon carbide process tubes. 3 and 4 are cross-sectional views showing the joint structure of the furnace core tube according to the present invention, and FIG. 5 shows the gas introduction tube side end. FIG. 3 is a diagram showing the surface temperature of the gas introduction pipe with respect to the length of the gas introduction pipe. DESCRIPTION OF SYMBOLS 1... Process tube, 2... Gas introduction pipe side end, 3... Fin, 4... Flange, 5... Packing,
7...Quartz glass joint tube.

Claims (1)

【特許請求の範囲】 1 ガス導入側端部に多数のフインを設けた炭化
硅素、窒化硅素、硅素又はこれらの複合材料から
なる拡散炉用炉芯管と、これと接合部で接続され
る石英ガラス接続管とからなることを特徴とした
半導体拡散炉用炉芯管の構造。 2 接合部に耐熱パツキンを挿入してなる特許請
求の範囲第1項記載の半導体拡散炉用炉芯管の構
造。
[Scope of Claims] 1. A furnace core tube for a diffusion furnace made of silicon carbide, silicon nitride, silicon, or a composite material thereof, provided with a large number of fins at the end on the gas introduction side, and a quartz tube connected to the core tube at a joint portion. A structure of a furnace core tube for a semiconductor diffusion furnace characterized by comprising a glass connecting tube. 2. The structure of a furnace core tube for a semiconductor diffusion furnace according to claim 1, wherein a heat-resistant packing is inserted into the joint portion.
JP12369279A 1979-09-26 1979-09-26 Structure of furnace core tube for semiconductor diffusion Granted JPS5648130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12369279A JPS5648130A (en) 1979-09-26 1979-09-26 Structure of furnace core tube for semiconductor diffusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12369279A JPS5648130A (en) 1979-09-26 1979-09-26 Structure of furnace core tube for semiconductor diffusion

Publications (2)

Publication Number Publication Date
JPS5648130A JPS5648130A (en) 1981-05-01
JPS6127896B2 true JPS6127896B2 (en) 1986-06-27

Family

ID=14866955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12369279A Granted JPS5648130A (en) 1979-09-26 1979-09-26 Structure of furnace core tube for semiconductor diffusion

Country Status (1)

Country Link
JP (1) JPS5648130A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58418U (en) * 1981-06-24 1983-01-05 沖電気工業株式会社 Semiconductor heat treatment equipment
JPS5944821A (en) * 1982-09-07 1984-03-13 Toshiba Corp Thermal treatment vessel for semiconductor
JPS61152226A (en) * 1984-12-26 1986-07-10 理研ビタミン株式会社 Quality modifier for frozen dough
JPS62123066A (en) * 1985-11-22 1987-06-04 東芝セラミツクス株式会社 Member for thermal process
JPH0311622A (en) * 1989-06-09 1991-01-18 Toshiba Ceramics Co Ltd Exhaust cap
JPH0311623A (en) * 1989-06-09 1991-01-18 Toshiba Ceramics Co Ltd Furnace tube for heat treatment of semiconductor
JP2764436B2 (en) * 1989-06-29 1998-06-11 東芝セラミックス株式会社 Vertical diffusion furnace
JPH03241735A (en) * 1990-02-20 1991-10-28 Toshiba Ceramics Co Ltd Furnace tube for semiconductor diffusion furnace
JP2010232637A (en) * 2009-03-04 2010-10-14 Hitachi Kokusai Electric Inc Substrate processing apparatus, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JPS5648130A (en) 1981-05-01

Similar Documents

Publication Publication Date Title
JP3572247B2 (en) Gas inlet pipe for semiconductor heat treatment furnace
JP3106172B2 (en) Sealing structure of heat treatment equipment
JPS6127896B2 (en)
TWI775691B (en) Apparatus and method for repairing defects of semiconductor
CN214250565U (en) Water-cooling flange for diffusion furnace
JP3503710B2 (en) Mounting jig for heat treatment of semiconductor wafer and heat treatment apparatus
JPS62262420A (en) Method of sealing heat resisting tube for heating semiconductor
JP4026751B2 (en) Semiconductor manufacturing apparatus and manufacturing method thereof
JP2003209064A (en) Semiconductor device manufacturing apparatus
JPH03241735A (en) Furnace tube for semiconductor diffusion furnace
JP2559627B2 (en) Wafer holding device, wafer loading / unloading method using the device, vertical wafer boat mainly used in the loading / unloading method
KR20140088284A (en) Exhaust nozzle of doping process tube for solar cell wafer
JP2602003B2 (en) Silicon crystal joining method
JPH04104494A (en) Ceramics heater
JPS6344731A (en) Manufacture of semiconductor device
JPH0542812B2 (en)
JP2698537B2 (en) Heating equipment
JPS6053036A (en) Manufacture of semiconductor element
JP3602410B2 (en) Film forming equipment
KR200148775Y1 (en) Reactor of semiconductor manufacture apparatus
JPH04280419A (en) Heat treatment device
JPH05152229A (en) Heat treatment furnace
JPH04162712A (en) Low pressure cvd apparatus
KR100336558B1 (en) Apparatus for heating wafer
JPS6335091B2 (en)