JP4026751B2 - Semiconductor manufacturing apparatus and manufacturing method thereof - Google Patents

Semiconductor manufacturing apparatus and manufacturing method thereof Download PDF

Info

Publication number
JP4026751B2
JP4026751B2 JP2002176741A JP2002176741A JP4026751B2 JP 4026751 B2 JP4026751 B2 JP 4026751B2 JP 2002176741 A JP2002176741 A JP 2002176741A JP 2002176741 A JP2002176741 A JP 2002176741A JP 4026751 B2 JP4026751 B2 JP 4026751B2
Authority
JP
Japan
Prior art keywords
susceptor
support member
width
joint
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002176741A
Other languages
Japanese (ja)
Other versions
JP2004022382A (en
Inventor
義信 後藤
和明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002176741A priority Critical patent/JP4026751B2/en
Publication of JP2004022382A publication Critical patent/JP2004022382A/en
Application granted granted Critical
Publication of JP4026751B2 publication Critical patent/JP4026751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造装置およびその製造方法に関するものである。
【0002】
【従来の技術】
半導体製造用途等においては、例えば窒化アルミニウム製のセラミックヒーターをチャンバーの内側壁面へと取り付ける必要がある。このため、セラミック板製の筒状の支持部材の一端をセラミックヒーターの接合面へと取り付け、この支持部材の他端をチャンバーの内側壁面へと取り付けることが行われている。支持部材は、アルミナ、窒化アルミニウム等の耐熱性のセラミック板によって形成されている。支持部材とチャンバーとの間はOリングによって気密に封止する。これによって、支持部材の内側空間とチャンバーの内部空間とを気密に封止し、チャンバーの内部空間のガスがチャンバーの外部へと漏れないようにする。
【0003】
しかし、筒状の支持部材をセラミックヒーターの接合面(背面)に接合し、セラミックヒーターを昇温させると、セラミックヒーターと支持部材との接合面に微細なクラックが発生したり、これによる気体のリークが生ずる可能性がある。この問題を解決するために、本出願人は、特願2000−58349号(特開2001−250858号公報)において、蛇腹状の支持部材をセラミックヒーターに対して接合することを開示した。
【0004】
【発明が解決しようとする課題】
本発明者は、室温から高温まで昇温させるような過酷な条件下において、セラミックヒーターと支持部材との接合部分における熱応力を低減し、クラックを防止できるような設計を検討していた。この過程で、ヒーターと支持部材との接合部分の外壁面に、一体の連続的な湾曲面を設けることが、接合部分における熱応力を低減する上で有効であることを見いだし、更に具体的な設計を検討していた。
【0005】
しかし、この検討の過程において、新たに次の問題点が生ずることを見いだした。即ち、セラミックヒーターと支持部材との接合後に、サセプターと支持部材との接合面に接合不良が残留する傾向が見られた。このような接合不良が残留すると、サセプターを高温に加熱し、サセプターと支持部材との接合部分に熱応力が加わったときに、接合部分にクラックが発生する原因となる。このため、接合不良の残留する製品は不良品となるため、製造歩留りが低下する。
【0006】
本発明の課題は、セラミックサセプターと支持部材との接合部分における熱応力を低減でき、かつ接合面における接合不良を抑制でき、微細なクラックや気体リークを生じにくいような支持構造を提供することである。
【000
【課題を解決するための手段】
本発明は、加熱されるセラミックサセプター、およびこのセラミックサセプターの背面に接合されているセラミックス製の支持部材を備えている半導体製造装置であって、
前記支持部材が、本体部分、セラミックサセプターの背面に対するリング状の接合面、接合面と反対側の端面、および接合面から本体部分に向けて延びる接合部を有しており、接合部が、背面に連続する内側湾曲面および外側湾曲面を有しており、
接合面の外側輪郭の幅D1が端面の外側輪郭の幅D2よりも大きく、かつ接合面の内側輪郭の幅E1が端面の内側輪郭の幅E2よりも大きく、幅E1が幅 D 2以上であることを特徴とする。
【000
発明者は、リング状に設けられた接合面における接合不良は、特に接合面の外周領域に発生していることを明らかにした。支持部材の本体部分を押圧することにより接合面をセラミックサセプターに接合するため、接合面の外周領域には圧力がかかりにくいためと考えられる。そこで、外周領域における接合不良を改善するため、支持部材の本体部分よりも外側から接合面を押圧することを想到した。接合面における幅D1を端面におけるD2よりも大きくし、本体部分よりも外側に接合面を設け、本体部分の外側に加圧治具を設置した。加圧治具をセラミックサセプターに向けて押圧することにより、接合面の外周領域もセラミックサセプターに対して強く接合させることができた。
【000
しかし、今度は接合面の内周領域において接合不良が発生した。これは、幅D1を大きくしたことにより、接合面の幅が大きくなったことに起因すると予想された。そこで、接合面の幅を狭くした。すなわち、接合面の内側輪郭の幅E1を端面の内側輪郭の幅E2よりも大きくした。これにより、内側領域においても、接合面とセラミックサセプターとを強く接合させることができた。
【001
さらに、幅E1を幅D2よりも大きくすることによって、接合面の全面を均等に押圧できるようになった。
【001
このように、上記構造によれば、接合面の全面が均等に強く接合されているので、セラミックサセプターと支持部材との接合部分における熱応力を低減でき、かつ、接合面における接合不良を抑制できる。この結果、サセプターを高温において動作させたり、あるいはサセプターを急速昇温したりするような過酷な条件下においても、サセプターと支持部材との接合部分に微細なクラックや気体リークを生じにくい。
【001
また、本発明は、半導体製造装置を製造する方法であって、支持部材の前記接合面を前記サセプターの前記背面上に設置し、支持部材の外側に筒状の加圧治具を設置し、この加圧治具の押圧面から接合部をサセプターへと向かって加圧しながら支持部材をサセプターと接合することを特徴とする。
【001
上記の加圧治具は、支持部材の本体部分の外側に設置される押圧面を備えている。したがって、上記の加圧治具を利用することによって、接合面の外周領域にも効率的に圧力を加えることができ、接合面の全面に均等に圧力を加えることができる。したがって、セラミックサセプターと支持部材との接合部分における熱応力を低減でき、かつ、接合面における接合不良の少ない、セラミックサセプターの支持構造を形成することができる。
【001
以下、適宜図面を参照しつつ、本発明について更に説明する。
【001
本発明においては、接合部が内側湾曲面を有している。また、接合部が外側湾曲面を有してい
【0016
図1は、本発明の一実施形態に係る取付構造を概略的に示す断面図である。図2は、サセプター1Aと支持部材3との接合面を示す拡大図である。略平板状のセラミックサセプター1Aと、サセプター1Aの背面に接合された支持部材3とによって支持構造12が構成されている。また、セラミックサセプター1A、支持部材3、および支持部材3に接続されたチャンバー9によって取付構造13が構成されている。サセプター1Aは、略平板状の基体2と、基体2内に埋設された抵抗発熱体8と、抵抗発熱体8に接続された端子7を備えている。サセプターの基体2は、平坦な加熱面2aと、加熱面2aの反対側の背面2bとを有している。
【0017
支持部材3は略円筒形状をなしており、本体部分3a、サセプター1Aと接合する接合面5、接合面5から本体部分3aに向けて延びる接合部4、およびチャンバー9側のフランジ部3eを備えている。
【0018
支持部材3のフランジ部3eの端面3fが、チャンバー9の内壁面9bに対して固定されている。この結果、チャンバー9の開口9aと支持部材3の内側空間10とが連通し、支持部材3の内側空間10がチャンバー9の内部空間11に対して気密に封止される。端子8に対して、例えば棒状の電力供給手段6が接続されている。
【0019
接合部4は、内壁面3gに連続して設けられた内側湾曲面4g、および外壁面3hに連続して設けられた外側湾曲面4hを有している。そして、支持部材3とサセプター1Aとは、リング形状の接合面5と2eとにおいて接合されている。
【002
前記セラミックサセプターと前記支持部材とが加圧状態で接合されてい
【002
本実施の形態においては、接合部4が基体2の方向に押圧されて接合面5と2eとが接合される。図3は、サセプター1Aと支持部材3とを接合している状態を概略的に示す断面図である。接合部4は加圧治具20と接触すべき接触面4kを有している。
【002
加圧治具20は、接触面4kに接触して、接触面4kを基体2の方向に押圧する押圧面20d、押圧面20dから延びる本体部分20h、および加圧機30に接続された端面20aを備えている。加圧機30から加圧治具20に圧力Aが加えられると、加圧治具20の押圧面20dを介して接触面4kが押圧されて接合面5と2eとが接合される。接合面5と2eとが接合されたのちに、切断面4mに沿って切断され、接触面4kを含む切断部4nが除去されて支持構造12が形成される。
【002
図3に示すように、加圧治具20は、支持部材3の本体部分3aの外側において接合面5に対向する位置に接触して、接合面5を押圧する。加圧治具20をサセプター1Aに向けて押圧することにより、接合面5の外周領域もサセプター1Aに対して強く接合させることができる。
【002
加圧治具20は本体部分3aよりも外側に設置されるので、本体部分3aよりも外側に接合面5を設ける必要がある。この観点から、接合面5における幅D1を端面3fにおける幅D2よりも大きくする。
【002
また、幅D1を大きくしたことにより、接合面5の幅が大きくなると接合面5の内周領域において接合不良が発生する。そこで、接合不良を防止する観点から、接合面5の幅が狭いことが好ましい。すなわち、接合面5の内側輪郭の幅E1を端面3fの内側輪郭の幅E2よりも大くすることによって、接合面の幅を小さくし、接合不良が生じにくいようにした。
【0026
これにより、内側領域においても、接合面5とサセプター1Aとを強く接合させることができた。
【0027
接合不良を防止する観点から、幅D1の幅D2に対する比率D1/D2は、1.02以上であることが好ましく、1.05以上であることがさらに好ましい。幅D1と幅D2の差は、1mm以上であることが好ましく、3mm以上であることがさらに好ましい。
【0028
ここで、接合面の幅または端面の幅とは、接合面または端面の各外側輪郭、あるいは内側輪郭に仮想的な対角線を記入した場合の、その対角線の長さを意味している。従って、接合面または端面の外側輪郭が円形である場合には、幅D1、幅D2は、外側輪郭の直径である。接合面または端面の外側輪郭が楕円形である場合には、幅D1、幅D2は、外側輪郭の長径である。接合面または端面の外側輪郭が多角形である場合には、幅D1、幅D2は、多角形の対角線長さの最大値である。
【0029
接合面または端面の内側輪郭が円形である場合には、幅E1、幅E2は、内側輪郭の直径である。接合面または端面の内側輪郭が楕円形である場合には、幅E1、幅E2は、内側輪郭の長径である。接合面または端面の内側輪郭が多角形である場合には、幅E1、幅E2は、多角形の対角線長さの最大値である。接合不良を抑制するという観点から、幅E1の幅E2に対する比率E1/E2は、1.02以上であることが好ましく、1.05以上であることがさらに好ましい。また、(E1−E2)は1mm以上であることが好ましく、3mm以上であることがさらに好ましい。
【003
本発明においては、幅E1が幅D2以上であ
【003
接合面5と2eとを接合する場合に、本体部分3aの外側から接合面5が押圧される。このとき接合面5の全面が押圧されることが好ましい。この観点から、(E1−D2)は0.5mm以上であることが好ましく、1mm以上であることがさらに好ましい。
【003
セラミックサセプター1Aの肉厚Tは、サセプター1Aと支持部材3との接合部分の熱応力を低減するという観点から、50mm以下であることが好ましい。また、サセプター1Aに、取り扱い上充分な機械的強度を与えるという観点からは、サセプター1Aの肉厚は3mm以上であることが好ましい。
【003
支持部材3の肉厚tを15mm以下とすることによって、サセプター1Aからチャンバー9側への熱の移動を抑制でき、サセプター1Aにおける局所的な温度低下やコールドスポットを防止できる。この観点からは、tを10mm以下とすることが更に好ましい。
【003
一方、支持部材3の肉厚tが1mm未満になると、支持部材3の破壊が生じやすくなるので、tを1mm以上とすることが好ましい。支持部材3の破壊を抑制するという観点からは、tを1.5mm以上とすることが更に好ましい。
【003
接合部4を支持部材3の軸方向に切った場合の、外側湾曲面4hの曲率半径R1が4mm以上、25mm以下であることが、接合部4の熱応力を低減する上で有効であった。
【0036
ここで、R1が小さいと、接合面5に加わる熱応力が大きくなるため、熱応力低減という観点から、外側湾曲面4hの曲率半径R1を4mm以上とする必要がある。この観点からは、外側湾曲面4hの曲率半径R1を7mm以上とすることが一層好ましい。
【0037
一方、サセプター1Aと支持部材3の接合部分の熱応力低減という観点からは、R1を大きくすることが有効であるが、R1が25mmを超えると、熱応力低減の作用効果の向上はほとんどない。
【0038
内側湾曲面4gの曲率半径R2が小さいと、接合面5に加わる熱応力が大きくなるため、R2が大きいことが好ましい。また、接合面5の幅が大きくなると接合面5に加わる熱応力が大きくなるので、接合面5の幅が狭いことが好ましい。すなわち、R2が大きいことが好ましい。これら2つの観点から、R2を2mm以上とすることが好ましい。
【0039
一方、R1と同様、R2が25mmを超えると、熱応力低減の作用効果の向上はほとんどない。
【004
また、外側湾曲面4hは、連続的に設けられた複数の湾曲面を有していてもよい。複数の湾曲面とは、曲率中心と曲率半径との一方または双方を異にする湾曲面を意味している。
【004
従って、湾曲部の中に平坦面、溝、段差が設けられ、平坦面、溝、段位によって2つの湾曲面が区分される場合は除外される。
【004
ただし、湾曲面が複数設けられている場合であっても、複数の湾曲面が連続的に設けられることによって、一体の湾曲部として見ることができる場合は含まれる。例えば、曲率半径の異なる複数の湾曲面を連続的に設けることができる。また、曲率中心の異なる複数の湾曲面を連続的に設けることができる。更に,曲率半径および曲率中心の異なる複数の湾曲面を連続的に設けることができる。
【004
例えば、図4に模式的に示す例においては、湾曲部4の外側湾曲面4hは、複数の湾曲面4qと4pとからなっており、湾曲面4qと湾曲面4pとは連続している。湾曲面4pの曲率中心はO1であり、曲率半径はR1である。湾曲面4qの曲率中心はO3であり、曲率半径はR3である。
【004
曲率中心が異なる複数の湾曲部を連続的に設ける場合には、曲率中心間の距離を10mm以下とすることが好ましく、5mm以下とすることが更に好ましい。また、曲率半径が異なる複数の湾曲部を連続的に設ける場合には、曲率半径間の偏差を10mm以下とすることが好ましく、5mm以下とすることが更に好ましい。
【004
また、好適な実施形態においては、内側湾曲面4gが、外側湾曲面4hと同様に連続的に設けられた複数の湾曲面を有していてもよい。この場合の、内側湾曲面4gの構成については、外側湾曲面4hと同様である。
【0046
サセプターの材質は用途に応じて選択できるので、特に限定されない。ただし、ハロゲン系腐食性ガスに対して耐蝕性を有するセラミックスが好ましく、特に窒化アルミニウムまたは緻密質アルミナが好ましく、95%以上の相対密度を有する窒化アルミニウム質セラミックス、アルミナが一層好ましい。サセプター中には、抵抗発熱体、静電チャック用電極、プラズマ発生用電極などの機能性部品を埋設することができる。
【0047
「加熱されるサセプター」の加熱源は限定されず、外部の熱源(例えば赤外線ランプ)によって加熱されるサセプターと、内部の熱源(例えばサセプター内に埋設されたヒーター)によって加熱されるサセプターとの双方を含む。支持部材を構成するセラミックスの形態は限定されないが、例えば長手方向に対して厚さ方向が小さい板状物からなる。また、筒状であることが好ましい。
【0048
支持部材の材質は特に限定しないが、ハロゲン系腐食性ガスに対して耐蝕性を有するセラミックスが好ましく、特に窒化アルミニウムまたは緻密質アルミナが好ましい。
【0049
サセプターと支持部材との接合方法は限定されず、固相接合、固液接合、ろう付けであってよい。固液接合法は、特開平10−273370号公報に記載された方法である。
【005
好適な実施形態においては、サセプターと支持部材とが固相接合されている。固相接合法においては、サセプターを構成するセラミックスと、支持部材を構成するセラミックスとの少なくとも一方に対して有効な焼結助剤を含有する溶液を接合面に塗布し、接合面に対して略垂直方向へと向かって圧力を加えながら、焼結温度よりも若干低い程度の温度で熱処理する。特に好ましくは、以下のようにして固相接合を行う。
【005
(1)アルミニウム−窒素結合を有する窒化アルミニウムの前駆体化合物を、支持部材の端面とサセプター背面との間に介在させた状態で熱分解させることによって、両者を接合する。この場合において好ましくは、平板状部およびサセプターが、窒化アルミニウム質セラミックスからなる。
【005
この前駆体化合物としては、アルミニウム−窒素結合を有する有機金属化合物または無機化合物を使用できる。これには、RAlとアンモニアやエチレンジアミンの付加物(Rはメチル基、エチル基、プロピル基、ブチル基)、AlHとNHとの縮合生成物、ポリアルキルイミノアラン[(HAlNR)n]を使用できる。ポリアルキルイミノアランは、アルキルイミノアラン(HAlNR)の重合体であり、いわゆるカゴ型構造を有するもので、Rはアルキル基である。これを製造するには、アルミニウムの水素化物を、アミンやアミン塩酸塩と反応させる。Rがエチル基の場合には8量体[(HAlNR):Rはエチル基]が主として生成し、イソプロピル基の場合には6量体[(HAlNR):Rはイソプロピル基]が主として生成する。Rがメチル基であると、不溶性の高分子が生成しやすい。
【005
アルミニウム−窒素結合を有する化合物の熱分解温度は、好ましくは1600℃以下である。接合時の雰囲気は、アルゴン等の不活性ガスやアンモニア−窒素等の還元性雰囲気が好ましく、熱分解時にアルミニウム−窒素結合を有する化合物から発生する炭素を除去するためには、アンモニア−不活性ガスの雰囲気が好ましい。
【005
接合時には、各接合面に対して略垂直の方向に向かって加圧することが、接合強度を一層向上させる上で好ましい。加圧の効果は、実質的には0.1kg/cmの圧力で現れる。上限は10kg/cmである。
なお、アルミニウム−窒素結合を有する化合物に加えて、珪素−窒素結合を有する化合物をも使用できる。
【005
(2)平板状部とサセプター背面との間に、サセプターを構成するセラミックスと支持部材を構成するセラミックスとの少なくとも一方に対して有効な焼結助剤を含む溶液を介在させ、次いで熱処理を行う。例えば、セラミックスが窒化アルミニウムまたは窒化珪素からなる場合には、イットリウム化合物、イッテルビウム化合物およびアルカリ土類元素の化合物からなる群より選ばれた一種以上の接合助剤が好ましく、イットリウム化合物が特に好ましい。
【0056
焼結助剤は、例えば塩化物、硫酸塩、リン酸塩、硝酸塩、炭酸塩が濡れやすく、ハンドリング性が良い。例えば塩化イットリウム、塩化イットリウム水和物、硫酸イットリウム、酢酸イットリウムの水溶液や、塩化イットリウム、塩化イットリウム水和物、酢酸イットリウムの水溶液を使用することが好ましい。
【0057
接合時の加熱方法としては、常圧での熱処理、ホットプレス法、プラズマ活性化焼結、レーザーによる局部加熱法を例示できる。
【0058
接合時には、各接合面に対して略垂直の方向に向かって加圧することが、接合強度を一層向上させる上で好ましい。加圧の効果は、実質的には0.1kg/cmの圧力で現れる。上限は10kg/cmである。
【0059
【実施例】
(実験)
接合面5の外側輪郭の幅D1、端面3fの外側輪郭の幅D2、接合面5の内側輪郭の幅E1、および端面3fの内側輪郭の幅E2の寸法の異なる支持部材3を作成し、各支持部材3の接合面について以下の実験を行った。
【006
まず図1に示す支持構造11を作製した。サセプター1Aとしては、直径300mm、厚さ10mmの窒化アルミニウム焼結体製の円盤を使用した。支持部材3はセラミック板によって成形した。支持部材3の長さは70mmとする。支持部材3とサセプター1Aとを、図3に示すようにセットし、固相接合した。tを2.5mmとし、Tを10mmとし、R1およびR2をそれぞれ20 mm、24mmとした。接合条件は以下のとおりである。
炉内雰囲気の圧力 0.5kg/cm
最高温度 2000℃
最高温度での保持時間 60分間
接合時の圧力 0.5〜1.0kg/cm
接合材 イットリウムと酢酸を主成分とする溶液
【006
次いで、支持構造10Aを評価チャンバー内に収容し、固定用治具にセットした。チャンバー内を10Torrの窒素雰囲気にした。固定用治具に30℃の冷却水を流した。ヒーターに通電し、加熱面の温度が約600℃になるまで昇温した。昇温速度は、100℃/分とした。加熱面の温度で約600℃に到達した後に、定常運転を継続した。運転中には、通電データ、支持部材3とサセプターとの接合部分からのガスリーク量をモニターした。また、加熱面内の温度分布を放射温度計によって測定した。
【006
次いで、加熱面の温度を600℃から室温まで低下させた。この後、サセプターおよび支持部材の外観の破損の有無を確認した。また、サセプターと支持部材との接合部分について、蛍光探傷法によって微細クラックの有無を確認した。結果を表1に示す。
【006
【表1】

Figure 0004026751
【0064】
【発明の効果】
以上述べたように、本発明によれば、セラミックサセプターと支持部材との接合部分における熱応力を低減でき、かつ接合面における接合不良を抑制でき、微細なクラックや気体リークを生じにくいような支持構造を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る取付構造を概略的に示す断面図である。
【図2】サセプター1Aと支持部材3との接合面を示す拡大図である。
【図3】サセプター1Aと支持部材3とを接合している状態を概略的に示す断面図である。
【図4】サセプターと支持部材との接合部分の湾曲部の形態を模式的に示す図である。
【符号の説明】
1A セラミックサセプター 2
基体 2a
加熱面 2b
背面 2e
接合面 3
支持部材 3a
直筒部(円筒部) 3e
フランジ部 3f
支持部材の端面 3g
支持部材の内壁面 3h
支持部材の外壁面 4
接合部 5
接合面 9
チャンバー 10A
サセプターの支持構造 D1
支持部材の接合面の外側輪郭の幅 D2
支持部材の端面の外側輪郭の幅 E1
支持部材の接合面の内側輪郭の幅 E2
支持部材の端面の内側輪郭の幅[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor manufacturing apparatus and a manufacturing method thereof .
[0002]
[Prior art]
In semiconductor manufacturing applications and the like, it is necessary to attach a ceramic heater made of, for example, aluminum nitride to the inner wall surface of the chamber. For this reason, one end of a cylindrical support member made of a ceramic plate is attached to the joining surface of the ceramic heater, and the other end of the support member is attached to the inner wall surface of the chamber. The support member is formed of a heat-resistant ceramic plate such as alumina or aluminum nitride. A space between the support member and the chamber is hermetically sealed by an O-ring. As a result, the inner space of the support member and the inner space of the chamber are hermetically sealed so that the gas in the inner space of the chamber does not leak to the outside of the chamber.
[0003]
However, when the cylindrical support member is joined to the joining surface (rear surface) of the ceramic heater and the temperature of the ceramic heater is raised, fine cracks may be generated on the joining surface between the ceramic heater and the supporting member, or the gas generated thereby Leakage can occur. In order to solve this problem, the present applicant disclosed in Japanese Patent Application No. 2000-58349 (Japanese Patent Laid-Open No. 2001-250858) that a bellows-like support member is joined to a ceramic heater.
[0004]
[Problems to be solved by the invention]
The present inventor has studied a design that can reduce the thermal stress at the joint portion between the ceramic heater and the support member and prevent cracking under severe conditions such as raising the temperature from room temperature to a high temperature. In this process, it has been found that providing an integral continuous curved surface on the outer wall surface of the joint portion between the heater and the support member is effective in reducing the thermal stress at the joint portion, and more specific. I was studying the design.
[0005]
However, we found that the following problems arose in the process of this study. That is, after the ceramic heater and the support member were joined, there was a tendency that the joint failure remained on the joint surface between the susceptor and the support member. If such a bonding failure remains, when the susceptor is heated to a high temperature and thermal stress is applied to the bonding portion between the susceptor and the support member, it may cause cracks in the bonding portion. For this reason, since the product with the bonding failure remaining becomes a defective product, the manufacturing yield decreases.
[0006]
An object of the present invention is to provide a support structure that can reduce thermal stress at a joint portion between a ceramic susceptor and a support member, suppress joint failure at a joint surface, and hardly cause fine cracks or gas leaks. is there.
[000 7 ]
[Means for Solving the Problems]
The present invention is a semiconductor manufacturing apparatus comprising a ceramic susceptor to be heated, and a ceramic support member bonded to the back surface of the ceramic susceptor,
The support member, the body portion, a ring-shaped bonding surface for the back of the ceramic susceptor, the end face of the bonding surface opposite, and has a joint portion extending toward the body portion from the bonding surface, the bonding portion, rear Has an inner curved surface and an outer curved surface continuous to each other,
The width D1 of the outer contour of the joint surface is larger than the width D2 of the outer contour of the end face, and a width E1 of the inner contour of the joint surface is much larger than the width E2 of the inner contour of the end face, the width E1 width D 2 or more characterized in that there.
[000 8 ]
The inventor has clarified that the bonding failure in the bonding surface provided in a ring shape occurs particularly in the outer peripheral region of the bonding surface. This is probably because the bonding surface is bonded to the ceramic susceptor by pressing the main body portion of the support member, and therefore it is difficult to apply pressure to the outer peripheral region of the bonding surface. Then, in order to improve the joining defect in an outer peripheral area | region, it came to the idea of pressing a joining surface from the outer side rather than the main-body part of a supporting member. The width D1 at the joining surface was made larger than D2 at the end surface, the joining surface was provided outside the main body portion, and a pressure jig was installed outside the main body portion. By pressing the pressing jig toward the ceramic susceptor, the outer peripheral region of the joining surface could be strongly bonded to the ceramic susceptor.
[000 9 ]
However, this time, bonding failure occurred in the inner peripheral region of the bonding surface. This was expected to result from the fact that the width of the joint surface was increased by increasing the width D1. Therefore, the width of the joint surface was narrowed. That is, the width E1 of the inner contour of the joint surface is made larger than the width E2 of the inner contour of the end surface. Thereby, the joining surface and the ceramic susceptor could be strongly joined also in the inner region.
[001 0 ]
Furthermore, by making the width E1 larger than the width D2, the entire joint surface can be pressed evenly.
[001 1 ]
As described above, according to the above structure, since the entire bonding surface is uniformly and strongly bonded, the thermal stress at the bonding portion between the ceramic susceptor and the support member can be reduced, and the bonding failure at the bonding surface can be suppressed. . As a result, even under severe conditions such as operating the susceptor at a high temperature or rapidly raising the temperature of the susceptor, fine cracks and gas leaks are unlikely to occur at the joint between the susceptor and the support member.
[001 2 ]
Further, the present invention is a method of manufacturing a semiconductor manufacturing apparatus, wherein the joint surface of the support member is installed on the back surface of the susceptor, and a cylindrical pressure jig is installed outside the support member, The support member is joined to the susceptor while pressing the joint from the pressing surface of the pressurizing jig toward the susceptor.
[001 3 ]
Said pressurization jig | tool is provided with the press surface installed in the outer side of the main-body part of a supporting member. Therefore, by using the above-described pressurizing jig, it is possible to efficiently apply pressure to the outer peripheral region of the joining surface, and it is possible to apply pressure evenly over the entire joining surface. Therefore, it is possible to form a support structure for the ceramic susceptor that can reduce the thermal stress at the joint portion between the ceramic susceptor and the support member and has few joint failures on the joint surface.
[001 4 ]
Hereinafter, the present invention will be further described with appropriate reference to the drawings.
[001 5 ]
In the present invention, the joint has a curved inner surface. Further, joint that has an outer curved surface.
[00 16 ]
FIG. 1 is a cross-sectional view schematically showing a mounting structure according to an embodiment of the present invention. FIG. 2 is an enlarged view showing a joint surface between the susceptor 1 </ b> A and the support member 3. A support structure 12 is constituted by the substantially flat ceramic susceptor 1A and the support member 3 joined to the back surface of the susceptor 1A. The mounting structure 13 is configured by the ceramic susceptor 1 </ b> A, the support member 3, and the chamber 9 connected to the support member 3. The susceptor 1 </ b> A includes a substantially flat base 2, a resistance heating element 8 embedded in the base 2, and a terminal 7 connected to the resistance heating element 8. The base 2 of the susceptor has a flat heating surface 2a and a back surface 2b opposite to the heating surface 2a.
[00 17 ]
The support member 3 has a substantially cylindrical shape, and includes a main body portion 3a, a joint surface 5 to be joined to the susceptor 1A, a joint portion 4 extending from the joint surface 5 toward the main body portion 3a, and a flange portion 3e on the chamber 9 side. ing.
[00 18 ]
An end surface 3 f of the flange portion 3 e of the support member 3 is fixed to the inner wall surface 9 b of the chamber 9. As a result, the opening 9 a of the chamber 9 and the inner space 10 of the support member 3 communicate with each other, and the inner space 10 of the support member 3 is hermetically sealed with respect to the inner space 11 of the chamber 9. For example, a rod-shaped power supply means 6 is connected to the terminal 8.
[00 19 ]
The joint portion 4 has an inner curved surface 4g provided continuously to the inner wall surface 3g and an outer curved surface 4h provided continuously to the outer wall surface 3h. The support member 3 and the susceptor 1A are joined at the ring-shaped joining surfaces 5 and 2e.
[002 0 ]
The ceramic susceptor and said support member that are joined under pressure.
[002 1 ]
In the present embodiment, the joint portion 4 is pressed in the direction of the base 2 and the joint surfaces 5 and 2e are joined. FIG. 3 is a cross-sectional view schematically showing a state in which the susceptor 1A and the support member 3 are joined. The joint 4 has a contact surface 4k to be brought into contact with the pressing jig 20.
[002 2 ]
The pressurizing jig 20 contacts the contact surface 4k and presses the contact surface 4k in the direction of the base body 2; a main body portion 20h extending from the press surface 20d; and an end surface 20a connected to the pressurizer 30. I have. When the pressure A is applied from the pressurizer 30 to the pressurizing jig 20, the contact surface 4k is pressed through the pressing surface 20d of the pressurizing jig 20, and the joining surfaces 5 and 2e are joined. After the joining surfaces 5 and 2e are joined, the supporting structure 12 is formed by cutting along the cutting surface 4m and removing the cutting portion 4n including the contact surface 4k.
[002 3 ]
As shown in FIG. 3, the pressing jig 20 contacts the position facing the bonding surface 5 on the outside of the main body portion 3 a of the support member 3 and presses the bonding surface 5. By pressing the pressing jig 20 toward the susceptor 1A, the outer peripheral region of the bonding surface 5 can be strongly bonded to the susceptor 1A.
[002 4 ]
Since the pressing jig 20 is installed outside the main body portion 3a, it is necessary to provide the joining surface 5 outside the main body portion 3a. From this point of view, the width D1 of the joint surface 5 is made larger than the width D2 of the end surface 3f.
[002 5 ]
Further, when the width of the bonding surface 5 is increased by increasing the width D1, a bonding failure occurs in the inner peripheral region of the bonding surface 5. Therefore, it is preferable that the width of the bonding surface 5 is narrow from the viewpoint of preventing poor bonding. That is, the width E1 of the inner contour of the joint surface 5 is made larger than the width E2 of the inner contour of the end surface 3f, thereby reducing the width of the joint surface and preventing the occurrence of poor bonding.
[00 26 ]
Thereby, the joining surface 5 and the susceptor 1A could be strongly joined also in the inner region.
[00 27 ]
From the viewpoint of preventing poor bonding, the ratio D1 / D2 of the width D1 to the width D2 is preferably 1.02 or more, and more preferably 1.05 or more. The difference between the width D1 and the width D2 is preferably 1 mm or more, and more preferably 3 mm or more.
[00 28 ]
Here, the width of the joint surface or the width of the end surface means the length of the diagonal line when a virtual diagonal line is written in each outer contour or inner contour of the joint surface or end surface. Therefore, when the outer contour of the joint surface or end surface is circular, the width D1 and the width D2 are the diameters of the outer contour. When the outer contour of the joint surface or the end surface is an ellipse, the width D1 and the width D2 are the major axis of the outer contour. When the outer contour of the joint surface or the end surface is a polygon, the width D1 and the width D2 are the maximum values of the diagonal length of the polygon.
[00 29 ]
When the inner contour of the joint surface or the end surface is circular, the width E1 and the width E2 are the diameters of the inner contour. When the inner contour of the joint surface or the end surface is an ellipse, the width E1 and the width E2 are the major axis of the inner contour. When the inner contour of the joint surface or the end surface is a polygon, the width E1 and the width E2 are the maximum values of the diagonal length of the polygon. From the viewpoint of suppressing poor bonding, the ratio E1 / E2 of the width E1 to the width E2 is preferably 1.02 or more, and more preferably 1.05 or more. Further, (E1-E2) is preferably 1 mm or more, and more preferably 3 mm or more.
[003 0 ]
In the present invention, Ru der width E1 is higher width D2.
[003 1 ]
When joining the joining surfaces 5 and 2e, the joining surface 5 is pressed from the outside of the main body portion 3a. At this time, it is preferable that the entire bonding surface 5 is pressed. From this viewpoint, (E1-D2) is preferably 0.5 mm or more, and more preferably 1 mm or more.
[003 2 ]
The thickness T of the ceramic susceptor 1A is preferably 50 mm or less from the viewpoint of reducing the thermal stress at the joint between the susceptor 1A and the support member 3. Further, from the viewpoint of providing the susceptor 1A with sufficient mechanical strength in handling, the thickness of the susceptor 1A is preferably 3 mm or more.
[003 3 ]
By setting the wall thickness t of the support member 3 to 15 mm or less, the heat transfer from the susceptor 1A to the chamber 9 side can be suppressed, and a local temperature drop or a cold spot in the susceptor 1A can be prevented. From this viewpoint, it is more preferable that t be 10 mm or less.
[003 4 ]
On the other hand, if the thickness t of the support member 3 is less than 1 mm, the support member 3 is liable to break, and therefore it is preferable that t be 1 mm or more. From the viewpoint of suppressing breakage of the support member 3, t is more preferably set to 1.5 mm or more.
[003 5 ]
When the joint 4 is cut in the axial direction of the support member 3, the curvature radius R1 of the outer curved surface 4h is 4 mm or more and 25 mm or less, which is effective in reducing the thermal stress of the joint 4. .
[00 36 ]
Here, if R1 is small, the thermal stress applied to the joint surface 5 increases, so that the radius of curvature R1 of the outer curved surface 4h needs to be 4 mm or more from the viewpoint of thermal stress reduction. From this viewpoint, it is more preferable that the radius of curvature R1 of the outer curved surface 4h is 7 mm or more.
[00 37 ]
On the other hand, from the viewpoint of reducing the thermal stress at the joint between the susceptor 1A and the support member 3, it is effective to increase R1, but when R1 exceeds 25 mm, there is little improvement in the effect of reducing the thermal stress.
[00 38 ]
If the radius of curvature R2 of the inner curved surface 4g is small, the thermal stress applied to the joint surface 5 is large, so it is preferable that R2 is large. Moreover, since the thermal stress added to the joint surface 5 will become large if the width | variety of the joint surface 5 becomes large, it is preferable that the width | variety of the joint surface 5 is narrow. That is, R2 is preferably large. From these two viewpoints, R2 is preferably 2 mm or more.
[00 39 ]
On the other hand, like R1, when R2 exceeds 25 mm, there is almost no improvement in the effect of reducing thermal stress.
[004 0 ]
Further, the outer curved surface 4h may have a plurality of curved surfaces provided continuously. The plurality of curved surfaces mean curved surfaces in which one or both of the center of curvature and the radius of curvature are different.
004 1 ]
Therefore, a flat surface, a groove, and a step are provided in the curved portion, and the case where two curved surfaces are divided by the flat surface, the groove, and the step is excluded.
[004 2 ]
However, even when a plurality of curved surfaces are provided, a case where a plurality of curved surfaces can be continuously provided to be viewed as an integrated curved portion is included. For example, a plurality of curved surfaces having different curvature radii can be provided continuously. Moreover, the some curved surface from which a curvature center differs can be provided continuously. Furthermore, a plurality of curved surfaces with different curvature radii and curvature centers can be provided continuously.
[004 3 ]
For example, in the example schematically shown in FIG. 4, the outer curved surface 4h of the curved portion 4 is composed of a plurality of curved surfaces 4q and 4p, and the curved surface 4q and the curved surface 4p are continuous. The center of curvature of the curved surface 4p is O1, and the radius of curvature is R1. The center of curvature of the curved surface 4q is O3, and the radius of curvature is R3.
[004 4 ]
When continuously providing a plurality of curved portions having different curvature centers, the distance between the curvature centers is preferably 10 mm or less, and more preferably 5 mm or less. Further, when a plurality of curved portions having different curvature radii are continuously provided, the deviation between the curvature radii is preferably 10 mm or less, and more preferably 5 mm or less.
[004 5 ]
Further, in a preferred embodiment, the inner curved surface 4g may have a plurality of curved surfaces provided continuously like the outer curved surface 4h. In this case, the configuration of the inner curved surface 4g is the same as that of the outer curved surface 4h.
[00 46 ]
Since the material of a susceptor can be selected according to a use, it is not specifically limited. However, ceramics having corrosion resistance to halogen-based corrosive gases are preferable, and aluminum nitride or dense alumina is particularly preferable, and aluminum nitride ceramics and alumina having a relative density of 95% or more are more preferable. Functional components such as a resistance heating element, an electrostatic chuck electrode, and a plasma generating electrode can be embedded in the susceptor.
[00 47 ]
The heating source of the “heated susceptor” is not limited, and both the susceptor heated by an external heat source (for example, an infrared lamp) and the susceptor heated by an internal heat source (for example, a heater embedded in the susceptor) including. Although the form of the ceramics which comprise a support member is not limited, For example, it consists of a plate-shaped object with a small thickness direction with respect to a longitudinal direction. Moreover, it is preferable that it is cylindrical.
[00 48 ]
The material of the support member is not particularly limited, but a ceramic having corrosion resistance against halogen-based corrosive gas is preferable, and aluminum nitride or dense alumina is particularly preferable.
[00 49 ]
The joining method between the susceptor and the support member is not limited, and solid-phase joining, solid-liquid joining, or brazing may be used. The solid-liquid joining method is a method described in JP-A-10-273370.
[005 0 ]
In a preferred embodiment, the susceptor and the support member are solid-phase bonded. In the solid-phase bonding method, a solution containing an effective sintering aid for at least one of the ceramics constituting the susceptor and the ceramics constituting the support member is applied to the bonding surface, and the bonding surface is substantially cut. Heat treatment is performed at a temperature slightly lower than the sintering temperature while applying pressure in the vertical direction. Particularly preferably, solid-phase bonding is performed as follows.
005 1 ]
(1) An aluminum nitride precursor compound having an aluminum-nitrogen bond is thermally decomposed in a state of being interposed between the end face of the support member and the susceptor back face, thereby joining the two together. In this case, the flat plate portion and the susceptor are preferably made of an aluminum nitride ceramic.
005 2 ]
As this precursor compound, an organometallic compound or an inorganic compound having an aluminum-nitrogen bond can be used. These include adducts of R 3 Al with ammonia or ethylenediamine (R is a methyl group, ethyl group, propyl group, butyl group), condensation products of AlH 3 and NH 3 , polyalkyliminoalane [(HA1NR) n ] Can be used. Polyalkyliminoalane is a polymer of alkyliminoalane (HA1NR), which has a so-called cage structure, and R is an alkyl group. To make this, an aluminum hydride is reacted with an amine or amine hydrochloride. When R is an ethyl group, an octamer [(HA1NR) 8 : R is an ethyl group] is mainly produced, and when it is an isopropyl group, a hexamer [(HA1NR) 6 : R is an isopropyl group] is mainly produced. To do. If R is a methyl group, an insoluble polymer is likely to be formed.
005 3 ]
The thermal decomposition temperature of the compound having an aluminum-nitrogen bond is preferably 1600 ° C. or lower. The atmosphere at the time of bonding is preferably an inert gas such as argon or a reducing atmosphere such as ammonia-nitrogen. In order to remove carbon generated from a compound having an aluminum-nitrogen bond during thermal decomposition, ammonia-inert gas is used. Is preferable.
[005 4 ]
At the time of joining, it is preferable to pressurize in a direction substantially perpendicular to each joining surface in order to further improve the joining strength. The effect of pressurization appears substantially at a pressure of 0.1 kg / cm 2 . The upper limit is 10 kg / cm 2 .
In addition to a compound having an aluminum-nitrogen bond, a compound having a silicon-nitrogen bond can also be used.
[005 5 ]
(2) A solution containing a sintering aid effective for at least one of ceramics constituting the susceptor and ceramics constituting the support member is interposed between the flat plate portion and the susceptor back surface, and then heat treatment is performed. . For example, when the ceramic is made of aluminum nitride or silicon nitride, one or more joining aids selected from the group consisting of yttrium compounds, ytterbium compounds and alkaline earth element compounds are preferred, and yttrium compounds are particularly preferred.
[00 56 ]
The sintering aid is easy to get wet with, for example, chloride, sulfate, phosphate, nitrate and carbonate, and has good handling properties. For example, it is preferable to use an aqueous solution of yttrium chloride, yttrium chloride hydrate, yttrium sulfate, or yttrium acetate, or an aqueous solution of yttrium chloride, yttrium chloride hydrate, or yttrium acetate.
[00 57 ]
Examples of the heating method at the time of bonding include heat treatment at normal pressure, hot press method, plasma activated sintering, and local heating method by laser.
[00 58 ]
At the time of joining, it is preferable to pressurize in a direction substantially perpendicular to each joining surface in order to further improve the joining strength. The effect of pressurization appears substantially at a pressure of 0.1 kg / cm 2 . The upper limit is 10 kg / cm 2 .
[00 59 ]
【Example】
(Experiment)
The support members 3 having different dimensions of the outer contour width D1 of the joint surface 5, the outer contour width D2 of the end surface 3f, the inner contour width E1 of the joint surface 5 and the inner contour width E2 of the end surface 3f are prepared, The following experiment was conducted on the joint surface of the support member 3.
[006 0 ]
First, the support structure 11 shown in FIG. 1 was produced. As the susceptor 1A, a disk made of an aluminum nitride sintered body having a diameter of 300 mm and a thickness of 10 mm was used. The support member 3 was formed of a ceramic plate. The length of the support member 3 is 70 mm. The support member 3 and the susceptor 1A were set as shown in FIG. t was 2.5 mm, T was 10 mm, and R1 and R2 were 20 mm and 24 mm, respectively. The joining conditions are as follows.
Pressure of furnace atmosphere 0.5kg / cm 2 G
Maximum temperature 2000 ℃
Holding time at maximum temperature 60 minutes Pressure during bonding 0.5 to 1.0 kg / cm 2
Bonding material Solution containing yttrium and acetic acid as main components [006 1 ]
Next, the support structure 10A was accommodated in an evaluation chamber and set on a fixing jig. The inside of the chamber was set to a nitrogen atmosphere of 10 Torr. Cooling water at 30 ° C. was passed through the fixing jig. The heater was energized, and the temperature was raised until the temperature of the heating surface reached about 600 ° C. The heating rate was 100 ° C./min. After reaching about 600 ° C. at the temperature of the heating surface, steady operation was continued. During operation, the energization data and the amount of gas leak from the joint between the support member 3 and the susceptor were monitored. Moreover, the temperature distribution in the heating surface was measured with a radiation thermometer.
[006 2 ]
Next, the temperature of the heating surface was lowered from 600 ° C. to room temperature. Thereafter, the appearance of the susceptor and the support member was checked for damage. Further, the presence or absence of fine cracks was confirmed by a fluorescent flaw detection method at the joint portion between the susceptor and the support member. The results are shown in Table 1.
[006 3 ]
[Table 1]
Figure 0004026751
[0064]
【The invention's effect】
As described above, according to the present invention, it is possible to reduce the thermal stress at the joint portion between the ceramic susceptor and the support member, suppress the joint failure at the joint surface, and prevent the occurrence of fine cracks and gas leaks. Can provide structure.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a mounting structure according to an embodiment of the present invention.
FIG. 2 is an enlarged view showing a joint surface between the susceptor 1A and the support member 3. FIG.
FIG. 3 is a cross-sectional view schematically showing a state in which a susceptor 1A and a support member 3 are joined.
FIG. 4 is a diagram schematically showing a configuration of a curved portion of a joint portion between a susceptor and a support member.
[Explanation of symbols]
1A Ceramic susceptor 2
Base 2a
Heating surface 2b
Rear 2e
Bonding surface 3
Support member 3a
Straight tube part (cylindrical part) 3e
Flange part 3f
End face of support member 3g
Inner wall surface of support member 3h
Outer wall surface of support member 4
Junction 5
Bonding surface 9
Chamber 10A
Susceptor support structure D1
The width of the outer contour of the joint surface of the support member D2
Width of outer contour of end surface of support member E1
The width of the inner contour of the joint surface of the support member E2
Width of inner contour of end face of support member

Claims (2)

加熱されるセラミックサセプター、およびこのセラミックサセプターの背面に接合されているセラミックス製の支持部材を備えている半導体製造装置であって、
前記支持部材が、本体部分、前記セラミックサセプターの前記背面に対するリング状の接合面、前記接合面と反対側の端面、および前記接合面から前記本体部分に向けて延びる接合部を有しており、前記接合部が、前記背面に連続する内側湾曲面および外側湾曲面を有しており、
前記接合面の外側輪郭の幅D1が前記端面の外側輪郭の幅D2よりも大きく、前記接合面の内側輪郭の幅E1が前記端面の内側輪郭の幅E2よりも大きく、前記幅E1が前記幅 D 2以上であることを特徴とする、半導体製造装置
A semiconductor manufacturing apparatus comprising a ceramic susceptor to be heated, and a ceramic support member bonded to the back surface of the ceramic susceptor,
The support member has a main body portion, a ring-shaped joint surface with respect to the back surface of the ceramic susceptor , an end surface opposite to the joint surface, and a joint portion extending from the joint surface toward the main body portion ; The joint has an inner curved surface and an outer curved surface continuous to the back surface;
Larger than the width D2 of the width D1 of the outer contour of the joint surface outer contour of the end face, the width E1 of the inner contour of the joint surface is much larger than the width E2 of the inner contour of the end face, the width E1 is the A semiconductor manufacturing apparatus having a width D2 or more .
請求項1記載の半導体製造装置を製造する方法であって、A method of manufacturing the semiconductor manufacturing apparatus according to claim 1,
前記支持部材の前記接合面を前記サセプターの前記背面上に設置し、前記支持部材の外側に加圧治具を設置し、この加圧治具の押圧面から前記接合部を前記サセプターへと向かって加圧しながら前記支持部材を前記サセプターと接合することを特徴とする、半導体製造装置の製造方法。The joint surface of the support member is installed on the back surface of the susceptor, a pressure jig is installed outside the support member, and the joint portion is directed to the susceptor from the pressing surface of the pressure jig. A method of manufacturing a semiconductor manufacturing apparatus, wherein the supporting member is joined to the susceptor while being pressed.
JP2002176741A 2002-06-18 2002-06-18 Semiconductor manufacturing apparatus and manufacturing method thereof Expired - Lifetime JP4026751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002176741A JP4026751B2 (en) 2002-06-18 2002-06-18 Semiconductor manufacturing apparatus and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002176741A JP4026751B2 (en) 2002-06-18 2002-06-18 Semiconductor manufacturing apparatus and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004022382A JP2004022382A (en) 2004-01-22
JP4026751B2 true JP4026751B2 (en) 2007-12-26

Family

ID=31174964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176741A Expired - Lifetime JP4026751B2 (en) 2002-06-18 2002-06-18 Semiconductor manufacturing apparatus and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4026751B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200061395A (en) * 2017-11-02 2020-06-02 엔지케이 인슐레이터 엘티디 Semiconductor manufacturing device member, its manufacturing method and molding type

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796051B1 (en) * 2003-08-18 2008-01-21 동경 엘렉트론 주식회사 Substrate holding structure and substrate processing device
JP2007258115A (en) * 2006-03-24 2007-10-04 Ngk Insulators Ltd Heating device
US8294069B2 (en) * 2007-03-28 2012-10-23 Ngk Insulators, Ltd. Heating device for heating a wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200061395A (en) * 2017-11-02 2020-06-02 엔지케이 인슐레이터 엘티디 Semiconductor manufacturing device member, its manufacturing method and molding type

Also Published As

Publication number Publication date
JP2004022382A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP3832409B2 (en) Wafer holder and semiconductor manufacturing apparatus
JP3572247B2 (en) Gas inlet pipe for semiconductor heat treatment furnace
JP3840990B2 (en) Semiconductor / LCD manufacturing equipment
JP3520074B2 (en) Ceramic susceptor mounting structure, ceramic susceptor support structure, and ceramic susceptor support member
JP4386606B2 (en) Method for manufacturing support device
JP3810216B2 (en) Sample heating apparatus, processing apparatus, and sample processing method using the same
JP4026751B2 (en) Semiconductor manufacturing apparatus and manufacturing method thereof
JP4569077B2 (en) HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME
JP3534738B2 (en) Ceramic susceptor mounting structure, ceramic susceptor support structure, and ceramic susceptor support member
JP4518370B2 (en) Ceramic susceptor support structure
JP4539035B2 (en) HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME
JP4282221B2 (en) Mounting structure of susceptor to chamber and supporting member to susceptor chamber
JP4311922B2 (en) Ceramic bonded body, wafer holder and semiconductor manufacturing apparatus
JP3597936B2 (en) Wafer holding device
JP3909248B2 (en) Sample heating device
JP4443556B2 (en) Method for manufacturing sample heating apparatus
JP4101425B2 (en) Ceramic susceptor mounting structure and support structure
JP3987841B2 (en) Wafer holding device
JP2004140347A (en) Wafer holder and semiconductor manufacturing device
JP3941542B2 (en) Hermetic bonding structure of ceramics and metal and apparatus parts having the structure
JP4157541B2 (en) Sample heating apparatus, processing apparatus, and sample processing method using the same
JP4556389B2 (en) Bonded body and bonding method of ceramic-metal composite and semiconductor or liquid crystal manufacturing apparatus using the bonded body
JP3720606B2 (en) Bonded body of ceramic member and metal member and wafer support member using the same
JP3607477B2 (en) Joining method of aluminum nitride ceramics
JPH0593275A (en) Semiconductor wafer heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4026751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

EXPY Cancellation because of completion of term