JP3909248B2 - Sample heating device - Google Patents

Sample heating device Download PDF

Info

Publication number
JP3909248B2
JP3909248B2 JP2002019216A JP2002019216A JP3909248B2 JP 3909248 B2 JP3909248 B2 JP 3909248B2 JP 2002019216 A JP2002019216 A JP 2002019216A JP 2002019216 A JP2002019216 A JP 2002019216A JP 3909248 B2 JP3909248 B2 JP 3909248B2
Authority
JP
Japan
Prior art keywords
ceramic
outer peripheral
peripheral surface
cylindrical support
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002019216A
Other languages
Japanese (ja)
Other versions
JP2003224044A (en
Inventor
恒彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002019216A priority Critical patent/JP3909248B2/en
Publication of JP2003224044A publication Critical patent/JP2003224044A/en
Application granted granted Critical
Publication of JP3909248B2 publication Critical patent/JP3909248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマCVD、減圧CVD、光CVD、スパッタリングなどの成膜装置や、プラズマエッチング、光エッチング等のエッチング装置において、半導体ウエハ等の試料を保持した状態で各種処理温度に加熱する試料加熱装置及びその製造方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、半導体装置の製造工程において、プラズマCVD、減圧CVD、光CVD、スパッタリングなどの成膜装置や、プラズマエッチング、光エッチングなどのエッチング装置では、試料となる半導体ウエハ(以下、ウエハと称す。)を保持しつつ各種処理温度に加熱するために試料加熱装置が用いられている。
【0003】
例えば、図7に従来の試料加熱装置を真空処理室内に取り付けた状態を示すように、20はプロセスガスを供給するためのガス供給孔21と、真空引きするための排気孔22を備えた真空処理室で、真空処理室20内にはセラミックヒータ72とセラミック筒状支持体78とからなる試料加熱装置71が設置されていた。
【0004】
この種のセラミックヒータ72は、円板状をなし、上下面が平滑かつ平坦に形成された板状セラミック体73からなり、板状セラミック体73中には抵抗発熱体74を埋設するとともに、一方の主面をウエハWを載せる載置面75とし、他方の主面77には上記抵抗発熱体74と電気的に接続される給電端子79及び温度検出手段80が接合されていた。
【0005】
また、上記板状セラミック体73の他方の主面には、上記給電端子79を包囲するようにセラミック筒状支持体78がガラス接合でもって接合一体化され、給電端子79及び温度検出手段80を真空処理室20外へ導出するようになっていた(特開平4−78138号公報参照)。
【0006】
そして、この試料加熱装置71によりウエハWに成膜やエッチング等の処理を施すには、まず、真空処理室20内を真空状態とするとともに、セラミックヒータ72の載置面75にウエハWを載せ、給電端子79に通電して抵抗発熱体74を発熱させることによりウエハWを400℃以上の設定温度まで加熱し、この状態でガス供給孔21よりデポジッション用ガスやエッチング用ガスなどのプロセスガスを真空処理室20内へ導くことで、ウエハWに各種処理を施すようになっていた。
【0007】
ところが、上記セラミックヒータ72の発熱によって試料加熱装置71に室温域(25℃)から400℃以上の温度範囲で繰り返し熱サイクルが加わると、セラミックヒータ72とガラスからなる接合層76及びセラミック筒状支持体78とガラスからなる接合面76との間にはそれぞれ接合界面が存在するとともに、セラミックヒータ72とセラミック筒状支持体78との間には熱伝達特性の異なるガラスが介在することから、これらの接合界面には熱応力が集中し易く、その結果、繰り返し加わる熱応力によって接合層76やその接合界面にクラックが発生して気密性が損なわれるため、真空処理室20内の真空度が低下し、その結果、成膜精度やエッチング精度に悪影響を与えるといった課題があった。
【0008】
また、成膜装置やエッチング装置では、デポジッション用ガス、エッチング用ガス、あるいはクリーニング用ガスとして腐食性の高いハロゲン系ガスが使用されているのであるが、接合層76がガラスからなるために上記ハロゲン系ガスに曝されると腐食摩耗し易く、短期間のうちに気密性が損なわれるとともに、この腐食摩耗により発生した摩耗粉がウエハWへの処理精度に悪影響を与えるといった課題もあった。
【0009】
しかも、ガラス接合ではせいぜい400℃程度の温度域までしか使用に耐えられず、近年要求されている600℃以上の温度域での処理には対応することが出来なかった。
【0010】
そこで、このような課題を解決するものとして、図6に示すように、セラミックヒータ72を形成する板状セラミック体73の他方の主面中央に凸状部73aを形成し、この凸状部73aにセラミック筒状支持体78をセラミック接合層81を介して焼結により気密に接合一体化したものが提案されている(特開平12−21957号公報参照)。
【0011】
このように、接合層81としてセラミックスを用い、板状セラミック体73及びセラミック筒状支持体78と一体的に焼結することにより、各部材の熱膨張差を近似させることができるとともに、セラミックヒータ72には凸状部73aを設け、セラミック筒状支持体78との接合部における表面積を大きくすることにより、接合部の放熱性を向上させることができるため、接合部に作用する熱応力を低減し、接合部における気密性の低下を防止できるとともに、600℃以上の温度にも対応したものとできるといった利点があった。
【0012】
しかしながら、図6に示す試料加熱装置71でも室温から600℃以上の温度範囲で繰り返し熱サイクルが加わると、比較的短期間で接合部の気密性が損なわれるといった課題があった。即ち、特開平12−21957号公報に開示された技術では、セラミックヒータ72への通電のON、OFFを繰り返して室温から800℃の温度範囲で熱サイクルを与えた場合、600回の熱サイクル程度であれば耐え得ることが開示されているものの、熱サイクルが1000回以上となると気密性が低下してしまうといった課題があった。
【0013】
そして、このような気密性の低下が発生すると、試料加熱装置71を真空処理室20から取り外して交換しなければならないのであるが、この間、成膜処理やエッチング処理を停止させなければならず、生産性を高めることができなかった。
【0014】
【発明の目的】
本発明の目的は、600℃以上の温度で繰り返し使用したとしてもセラミックヒータとセラミック筒状支持体との間の気密性が低下し難い耐久性に優れた試料加熱装置を提供することにある。
【0015】
【課題を解決するための手段】
そこで、本発明は上記課題に鑑み、抵抗発熱体を埋設した窒化アルミニウム質セラミックスからなる板状セラミック体の一方の主面を試料を載せる載置面とし、他方の主面に上記抵抗発熱体と電気的に接続される給電端子を備えたセラミックヒータと、上記給電端子を包囲するように上記セラミックヒータの他方の主面側に主成分が窒化アルミニウム質セラミックスからなるセラミック接合層を介して気密に接合一体化された窒化アルミニウム質セラミックスからなるセラミック筒状支持体とからなる試料加熱装置において、上記セラミックヒータの上記セラミック筒状支持体との接合領域に凸状部を形成するとともに、上記凸状部の外周面と、上記セラミック筒状支持体の上記凸状部との接合部につながる外周面と、上記セラミック接合層の外周面とが連続的につながった表面からなり、該表面の表面粗さが算術平均粗さ(Ra)で0.3μm以上2μm以下であることを特徴とする。
【0016】
また、本発明は、好ましくは上記凸状部の外周面と、上記セラミック筒状支持体の上記凸状部との接合部につながる外周面と、上記セラミック接合層の外周面とが連続的につながった表面の表面粗さを算術平均粗さ(Ra)で0.3μm以上0.8μm以下とすることが良い。
【0017】
また、本発明は上記試料加熱装置を形成するため、抵抗発熱体を埋設した窒化アルミニウム質セラミックスからなる板状セラミック体の主面に主成分が窒化アルミニウム質セラミックスからなるセラミックペーストを介してセラミック筒状支持体を当接させて焼成することにより接合一体化した後、上記板状セラミック体の他方の主面周縁部に研削加工を施して上記セラミック筒状支持体との接合領域に凸状部を形成するとともに、上記凸状部の外周面と、上記セラミック筒状支持体の上記凸状部との接合部につながる外周面と、上記セラミック接合層の外周面と連続的につながった表面とし、かつ該表面の表面粗さを算術平均粗さ(Ra)で0.3μm以上2μm以下としたことを特徴とする。
【0018】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0019】
図1は本発明の試料加熱装置を真空処理室に取り付けた状態を示す断面図、図2は本発明の試料加熱装置のみを示す斜視図、図3は本発明の試料加熱装置の主要部を示す拡大断面図である。
【0020】
図1において、20はプロセスガスを供給するためのガス供給孔21と、真空引きするための排気孔22を備えた真空処理室で、この真空処理室20内にはセラミックヒータ2とセラミック筒状支持体8とからなる試料加熱装置1を設置してある。
【0021】
このセラミックヒータ2は、図2に示すように円板状をなし、上面が平らな板状セラミック体3からなり、その大きさとしては、ウエハWのサイズにもよるが外径220〜330mm、厚み8〜25mm程度のものを用いることができる。また、板状セラミック体3中には、タングステンやモリブデンあるいは白金等の金属からなる抵抗発熱体4を埋設してあり、一方の主面をウエハWを載せる載置面5とするとともに、他方の主面中央には円板状の凸状部3aを有し、この凸状部3aに上記抵抗発熱体4と電気的に接続される給電端子9を接合してある。なお、本発明において主面とは、板状セラミック体3のうち最も広い表面のことであり、他方の主面とは、一方の主面と反対側の表面を指す。
【0022】
また、上記板状セラミック体3の中心には熱電対等の温度検出手段10が内蔵してあり、載置面5の温度を検出するようになっている。
【0023】
そして、上記板状セラミック体3の凸状部3aには、給電端子9及び温度検出手段10を包囲するように、円筒状をしたセラミック筒状支持体8がセラミック接合層6を介して焼結によって気密に接合一体化してあり、給電端子9及び温度検出手段10を真空処理室20外へ取り出すようになっている。
【0024】
ここで、セラミックヒータ2を構成する板状セラミック体3及びセラミック筒状支持体8としては、緻密で耐熱性、耐蝕性、さらには耐プラズマ性に優れたセラミックスにより形成することが必要であり、このようなセラミックスとしては窒化珪素、サイアロン、窒化アルミニウム、窒化硼素を主成分とする窒化物系セラミックスを用いることができる。これらの中でも特に窒化アルミニウムを主成分とするセラミックスは、他のセラミックスと比較して高い熱伝導率を有することから、急速昇温が可能であるとともに、腐食性の高いハロゲン系ガスやプラズマに対して優れていることから好適である。
【0025】
また、板状セラミック体3とセラミック筒状支持体8とは、焼結によって接合一体化する観点から同種(主成分が同じ)のセラミックスにより形成することが必要であり、好ましくは同一組成のセラミックスにより形成することが良い。これにより両者の熱膨張差を極めて小さくすることができるため、接合界面に発生する熱応力を大幅に低減することができ、セラミック接合層6やその接合界面にクラックが発生するのを抑えることができる。
【0026】
なお、本発明において、焼結により接合一体化するとは、セラミック接合層6も板状セラミック体3やセラミック筒状支持体8と同種あるいは同一組成のセラミックスからなり、板状セラミック体3とセラミック接合層6及びセラミック接合層6とセラミック筒状支持体8とがいずれも焼結されていることを言う。焼結によって接合一体化する方法としては、板状セラミック体3やセラミック筒状支持体8を構成するセラミックスと同種あるいは同一組成のセラミックペーストをいずれか一方の接合面に塗布し、他方を上記接合面に当接させたあと押圧した状態で加熱して焼結させるホットプレス法により接合するか、あるいは上記セラミックペーストをいずれか一方の接合面に塗布し、他方を上記接合面に当接させたあと押圧した状態で加熱し焼結させる拡散接合法により接合することができる。
【0027】
このように、板状セラミック体3とセラミック筒状支持体8とを焼結によって接合一体化すれば、板状セラミック体3と接合層6との間、接合層6とセラミック筒状支持体8との間の熱膨張差を極めて小さくできるため、接合層6に集中する熱応力を大幅に低減することができる。しかも、接合層6は耐蝕性、耐プラズマ性にも優れることから腐食摩耗が少なく、摩耗粉の発生が少ないことからウエハWに悪影響を与えることもない。
【0028】
さらに、セラミックヒータ2の上記セラミック筒状支持体8との接合領域には凸状部3aを設けてあることから、接合部近傍の表面積を大きくして冷却効果を高めることができる。
【0029】
その為、セラミックヒータ2の発熱によって室温域から400℃以上の温度範囲で繰り返し熱サイクルが加わったとしても接合部近傍に集中する熱応力を緩和してクラックの発生を防ぐことができるため、長期使用においても気密性を維持することができる。なお、このような効果を得るためには、板状セラミック体3の凸状部3aの高さhを0.1mm以上とすることが良いが、凸状部3aの高さhがあまり高くなり過ぎると、研削加工に時間がかかるだけでクラックを防止するための効果が得られない。その為、凸状部3aの高さhは0.1mm〜5mmの範囲で形成すれば良い。
【0030】
ただし、セラミックヒータ2に凸状部3aを形成したとしても、セラミックヒータ2の発熱温度を600℃以上とするような場合、長期間にわたって使用することができない。即ち、セラミックヒータ2、セラミック筒状支持体8、及びセラミック接合層6を同種のセラミックスにより形成して熱膨張差を小さくするとともに、これらを焼結によって接合一体化したとしても各部材間には接合界面が存在するために熱伝達が悪く、しかも、一体焼結させる際、セラミック接合層6となるセラミックペーストの収縮によって接合後には図5に示すような鋭角を持ったくさび状の溝70が形成され、この溝70の先端に熱応力が集中するため、発熱温度を600℃以上とすると溝70に発生する熱応力に耐えきれず、溝70の先端を起点としてクラックが発生し、このクラックが進展することにより気密性が低下するといった課題があった。
【0031】
その為、本発明の試料加熱装置1では、図3に示すように、セラミックヒータ3の凸状部3aの外周面3bと、セラミック接合層6の外周面6aと、セラミック筒状支持体8の接合部につながる外周面8aとが連続的につながった表面となるようにしたことを特徴とする。
【0032】
このように、セラミックヒータ3の凸状部3aの外周面3bと、セラミック接合層6の外周面6aと、セラミック筒状支持体8の接合部につながる外周面8aとが連続的につながった表面とし、くさび状の溝70のない構造とすることで、局部的に熱応力が集中することを防ぐことができるため、セラミック接合層6やセラミック接合層6との接合界面にクラックが発生することを効果的に防止することができるため、セラミックヒータ2の発熱温度を600℃以上として繰り返し使用しても気密性を損なうことなく長期間にわたって使用することが可能な試料加熱装置1を提供することができる。
【0033】
なお、本発明において、板状セラミック体3の凸状部3aの外周面3bと、セラミック接合層6の外周面6aと、セラミック筒状支持体8の接合部につながる外周面8aとが連続的につながった表面とは、凸状部3aの外周面3bとセラミック接合層6の外周面6aとの接合界面やセラミック接合層6の外周面6aとセラミック筒状支持体8の接合部につながる外周面8aとの接合界面に凹部や凸部などの段差がなく、滑らかなにつながった表面のことを言う。
【0034】
また、本発明において、セラミックヒータ3の凸状部3aの外周面3bと、セラミック接合層6の外周面6aと、セラミック筒状支持体8の接合部につながる外周面8aとが連続的につながった表面を形成するためには、セラミック筒状支持体8をセラミック接合層6を介してセラミックヒータ2の凸状部3aに焼結によって接合一体化した後、セラミックヒータ2を形成する板状セラミック体3の他方の主面周縁部を研削加工によって削ることにより、他方の主面中央に凸状部3aを形成するとともに、この凸状部3aの外周面3b、セラミック接合層6の外周面6a、及びセラミック筒状支持体8の凸状部3aとの接合部につながる外周面8aにも同時に研削加工を施し、セラミック接合層6やセラミック接合層6との接合界面にできるくさび状の溝を除去して連続的につながった表面とすれば良い。
【0035】
ただし、このように研削加工を施したとしても大きな研削加工傷があると、この研削傷を起点としてクラックが発生するがあることから、研削傷はできるだけ小さくすることが好ましく、例えば研削加工用のダイヤモンド砥粒に#200番以上の細かい砥粒を用いて連続的につながった表面の表面粗さを算術平均粗さ(Ra)で2μm以下、好ましくは1.0μm以下、さらに好ましくは0.μm以下とすることが良い。
【0036】
かくして、本発明の試料加熱装置1を用いてウエハWに成膜やエッチング等の処理を施せば、室温域から600℃以上の温度範囲で繰り返し熱サイクルが加わったとしてもセラミックヒータ2とセラミック筒状支持体8との接合部における気密性を損なうことがなく、載置面5の温度分布を常に均一に保つことができるため、長期間にわたって精度の高い成膜やエッチングを安定して施すことができる。その為、試料加熱装置1の交換サイクルを長くすることができるため、成膜処理やエッチング処理を止める回数を少なくすることができ、生産性を向上させることができる。
【0037】
次に、本発明の他の実施形態について説明する。
【0038】
図4は本発明の試料加熱装置1の他の例を示す主要部の拡大断面図であり、セラミックヒータ2を構成する板状セラミック体3の凸状部3aの形状を円錐台とするとともに、凸状部3aの外周面3b、セラミック接合層6の外周面6a、及びセラミック筒状支持体8の凸状部3aとの接合部につながる外周面8aを連続的につながった傾斜状の表面としたもので、このように傾斜状としても凸状部3aの外周面3b、セラミック接合層6の外周面6a、及びセラミック筒状支持体8の凸状部3aとの接合部につながる外周面8aが連続的につながった表面であれば、局所的な熱応力の発生を防ぎ、セラミックヒータ2の発熱温度を600℃以上として繰り返し使用しても気密性を損なうことなく長期間にわたって使用することが可能な試料加熱装置1を提供することができる。しかも、傾斜状とすることで図3に比較して表面積を大きくすることができるため、放熱効果をさらに高めることができ、より破損し難い構造とすることができる。
【0039】
ただし、この実施形態においても凸状部3aの外周面3b、セラミック接合層6の外周面6a、及びセラミック筒状支持体8の凸状部3aとの接合部につながる外周面8aが連続的につながった表面の表面粗さは算術平均粗さ(Ra)で2μm以下、好ましくは1.0μm以下、さらに好ましくは0.μm以下とするとともに、凸状部3aの高さhは1mm〜5mmとすることが良い。
【0040】
以上、本発明の実施形態について示したが、本発明のこれらの実施形態だけに限定されるものではなく、本発明の要旨を逸脱しない範囲で、改良や変更したものにも適用することができることは言う迄もない。
【0041】
(実施例1)ここで、セラミックヒータ2の凸状部3aの外周面3bと、セラミック接合層6の外周面6aと、セラミック筒状支持体8の凸状部3aとの接合部につながる外周面8aとが連続的につながった表面とすることによる効果を確認するため、図1に示す本発明の試料加熱装置1、凸状部73aの外周部に研磨加工を施していない図6に示す従来の試料加熱装置71、及び凸状部を備えていない図7に示す従来の試料加熱装置71をそれぞれ用意し、真空処理装置20に設置してセラミックヒータ2を室温(25℃)から800℃の温度範囲で加熱、冷却を繰り返す熱サイクル試験を行い、Heリークディテクターにより接合部の気密性について調べる実験を行った。
【0042】
なお、セラミックヒータ2,72を構成する板状セラミック体3,73及びセラミック筒状支持体8,78はいずれも25℃における熱伝導率が64W/(m・K)でかつ800℃における熱伝導率が32W/(m・K)である高純度窒化アルミニウム質セラミックスにより形成するとともに、セラミックヒータ2,72を形成する板状セラミック体3,73の寸法は、外径330mm、厚み15mmの円盤状体とし、また、セラミック筒状支持体8,78の寸法は、外径43mm、肉厚3mm、長さ250mmの筒状体の両端に外径71mm、厚み8mmのフランジ部を有する形状とした。また、セラミックヒータ2,72に凸状部3a,73aを有するものは、その外径を71mm、高さを0.3mmとするとともに、本発明にあっては、セラミックヒータ2の凸状部3aの外周面3bと、セラミック接合層6の外周面6aと、セラミック筒状支持体8の凸状部3aとの接合部につながる外周面8aとが連続的につながった表面の表面粗さを算術平均粗さ(Ra)で0.8μmとした。
【0043】
また、セラミックヒータ2とセラミック筒状支持体8との接合にあたっては、両者の間に、窒化アルミニウムに助剤成分として炭酸カルシウムを添加したスラリーを塗布して貼り合わせた後、両者を押圧しながら窒素雰囲気下で1900℃の温度で焼成することにより一体的に焼結させるようにした。
【0044】
そして、各試料加熱装置1,71を真空処理室内20に設置し、真空処理室20内を減圧した後、セラミックヒータ2,72の載置面5,75の平均温度が室温から800℃となるまで40分で加熱し、10分間温度保持した後、室温まで冷却する熱サイクルを繰り返し、定期的に試料加熱装置1、71を真空処理室20から取り出してセラミック筒状支持体8、78内にHeガスを供給し、その外側に漏れるHeガス量をHeリークディテクターにより測定し、この漏れ量が10-8SCCM以上になった時、気密性が損なわれたとしてその時の熱サイクル回数を測定した。
【0045】
結果は表1に示す通りである。なお、表中No.1は本発明の試料加熱装置1、No.2は凸状部73aの外周部に研磨加工を施していない従来の試料加熱装置71、No.3は凸状部を備えていない従来の試料加熱装置71をそれぞれ示す。
【0046】
【表1】

Figure 0003909248
【0047】
この結果、No.3の凸状部を備えていない従来の試料加熱装置71は、10回程度の熱サイクルで接合部にクラックが発生し、気密性が低下した。
【0048】
また、No.2の凸状部73aを有するものの、その外周部に研磨加工を施していない従来の試料加熱装置71は、No.3のものに比較して寿命を大幅に向上させることができたものの、653回の熱サイクルで接合部にクラックが発生し、気密性が損なわれた。
【0049】
これに対し、セラミックヒータ2のセラミック筒状支持体8との接合領域に凸状部3aを設けるとともに、セラミックヒータ2の凸状部3aの外周面3bと、セラミック接合層6の外周面6aと、セラミック筒状支持体8の凸状部3aとの接合部につながる外周面8aとが連続的につながった表面を有するNo.1の本発明の試料加熱装置1は、接合部にはくさび状の溝がなく、熱応力が集中し難い構造であることから、凸状部3aを設けたことによる効果との相乗効果により、3000回熱サイクルを与えたとしても接合部にクラックの発生は見られず、気密性を維持することができ、優れていた。
(実施例2)次に、本発明の試料加熱装置1において、セラミックヒータ2の凸状部3aの外周面3bと、セラミック接合層6の外周面6aと、セラミック筒状支持体8の凸状部3aとの接合部につながる外周面8aとが連続的につながった表面の表面粗さを異ならせた時の耐久性を調べるため、実施例1と同様に実験を行った。なお、本実験に使用する試料加熱装置1の寸法は実施例1と同じ寸法とし、セラミックヒータ2の凸状部3aの外周面3bと、セラミック接合層6の外周面6aと、セラミック筒状支持体8の凸状部3aとの接合部につながる外周面8aとが連続的につながった表面の表面粗さだけを異ならせるようにした。
【0050】
結果は表2に示す通りである。
【0051】
【表2】
Figure 0003909248
【0052】
この結果、セラミックヒータ2の凸状部3aの外周面3bと、セラミック接合層6の外周面6aと、セラミック筒状支持体8の凸状部3aとの接合部外周面6aとが連続的につながった表面の表面粗さが粗くなるにしたがって耐久性が落ちることが判る。そして、算術平均粗さ(Ra)が3μmとなると、平面の凹凸が大きくなりすぎるために凹部が起点となり1527回の熱サイクルで接合部にクラックが発生した。
【0053】
その為、2000回の熱サイクルに耐え得るようにするためには、セラミックヒータの凸状部3aの外周面3bと、セラミック接合層6の外周面6aと、セラミック筒状支持体8の凸状部3aとの接合部につながる外周面8aとが連続的につながった表面の表面粗さを算術平均粗さ(Ra)で2μm以下とすることが良く、さらに3000回の熱サイクルに耐え得るようにするためには、セラミックヒータ2の凸状部3aの外周面3bと、セラミック接合層6の外周面6aと、セラミック筒状支持体8の凸状部3aとの接合部につながる外周面8aとが連続的につながった表面の表面粗さを算術平均粗さ(Ra)で0.8μm以下とすることが良いことが判る。
【0054】
【発明の効果】
以上のように、本発明によれば、抵抗発熱体を埋設した窒化アルミニウム質セラミックスからなる板状セラミック体の一方の主面を試料を載せる載置面とし、他方の主面に上記抵抗発熱体と電気的に接続される給電端子を備えたセラミックヒータと、上記給電端子を包囲するように上記セラミックヒータの他方の主面側に主成分が窒化アルミニウム質セラミックスからなるセラミック接合層を介して気密に接合一体化された窒化アルミニウム質セラミックスからなるセラミック筒状支持体とからなる試料加熱装置において、上記セラミックヒータの上記セラミック筒状支持体との接合領域に凸状部を形成するとともに、上記凸状部の外周面と、上記セラミック筒状支持体の上記凸状部との接合部につながる外周面と、上記セラミック接合層の外周面とが連続的につながった表面からなり、該表面の表面粗さが算術平均粗さ(Ra)で0.3μm以上2μm以下となるようにしたことによって、セラミックヒータとセラミック筒状支持体との接合部における温度勾配を小さくするとともに、接合部に作用する局部的な熱応力の集中を防ぐことができるため、室温から400℃以上の温度範囲での熱サイクルはもとより、室温から600℃以上の温度範囲での繰り返し熱サイクルが加わったとしても接合部にクラックを生じることがなく、優れた気密性を長期間にわたって維持することがきる。しかも、セラミックヒータ、セラミック接合層、及びセラミック筒状支持体は、いずれも緻密で耐熱性、耐食性、耐プラズマ性に優れたセラミックスからなるため、長寿命であるとともに、ウエハ等の試料に悪影響を与えることがなく、さらに成膜精度やエッチング精度を劣化させることがない。
【0055】
また、上記凸状部の外周面と、上記セラミック筒状支持体の上記凸状部との接合部につながる外周面と、上記セラミック接合層の外周面とで形成される表面の表面粗さを算術平均粗さ(Ra)で0.3μm以上0.8μm以下とすることにより、寿命をさらに向上させることができる。
【0056】
また、本発明は上記試料加熱装置を形成するため、抵抗発熱体を埋設した窒化アルミニウム質セラミックスからなる板状セラミック体の主面に主成分が窒化アルミニウム質セラミックスからなるセラミックペーストを介して窒化アルミニウム質セラミックスからなるセラミック筒状支持体を当接させ、焼成にて接合一体化した後、上記板状セラミック体の上記主面周縁部に研削加工を施すようにしたことから、上記セラミック筒状支持体との接合領域に凸状部を形成するとともに、上記凸状部の外周面と、上記セラミック筒状支持体の上記凸状部との接合部につながる外周面と、上記セラミック接合層の外周面と連続的につながった表面とし、かつ該表面の表面粗さを算術平均粗さ(Ra)で0.3μm以上2μm以下とすること、長寿命の試料加熱装置を製造することができる。
【図面の簡単な説明】
【図1】本発明の試料加熱装置を真空処理室に取り付けた状態を示す断面図である。
【図2】本発明の試料加熱装置のみを示す斜視図である。
【図3】本発明の試料加熱装置の主要部を示す拡大断面図である。
【図4】本発明の試料加熱装置の他の例の主要部を示す拡大断面図である。
【図5】従来の試料加熱装置の接合部周辺を示す拡大断面図である。
【図6】従来の試料加熱装置を真空処理室に取り付けた状態を示す断面図である。
【図7】従来の他の試料加熱装置を真空処理室に取り付けた状態を示す断面図である。
【符号の説明】
1,71・・・試料加熱装置
2,72・・・セラミックヒータ
3,73・・・板状セラミック体
3a,73a・板状セラミック体の凸状部
3b・・・・・凸状部の外周面
4,74・・・抵抗発熱体
5,75・・・載置面
6・・・・・・セラミック接合層
7,77・・・板状セラミック体の他方の主面
8,78・・・セラミック筒状支持体
9,79・・・給電端子
10,80・・温度検出手段
76・・・・・接合層
81・・・・・セラミック接合層
W・・・・・・ウエハ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to sample heating for heating to various processing temperatures while holding a sample of a semiconductor wafer or the like in a film forming apparatus such as plasma CVD, low pressure CVD, photo CVD, or sputtering, or an etching apparatus such as plasma etching or photo etching. The present invention relates to an apparatus and a manufacturing method thereof.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, in a semiconductor device manufacturing process, in a film forming apparatus such as plasma CVD, low-pressure CVD, photo-CVD, or sputtering, or in an etching apparatus such as plasma etching or photo-etching, a semiconductor wafer that is a sample (hereinafter referred to as a wafer). A sample heating apparatus is used for heating to various processing temperatures while maintaining the temperature.
[0003]
For example, as shown in FIG. 7 where a conventional sample heating apparatus is mounted in a vacuum processing chamber, a vacuum 20 includes a gas supply hole 21 for supplying a process gas and an exhaust hole 22 for evacuating. In the processing chamber, a sample heating device 71 including a ceramic heater 72 and a ceramic cylindrical support 78 was installed in the vacuum processing chamber 20.
[0004]
This type of ceramic heater 72 is formed of a disk-shaped ceramic body 73 having a disk shape and smooth upper and lower surfaces, and a resistance heating element 74 is embedded in the plate-shaped ceramic body 73. The main surface is a mounting surface 75 on which the wafer W is placed, and the other main surface 77 is joined to the power supply terminal 79 and the temperature detecting means 80 electrically connected to the resistance heating element 74.
[0005]
A ceramic cylindrical support 78 is joined and integrated with the other main surface of the plate-like ceramic body 73 by glass bonding so as to surround the power supply terminal 79, and the power supply terminal 79 and the temperature detection means 80 are connected. It was led out of the vacuum processing chamber 20 (see Japanese Patent Laid-Open No. 4-78138).
[0006]
In order to perform processing such as film formation and etching on the wafer W by the sample heating device 71, first, the inside of the vacuum processing chamber 20 is evacuated and the wafer W is mounted on the mounting surface 75 of the ceramic heater 72. Then, the wafer W is heated to a set temperature of 400 ° C. or more by energizing the power supply terminal 79 to cause the resistance heating element 74 to generate heat, and in this state, a process gas such as a deposition gas or an etching gas from the gas supply hole 21. Is introduced into the vacuum processing chamber 20 to perform various processes on the wafer W.
[0007]
However, when the sample heater 71 is repeatedly subjected to a heat cycle in the temperature range from room temperature (25 ° C.) to 400 ° C. or more due to the heat generated by the ceramic heater 72, the ceramic heater 72 and the bonding layer 76 made of glass and the ceramic cylindrical support are provided. Since there is a bonding interface between the body 78 and the bonding surface 76 made of glass, glass having different heat transfer characteristics is interposed between the ceramic heater 72 and the ceramic cylindrical support 78. As a result, thermal stress is likely to concentrate on the bonding interface of this, and as a result, cracks occur in the bonding layer 76 and the bonding interface due to repeated thermal stress, thereby impairing hermeticity, so that the degree of vacuum in the vacuum processing chamber 20 decreases. As a result, there is a problem that the film forming accuracy and the etching accuracy are adversely affected.
[0008]
In the film forming apparatus and the etching apparatus, a highly corrosive halogen-based gas is used as a deposition gas, an etching gas, or a cleaning gas. When exposed to a halogen-based gas, there is a problem in that corrosion wear tends to occur, airtightness is lost in a short period of time, and wear powder generated by the corrosion wear adversely affects processing accuracy on the wafer W.
[0009]
In addition, glass bonding can only be used up to a temperature range of about 400 ° C., and cannot cope with the processing in a temperature range of 600 ° C. or higher, which has been required in recent years.
[0010]
In order to solve such a problem, as shown in FIG. 6, a convex portion 73a is formed at the center of the other main surface of the plate-like ceramic body 73 forming the ceramic heater 72, and this convex portion 73a is formed. A ceramic cylindrical support 78 is hermetically bonded and integrated by sintering through a ceramic bonding layer 81 (see JP-A-12-21957).
[0011]
Thus, by using ceramics as the bonding layer 81 and sintering integrally with the plate-shaped ceramic body 73 and the ceramic cylindrical support body 78, the difference in thermal expansion of each member can be approximated, and the ceramic heater 72 is provided with a convex portion 73a, and by increasing the surface area of the joint portion with the ceramic cylindrical support 78, the heat dissipation of the joint portion can be improved, so the thermal stress acting on the joint portion is reduced. In addition, there is an advantage that it is possible to prevent a decrease in airtightness at the joint and to cope with a temperature of 600 ° C. or higher.
[0012]
However, the sample heating device 71 shown in FIG. 6 also has a problem that the airtightness of the joint portion is impaired in a relatively short period of time when a repeated heat cycle is applied in the temperature range from room temperature to 600 ° C. or more. That is, in the technique disclosed in Japanese Patent Application Laid-Open No. 12-21957, when the thermal cycle is repeated in the temperature range from room temperature to 800 ° C. by repeatedly turning on / off the energization of the ceramic heater 72, about 600 heat cycles are required. However, there is a problem that the airtightness is reduced when the thermal cycle is 1000 times or more.
[0013]
When such a decrease in hermeticity occurs, the sample heating device 71 must be removed from the vacuum processing chamber 20 and replaced, and during this time, the film forming process and the etching process must be stopped, Productivity could not be increased.
[0014]
OBJECT OF THE INVENTION
An object of the present invention is to provide a sample heating apparatus having excellent durability in which the airtightness between a ceramic heater and a ceramic cylindrical support is unlikely to deteriorate even when repeatedly used at a temperature of 600 ° C. or higher.
[0015]
[Means for Solving the Problems]
In view of the above problems, the present invention embeds a resistance heating element. Made of aluminum nitride ceramics One main surface of the plate-shaped ceramic body is used as a mounting surface on which the sample is placed, and the other main surface is surrounded by a ceramic heater having a power supply terminal electrically connected to the resistance heating element, so as to surround the power supply terminal. On the other main surface side of the ceramic heater The main component is made of aluminum nitride ceramics Airtightly bonded and integrated through a ceramic bonding layer Made of aluminum nitride ceramics In the sample heating apparatus comprising a ceramic cylindrical support, a convex portion is formed in a joining region of the ceramic heater with the ceramic cylindrical support, and an outer peripheral surface of the convex portion and the ceramic cylindrical support Joint with the convex part of the body Leads to Surface where outer peripheral surface and outer peripheral surface of ceramic bonding layer are connected continuously The surface roughness of the surface is not less than 0.3 μm and not more than 2 μm in terms of arithmetic average roughness (Ra) It is characterized by that.
[0016]
The present invention also provides: Preferably, a joint between the outer peripheral surface of the convex portion and the convex portion of the ceramic cylindrical support Leads to The surface roughness of the surface where the outer peripheral surface and the outer peripheral surface of the ceramic bonding layer are continuously connected is expressed as an arithmetic average roughness (Ra). 0.3μm or more 0.8 It is good to set it as micrometer or less.
[0017]
Further, in the present invention, a resistance heating element is embedded to form the sample heating device. Made of aluminum nitride ceramics Plate ceramic body Lord of On the face The main component is made of aluminum nitride ceramics After the ceramic cylindrical support is brought into contact with the ceramic paste and fired, the other main surface of the plate-shaped ceramic body is joined and integrated. of A peripheral portion is ground to form a convex portion in a joint region with the ceramic cylindrical support, and the outer peripheral surface of the convex portion is joined to the convex portion of the ceramic cylindrical support. Part Leads to An outer peripheral surface and an outer peripheral surface of the ceramic bonding layer; The With continuously connected surfaces And the surface roughness of the surface is 0.3 μm or more and 2 μm or less in terms of arithmetic average roughness (Ra). It is characterized by that.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0019]
1 is a cross-sectional view showing a state in which the sample heating apparatus of the present invention is attached to a vacuum processing chamber, FIG. 2 is a perspective view showing only the sample heating apparatus of the present invention, and FIG. 3 shows the main part of the sample heating apparatus of the present invention. It is an expanded sectional view shown.
[0020]
In FIG. 1, reference numeral 20 denotes a vacuum processing chamber provided with a gas supply hole 21 for supplying a process gas and an exhaust hole 22 for evacuation. Inside the vacuum processing chamber 20, a ceramic heater 2 and a ceramic cylindrical shape are provided. A sample heating device 1 including a support 8 is installed.
[0021]
The ceramic heater 2 has a disk shape as shown in FIG. 2 and is composed of a plate-like ceramic body 3 having a flat upper surface. The size of the ceramic heater 2 depends on the size of the wafer W, but the outer diameter is 220 to 330 mm. The thing about 8-25 mm in thickness can be used. In addition, a resistance heating element 4 made of a metal such as tungsten, molybdenum, or platinum is embedded in the plate-shaped ceramic body 3, and one main surface is used as a mounting surface 5 on which the wafer W is placed, and the other A disc-like convex portion 3a is provided at the center of the main surface, and a power feeding terminal 9 electrically connected to the resistance heating element 4 is joined to the convex portion 3a. In addition, in this invention, a main surface is the widest surface among the plate-shaped ceramic bodies 3, and the other main surface points out the surface on the opposite side to one main surface.
[0022]
A temperature detecting means 10 such as a thermocouple is built in the center of the plate-shaped ceramic body 3 so as to detect the temperature of the mounting surface 5.
[0023]
A cylindrical ceramic cylindrical support 8 is sintered to the convex portion 3 a of the plate-shaped ceramic body 3 via the ceramic bonding layer 6 so as to surround the power supply terminal 9 and the temperature detecting means 10. Thus, the power supply terminal 9 and the temperature detection means 10 are taken out of the vacuum processing chamber 20.
[0024]
Here, the plate-like ceramic body 3 and the ceramic cylindrical support body 8 constituting the ceramic heater 2 must be formed of a ceramic that is dense and has excellent heat resistance, corrosion resistance, and plasma resistance. As such ceramics, nitride ceramics mainly composed of silicon nitride, sialon, aluminum nitride, and boron nitride can be used. Among these, ceramics mainly composed of aluminum nitride have a high thermal conductivity compared to other ceramics, so that rapid temperature rise is possible, as well as against highly corrosive halogen-based gases and plasmas. It is preferable because it is excellent.
[0025]
The plate-like ceramic body 3 and the ceramic cylindrical support 8 need to be formed of ceramics of the same kind (the same main components are the same) from the viewpoint of joining and integrating by sintering, preferably ceramics of the same composition It is good to form by. As a result, the difference in thermal expansion between the two can be made extremely small, so that the thermal stress generated at the bonding interface can be greatly reduced, and the occurrence of cracks at the ceramic bonding layer 6 and the bonding interface can be suppressed. it can.
[0026]
In the present invention, the bonding and integration by sintering means that the ceramic bonding layer 6 is also made of a ceramic having the same kind or the same composition as the plate-like ceramic body 3 and the ceramic cylindrical support body 8, and the plate-like ceramic body 3 and the ceramic bonding. The layers 6, the ceramic bonding layer 6, and the ceramic cylindrical support 8 are all sintered. As a method of joining and integrating by sintering, a ceramic paste of the same kind or the same composition as the ceramic constituting the plate-like ceramic body 3 or the ceramic cylindrical support 8 is applied to one of the joining surfaces, and the other is joined to the above-mentioned joining Joined by a hot press method of heating and sintering in a pressed state after being brought into contact with the surface, or applying the ceramic paste to one of the joining surfaces and bringing the other into contact with the joining surface It can join by the diffusion bonding method of heating and sintering in the state pressed after.
[0027]
Thus, if the plate-like ceramic body 3 and the ceramic cylindrical support 8 are bonded and integrated by sintering, the bonding layer 6 and the ceramic cylindrical support 8 are interposed between the plate-like ceramic body 3 and the bonding layer 6. Therefore, the thermal stress concentrated on the bonding layer 6 can be greatly reduced. In addition, since the bonding layer 6 is excellent in corrosion resistance and plasma resistance, there is little corrosive wear, and since there is little generation of wear powder, the wafer W is not adversely affected.
[0028]
Furthermore, since the convex part 3a is provided in the joining area | region with the said ceramic cylindrical support body 8 of the ceramic heater 2, the surface area near a junction part can be enlarged and the cooling effect can be heightened.
[0029]
Therefore, even if a thermal cycle is repeatedly applied in the temperature range from room temperature to 400 ° C. or more due to the heat generated by the ceramic heater 2, the thermal stress concentrated in the vicinity of the joint can be relieved and the occurrence of cracks can be prevented. Airtightness can be maintained even during use. In order to obtain such an effect, the height h of the convex portion 3a of the plate-like ceramic body 3 is preferably set to 0.1 mm or more, but the height h of the convex portion 3a becomes too high. If it is too long, the grinding process only takes time, and the effect for preventing cracks cannot be obtained. Therefore, what is necessary is just to form the height h of the convex part 3a in the range of 0.1 mm-5 mm.
[0030]
However, even if the convex portion 3a is formed on the ceramic heater 2, it cannot be used for a long period of time when the heat generation temperature of the ceramic heater 2 is set to 600 ° C. or higher. That is, the ceramic heater 2, the ceramic cylindrical support 8, and the ceramic bonding layer 6 are formed of the same kind of ceramics to reduce the difference in thermal expansion, and even if these are bonded and integrated by sintering, Since there is a bonding interface, heat transfer is poor, and when sintering is performed, a wedge-shaped groove 70 having an acute angle as shown in FIG. 5 is formed after bonding due to shrinkage of the ceramic paste that becomes the ceramic bonding layer 6. Since the thermal stress is concentrated at the tip of the groove 70, if the heat generation temperature is 600 ° C. or higher, the thermal stress generated in the groove 70 cannot be withstood, and a crack is generated starting from the tip of the groove 70. However, there is a problem that the airtightness is lowered due to the progress of.
[0031]
Therefore, in the sample heating apparatus 1 of the present invention, as shown in FIG. 3, the outer peripheral surface 3 b of the convex portion 3 a of the ceramic heater 3, the outer peripheral surface 6 a of the ceramic bonding layer 6, and the ceramic cylindrical support 8 Junction Leads to A feature is that the outer peripheral surface 8a is a continuous surface.
[0032]
Thus, the outer peripheral surface 3b of the convex portion 3a of the ceramic heater 3, the outer peripheral surface 6a of the ceramic bonding layer 6, and the bonding portion of the ceramic cylindrical support 8 Leads to Since the surface continuously connected to the outer peripheral surface 8a and the structure without the wedge-shaped groove 70 can be prevented from locally concentrating thermal stress, the ceramic bonding layer 6 and the ceramic bonding layer can be prevented. It is possible to effectively prevent the occurrence of cracks at the joint interface with No. 6, so that it can be used over a long period of time without impairing hermeticity even when the heating temperature of the ceramic heater 2 is repeatedly set to 600 ° C. or higher. It is possible to provide a sample heating apparatus 1 capable of performing the above.
[0033]
In the present invention, the outer peripheral surface 3 b of the convex portion 3 a of the plate-like ceramic body 3, the outer peripheral surface 6 a of the ceramic bonding layer 6, and the bonding portion of the ceramic cylindrical support 8. Leads to The surface continuously connected to the outer peripheral surface 8a is a bonding interface between the outer peripheral surface 3b of the convex portion 3a and the outer peripheral surface 6a of the ceramic bonding layer 6, or the outer peripheral surface 6a of the ceramic bonding layer 6 and the ceramic cylindrical support. 8 joints Leads to It refers to a smoothly connected surface having no step such as a concave portion or a convex portion at the joint interface with the outer peripheral surface 8a.
[0034]
Moreover, in this invention, the outer peripheral surface 3b of the convex-shaped part 3a of the ceramic heater 3, the outer peripheral surface 6a of the ceramic joining layer 6, and the junction part of the ceramic cylindrical support body 8 Leads to In order to form a surface continuously connected to the outer peripheral surface 8a, the ceramic cylindrical support 8 is joined and integrated by sintering to the convex portion 3a of the ceramic heater 2 via the ceramic joining layer 6, The other main surface of the plate-like ceramic body 3 forming the ceramic heater 2 of The peripheral portion is ground by grinding to form a convex portion 3a at the center of the other main surface, and the outer peripheral surface 3b of the convex portion 3a, the outer peripheral surface 6a of the ceramic bonding layer 6, and the ceramic cylindrical support. Joint part with 8 convex part 3a Leads to The outer peripheral surface 8a may be ground at the same time to remove the wedge-shaped grooves formed at the bonding interface with the ceramic bonding layer 6 and the ceramic bonding layer 6 so as to obtain a continuous surface.
[0035]
However, even if grinding is performed in this way, if there is a large grinding flaw, cracks will occur starting from this grinding flaw. fear Therefore, it is preferable to make grinding scratches as small as possible. For example, the surface roughness of the surface continuously connected to diamond abrasive grains for grinding using # 200 or more fine abrasive grains is calculated as arithmetic mean roughness. (Ra) is 2 μm or less, preferably 1.0 μm or less, more preferably 0. 8 It is good to set it as micrometer or less.
[0036]
Thus, if the sample heating apparatus 1 according to the present invention is used to perform processing such as film formation and etching on the wafer W, the ceramic heater 2 and the ceramic cylinder can be applied even if repeated thermal cycles are applied in the temperature range from room temperature to 600 ° C. or higher. Since the temperature distribution of the mounting surface 5 can always be kept uniform without impairing the airtightness at the junction with the cylindrical support 8, highly accurate film formation and etching can be stably performed over a long period of time. Can do. Therefore, since the exchange cycle of the sample heating apparatus 1 can be lengthened, the number of times of stopping the film forming process and the etching process can be reduced, and the productivity can be improved.
[0037]
Next, another embodiment of the present invention will be described.
[0038]
FIG. 4 is an enlarged cross-sectional view of the main part showing another example of the sample heating apparatus 1 of the present invention. The shape of the convex part 3a of the plate-like ceramic body 3 constituting the ceramic heater 2 is a truncated cone, Joint part with the outer peripheral surface 3b of the convex part 3a, the outer peripheral surface 6a of the ceramic joining layer 6, and the convex part 3a of the ceramic cylindrical support body 8 Leads to The outer peripheral surface 8a is an inclined surface that is continuously connected. Even if the outer peripheral surface 8a is inclined as described above, the outer peripheral surface 3b of the convex portion 3a, the outer peripheral surface 6a of the ceramic bonding layer 6, and the ceramic cylindrical support 8 are provided. Joint part with convex part 3a Leads to If the outer peripheral surface 8a is a continuous surface, local thermal stress is prevented, and the ceramic heater 2 is used over a long period of time without losing hermeticity even if it is repeatedly used at a heat generation temperature of 600 ° C or higher. It is possible to provide a sample heating apparatus 1 that can do this. In addition, since the surface area can be increased compared to FIG. 3 by adopting the inclined shape, the heat dissipation effect can be further enhanced, and the structure can be made more difficult to break.
[0039]
However, also in this embodiment, the outer peripheral surface 3b of the convex portion 3a, the outer peripheral surface 6a of the ceramic joint layer 6, and the joint portion with the convex portion 3a of the ceramic cylindrical support 8 Leads to The surface roughness of the surface where the outer peripheral surfaces 8a are continuously connected is 2 μm or less, preferably 1.0 μm or less, more preferably 0.8 μm in terms of arithmetic average roughness (Ra). 8 It is preferable that the height h of the convex portion 3a is 1 mm to 5 mm.
[0040]
As mentioned above, although embodiment of this invention was shown, it is not limited only to these embodiment of this invention, It can apply also to what was improved and changed in the range which does not deviate from the summary of this invention. Needless to say.
[0041]
(Embodiment 1) Here, the joint portion between the outer peripheral surface 3b of the convex portion 3a of the ceramic heater 2, the outer peripheral surface 6a of the ceramic joining layer 6, and the convex portion 3a of the ceramic cylindrical support 8 Leads to In order to confirm the effect of making the surface continuously connected to the outer peripheral surface 8a, the sample heating device 1 of the present invention shown in FIG. 1 and the outer peripheral portion of the convex portion 73a are not polished in FIG. A conventional sample heating device 71 shown in FIG. 7 and a conventional sample heating device 71 shown in FIG. 7 that does not have a convex portion are respectively prepared and installed in the vacuum processing device 20 to move the ceramic heater 2 from room temperature (25 ° C.) to 800 ° C. A thermal cycle test in which heating and cooling were repeated in a temperature range of 0 ° C. was conducted, and an experiment was conducted to check the airtightness of the joint with a He leak detector.
[0042]
The plate-like ceramic bodies 3 and 73 and the ceramic cylindrical supports 8 and 78 constituting the ceramic heaters 2 and 72 both have a thermal conductivity of 64 W / (m · K) at 25 ° C. and heat conduction at 800 ° C. The plate-shaped ceramic bodies 3 and 73 forming the ceramic heaters 2 and 72 are formed in a disk shape having an outer diameter of 330 mm and a thickness of 15 mm, while being formed of high-purity aluminum nitride ceramics with a rate of 32 W / (m · K). The dimensions of the ceramic cylindrical supports 8 and 78 were such that a cylindrical body having an outer diameter of 43 mm, a wall thickness of 3 mm, and a length of 250 mm had flange portions with an outer diameter of 71 mm and a thickness of 8 mm at both ends. The ceramic heaters 2 and 72 having the convex portions 3a and 73a have an outer diameter of 71 mm and a height of 0.3 mm. In the present invention, the convex portions 3a of the ceramic heater 2 are provided. Of the outer peripheral surface 3b of the ceramic, the outer peripheral surface 6a of the ceramic bonding layer 6, and the convex portion 3a of the ceramic cylindrical support 8 Leads to The surface roughness of the surface continuously connected to the outer peripheral surface 8a was set to 0.8 μm in terms of arithmetic average roughness (Ra).
[0043]
Further, in joining the ceramic heater 2 and the ceramic cylindrical support 8, a slurry obtained by adding calcium carbonate as an auxiliary component to aluminum nitride is applied and bonded between the two, and then pressed together. It was made to sinter integrally by baking at the temperature of 1900 degreeC in nitrogen atmosphere.
[0044]
And after installing each sample heating apparatus 1 and 71 in the vacuum processing chamber 20, and depressurizing the inside of the vacuum processing chamber 20, the average temperature of the mounting surfaces 5 and 75 of the ceramic heaters 2 and 72 will be from room temperature to 800 degreeC. The sample is heated in 40 minutes, held at temperature for 10 minutes, and then repeatedly cooled to room temperature. The sample heating devices 1 and 71 are periodically removed from the vacuum processing chamber 20 and placed in the ceramic cylindrical supports 8 and 78. He gas is supplied and the amount of He gas leaking to the outside is measured by a He leak detector. -8 When the temperature became SCCM or higher, the number of thermal cycles was measured as the airtightness was lost.
[0045]
The results are as shown in Table 1. In the table, No. 1 is a sample heating apparatus 1 of the present invention, No. 1; No. 2 is a conventional sample heating device 71 in which the outer peripheral portion of the convex portion 73a is not polished, 3 shows the conventional sample heating apparatus 71 which is not provided with the convex part, respectively.
[0046]
[Table 1]
Figure 0003909248
[0047]
As a result, no. In the conventional sample heating device 71 that does not include the three convex portions, cracks occurred in the joint portion in about 10 thermal cycles, and the hermeticity deteriorated.
[0048]
No. Although the conventional sample heating apparatus 71 has the convex portion 73a of No. 2 but the outer peripheral portion thereof is not polished, No. 2 is used. Although the life could be significantly improved as compared with that of No. 3, cracks occurred in the joint portion after 653 thermal cycles, and airtightness was impaired.
[0049]
On the other hand, while providing the convex part 3a in the joining area | region with the ceramic cylindrical support body 8 of the ceramic heater 2, the outer peripheral surface 3b of the convex part 3a of the ceramic heater 2, and the outer peripheral surface 6a of the ceramic joining layer 6 , Joint portion with the convex portion 3a of the ceramic cylindrical support 8 Leads to No. having a surface continuously connected to the outer peripheral surface 8a. In the sample heating apparatus 1 of the present invention, since there is no wedge-shaped groove in the joint portion and the structure in which the thermal stress is difficult to concentrate, the synergistic effect with the effect by providing the convex portion 3a, Even when 3000 heat cycles were applied, no cracks were observed at the joint, and airtightness could be maintained, which was excellent.
(Embodiment 2) Next, in the sample heating apparatus 1 of the present invention, the outer peripheral surface 3b of the convex portion 3a of the ceramic heater 2, the outer peripheral surface 6a of the ceramic bonding layer 6, and the convex shape of the ceramic cylindrical support 8 are shown. Joint part with part 3a Leads to In order to investigate the durability when the surface roughness of the surface continuously connected to the outer peripheral surface 8a was varied, an experiment was conducted in the same manner as in Example 1. The dimensions of the sample heating device 1 used in this experiment are the same as those in Example 1, and the outer peripheral surface 3b of the convex portion 3a of the ceramic heater 2, the outer peripheral surface 6a of the ceramic bonding layer 6, and the ceramic cylindrical support. Joint part with convex part 3a of body 8 Leads to Only the surface roughness of the surface continuously connected to the outer peripheral surface 8a is made different.
[0050]
The results are as shown in Table 2.
[0051]
[Table 2]
Figure 0003909248
[0052]
As a result, the outer peripheral surface 3b of the convex portion 3a of the ceramic heater 2, the outer peripheral surface 6a of the ceramic joining layer 6, and the joint outer peripheral surface 6a of the convex portion 3a of the ceramic cylindrical support 8 are continuously formed. It can be seen that the durability decreases as the surface roughness of the connected surface increases. When the arithmetic average roughness (Ra) was 3 μm, the unevenness on the plane became too large, so that the recess became the starting point, and cracks occurred at the joint in 1527 thermal cycles.
[0053]
Therefore, in order to withstand 2000 thermal cycles, the outer peripheral surface 3b of the convex portion 3a of the ceramic heater, the outer peripheral surface 6a of the ceramic bonding layer 6, and the convex shape of the ceramic cylindrical support 8 are provided. Joint part with part 3a Leads to The surface roughness of the surface continuously connected to the outer peripheral surface 8a is preferably 2 μm or less in terms of arithmetic average roughness (Ra), and in order to withstand 3000 thermal cycles, a ceramic heater 2, the outer peripheral surface 3 b of the convex portion 3 a, the outer peripheral surface 6 a of the ceramic joint layer 6, and the joint portion of the convex portion 3 a of the ceramic cylindrical support 8. Leads to It can be seen that the surface roughness of the surface continuously connected to the outer peripheral surface 8a is preferably 0.8 μm or less in terms of arithmetic average roughness (Ra).
[0054]
【The invention's effect】
As described above, according to the present invention, the resistance heating element is embedded. Made of aluminum nitride ceramics One main surface of the plate-shaped ceramic body is used as a mounting surface on which the sample is placed, and the other main surface is surrounded by a ceramic heater having a power supply terminal electrically connected to the resistance heating element, so as to surround the power supply terminal. On the other main surface side of the ceramic heater The main component is made of aluminum nitride ceramics Airtightly bonded and integrated through a ceramic bonding layer Made of aluminum nitride ceramics In the sample heating apparatus comprising a ceramic cylindrical support, a convex portion is formed in a joining region of the ceramic heater with the ceramic cylindrical support, and an outer peripheral surface of the convex portion and the ceramic cylindrical support Joint with the convex part of the body Leads to Surface where outer peripheral surface and outer peripheral surface of ceramic bonding layer are connected continuously The surface roughness of the surface is 0.3 μm to 2 μm in terms of arithmetic average roughness (Ra) As a result, the temperature gradient at the joint between the ceramic heater and the ceramic cylindrical support can be reduced and the concentration of local thermal stress acting on the joint can be prevented. In addition to thermal cycles in the temperature range of ℃ or higher, even if repeated thermal cycles in the temperature range from room temperature to 600 ℃ or higher are applied, cracks do not occur in the joint, and excellent airtightness is maintained over a long period of time. I can do it. In addition, the ceramic heater, ceramic bonding layer, and ceramic cylindrical support are all made of ceramics that are dense and have excellent heat resistance, corrosion resistance, and plasma resistance, so that they have a long life and adversely affect samples such as wafers. The film forming accuracy and the etching accuracy are not deteriorated.
[0055]
Moreover, the junction part of the outer peripheral surface of the said convex-shaped part, and the said convex-shaped part of the said ceramic cylindrical support body Leads to The surface roughness of the surface formed by the outer peripheral surface and the outer peripheral surface of the ceramic bonding layer is expressed by arithmetic average roughness (Ra). 0.3μm or more 0.8 By setting it to μm or less, the lifetime can be further improved.
[0056]
In addition, the present invention forms the above sample heating device, Main of plate-like ceramic body made of aluminum nitride ceramic with embedded resistance heating element On the face The main component is made of aluminum nitride ceramics Through ceramic paste Made of aluminum nitride ceramics After contacting the ceramic cylindrical support and joining and integrating by firing, the plate-shaped ceramic body the above Main face of Since the peripheral portion is ground, a convex portion is formed in the joining region with the ceramic cylindrical support, and the outer peripheral surface of the convex portion and the convex of the ceramic cylindrical support are formed. Joint Leads to An outer peripheral surface and an outer peripheral surface of the ceramic bonding layer; The Continuously connected surface And the surface roughness of the surface is 0.3 μm or more and 2 μm or less in terms of arithmetic average roughness (Ra) To do so A long-life sample heating apparatus can be manufactured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a state in which a sample heating apparatus of the present invention is attached to a vacuum processing chamber.
FIG. 2 is a perspective view showing only the sample heating apparatus of the present invention.
FIG. 3 is an enlarged cross-sectional view showing the main part of the sample heating apparatus of the present invention.
FIG. 4 is an enlarged sectional view showing the main part of another example of the sample heating apparatus of the present invention.
FIG. 5 is an enlarged cross-sectional view showing the periphery of a joint portion of a conventional sample heating apparatus.
FIG. 6 is a cross-sectional view showing a state in which a conventional sample heating apparatus is attached to a vacuum processing chamber.
FIG. 7 is a cross-sectional view showing a state in which another conventional sample heating apparatus is attached to a vacuum processing chamber.
[Explanation of symbols]
1,71 ... Sample heating device
2,72 ... Ceramic heater
3,73 ... Plate-shaped ceramic body
3a, 73a-Convex part of plate-like ceramic body
3b ... Outer peripheral surface of convex part
4, 74 ... Resistance heating element
5,75 ... Placement surface
6 ・ ・ ・ ・ ・ ・ Ceramic bonding layer
7, 77 ... the other main surface of the plate-like ceramic body
8, 78 ... Ceramic cylindrical support
9, 79 ... Feed terminal
10, 80 ... Temperature detection means
76 ・ ・ ・ ・ ・ Junction layer
81... Ceramic bonding layer
W ... Wafer

Claims (2)

抵抗発熱体を埋設した窒化アルミニウム質セラミックスからなる板状セラミック体の一方の主面を試料を載せる載置面とし、他方の主面に上記抵抗発熱体と電気的に接続される給電端子を備えたセラミックヒータと、上記給電端子を包囲するように上記セラミックヒータの他方の主面側に主成分が窒化アルミニウム質セラミックスからなるセラミック接合層を介して接合一体化された窒化アルミニウム質セラミックスからなるセラミック筒状支持体とからなる試料加熱装置において、上記セラミックヒータの上記セラミック筒状支持体との接合領域に凸状部を備え、該凸状部の外周面と、上記セラミック筒状支持体の上記凸状部との接合部につながる外周面と、上記セラミック接合層の外周面とが連続的につながった表面からなり、該表面の表面粗さが算術平均粗さ(Ra)で0.3μm以上2μm以下であることを特徴とする試料加熱装置。  One main surface of a plate-like ceramic body made of aluminum nitride ceramic embedded with a resistance heating element is used as a mounting surface for placing a sample, and the other main surface is provided with a power supply terminal electrically connected to the resistance heating element. Ceramic made of aluminum nitride ceramics, which is integrally joined to the other main surface side of the ceramic heater via a ceramic joining layer made of aluminum nitride ceramics so as to surround the power supply terminal. In the sample heating apparatus comprising a cylindrical support, the ceramic heater includes a convex portion in a joining region of the ceramic heater with the ceramic cylindrical support, the outer peripheral surface of the convex portion, and the ceramic cylindrical support The outer peripheral surface connected to the joint with the convex portion and the outer peripheral surface of the ceramic bonding layer are continuously connected to each other. Sample heating device, wherein the surface roughness is 0.3μm or more 2μm or less in arithmetic average roughness (Ra). 上記凸状部の外周面と、上記セラミック筒状支持体の上記凸状部との接合部につながる外周面と、上記セラミック接合層の外周面とが連続的につながった表面の表面粗さが算術平均粗さ(Ra)で0.3μm以上0.8μm以下であることを特徴とする請求項1に記載の試料加熱装置。  The surface roughness of the surface where the outer peripheral surface of the convex part, the outer peripheral surface connected to the joint part of the ceramic cylindrical support with the convex part, and the outer peripheral surface of the ceramic joint layer are connected continuously. 2. The sample heating apparatus according to claim 1, wherein the arithmetic average roughness (Ra) is 0.3 μm or more and 0.8 μm or less.
JP2002019216A 2002-01-28 2002-01-28 Sample heating device Expired - Fee Related JP3909248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002019216A JP3909248B2 (en) 2002-01-28 2002-01-28 Sample heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002019216A JP3909248B2 (en) 2002-01-28 2002-01-28 Sample heating device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006338227A Division JP4443556B2 (en) 2006-12-15 2006-12-15 Method for manufacturing sample heating apparatus

Publications (2)

Publication Number Publication Date
JP2003224044A JP2003224044A (en) 2003-08-08
JP3909248B2 true JP3909248B2 (en) 2007-04-25

Family

ID=27743180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002019216A Expired - Fee Related JP3909248B2 (en) 2002-01-28 2002-01-28 Sample heating device

Country Status (1)

Country Link
JP (1) JP3909248B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005017984A1 (en) * 2003-08-18 2005-02-24 Tokyo Electron Limited Substrate holding structure and substrate processing device
JP4627164B2 (en) * 2003-08-18 2011-02-09 東京エレクトロン株式会社 Substrate holding structure and substrate processing apparatus
US8294069B2 (en) 2007-03-28 2012-10-23 Ngk Insulators, Ltd. Heating device for heating a wafer
JP6401082B2 (en) * 2015-03-10 2018-10-03 日本碍子株式会社 Manufacturing method of ceramic structure
WO2020012998A1 (en) * 2018-07-13 2020-01-16 日本碍子株式会社 Ceramic heater
JP6743325B1 (en) * 2018-12-20 2020-08-19 日本碍子株式会社 Ceramic heater

Also Published As

Publication number Publication date
JP2003224044A (en) 2003-08-08

Similar Documents

Publication Publication Date Title
JP2018536287A (en) Substrate support assembly having deposited surface features
JP4032971B2 (en) Ceramic bonded body, substrate holding structure, and substrate processing apparatus
JP3758979B2 (en) Electrostatic chuck and processing apparatus
JPH10242252A (en) Wafer heater
JP3512650B2 (en) Heating equipment
WO2020044843A1 (en) Electrostatic chuck device and method of manufacturing electrostatic chuck device
JP2006005095A (en) Substrate heater and its manufacturing process
JP3145664B2 (en) Wafer heating device
JP3810216B2 (en) Sample heating apparatus, processing apparatus, and sample processing method using the same
JP4569077B2 (en) HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME
JP2001237051A (en) Ceramic heater with cylindrical part and heating device using the same
JP3909248B2 (en) Sample heating device
JP4443556B2 (en) Method for manufacturing sample heating apparatus
JP4539035B2 (en) HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME
JP7064987B2 (en) Ceramic joint
JP3965470B2 (en) Electrostatic chuck and manufacturing method thereof
JPH0628258B2 (en) Semiconductor wafer heating device and manufacturing method thereof
EP0823410A1 (en) Ceramic joint body and process for manufacturing the same
JP2004128232A (en) Ceramic junction, wafer holder, and semiconductor manufacturing equipment
JP4157541B2 (en) Sample heating apparatus, processing apparatus, and sample processing method using the same
JPH09262734A (en) Wafer holding device
KR101237529B1 (en) Heater surface damage portion treating method and shaft bonding method of semiconductor manufacturing apparatus
KR102575234B1 (en) Electrostatic chuck
JP2004140347A (en) Wafer holder and semiconductor manufacturing device
TWI697072B (en) Manufacturing method of holding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20020806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Ref document number: 3909248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees