JP4157541B2 - Sample heating apparatus, processing apparatus, and sample processing method using the same - Google Patents

Sample heating apparatus, processing apparatus, and sample processing method using the same Download PDF

Info

Publication number
JP4157541B2
JP4157541B2 JP2005126859A JP2005126859A JP4157541B2 JP 4157541 B2 JP4157541 B2 JP 4157541B2 JP 2005126859 A JP2005126859 A JP 2005126859A JP 2005126859 A JP2005126859 A JP 2005126859A JP 4157541 B2 JP4157541 B2 JP 4157541B2
Authority
JP
Japan
Prior art keywords
sample
ceramic
heating apparatus
cylindrical support
sample heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005126859A
Other languages
Japanese (ja)
Other versions
JP2005333127A (en
Inventor
政生 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005126859A priority Critical patent/JP4157541B2/en
Publication of JP2005333127A publication Critical patent/JP2005333127A/en
Application granted granted Critical
Publication of JP4157541B2 publication Critical patent/JP4157541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Ceramic Products (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、プラズマCVD、減圧CVD、光CVD、スパッタリングなどの成膜装置やプラズマエッチング、光エッチング等のエッチング装置において、半導体ウエハ等の試料を保持した状態で各種処理温度に加熱する試料加熱装置およびこれを用いた処理装置に関するものである。   The present invention relates to a sample heating apparatus for heating to various processing temperatures while holding a sample of a semiconductor wafer or the like in a film forming apparatus such as plasma CVD, low pressure CVD, photo CVD, sputtering, or an etching apparatus such as plasma etching or photo etching. And a processing apparatus using the same.

従来、半導体装置の製造工程において、プラズマCVD、減圧CVD、光CVD、スパッタリングなどの成膜装置や、プラズマエッチング、光エッチングなどのエッチング装置では、試料となる半導体ウエハ(以下、ウエハと称す。)を保持しつつ各種処理温度に加熱するために試料加熱装置が使用されている。   Conventionally, in a semiconductor device manufacturing process, in a film forming apparatus such as plasma CVD, low-pressure CVD, photo-CVD, or sputtering, or in an etching apparatus such as plasma etching or photo-etching, a semiconductor wafer that is a sample (hereinafter referred to as a wafer). A sample heating apparatus is used for heating to various processing temperatures while maintaining the temperature.

例えば、図7に従来の試料加熱装置を真空処理室内に取り付けた状態を示すように、20はプロセスガスを供給するためのガス供給孔21と真空引きするための排気孔22を備えた真空処理室で、該真空処理室20内にはセラミックヒータ32とセラミック筒状支持体42とからなる試料加熱装置31が設置されている。この種のセラミックヒータ32は、円盤状をなし上下面が平滑かつ平坦に形成された板状セラミック体33からなり、該板状セラミック体33中には抵抗発熱体34を埋設するとともに、一方の主面をウエハWの載置面35とし、他方の主面には上記抵抗発熱体34と電気的に接続された給電端子36が接合されている。また、上記板状セラミック体33の他方の主面には、記給電端子36を包囲するようにセラミック筒状支持体42がガラス接合でもって接合一体化され、給電端子36へ接続されるリード線37を真空処理室20外へ取り出すようになっていた(特開平4−78138号公報参照)。 For example, as shown in FIG. 7 where a conventional sample heating apparatus is installed in a vacuum processing chamber, a vacuum processing 20 includes a gas supply hole 21 for supplying a process gas and an exhaust hole 22 for evacuating. A sample heating device 31 including a ceramic heater 32 and a ceramic cylindrical support 42 is installed in the vacuum processing chamber 20. This type of ceramic heater 32 is composed of a plate-shaped ceramic body 33 having a disk shape and the upper and lower surfaces of which are smooth and flat. A resistance heating element 34 is embedded in the plate-shaped ceramic body 33, and The main surface is a mounting surface 35 of the wafer W, and the other main surface is joined with a power supply terminal 36 electrically connected to the resistance heating element 34. Further, the other main surface of the plate-shaped ceramic member 33, lead ceramic tubular support 42 so as to surround the upper Symbol feed terminal 36 are integrally joined with a glass bonding, is connected to the feed terminal 36 The wire 37 was taken out of the vacuum processing chamber 20 (see Japanese Patent Laid-Open No. 4-78138).

そして、この試料加熱装置31によりウエハWに成膜やエッチング等の処理を施すには、まず、真空処理室20内を真空状態とするとともに、セラミックヒータ32の載置面35にウエハWを載せ、給電端子36に通電して抵抗発熱体34を発熱させることによりウエハWを400℃以上の設定温度まで加熱し、この状態でガス供給孔21よりデポジッション用ガスやエッチング用ガスなどのプロセスガスを真空処理室20内へ導くことで、ウエハWに各種処理を施すようになっていた。   In order to perform processing such as film formation and etching on the wafer W by the sample heating device 31, first, the vacuum processing chamber 20 is evacuated and the wafer W is mounted on the mounting surface 35 of the ceramic heater 32. Then, the wafer W is heated to a set temperature of 400 ° C. or more by energizing the power supply terminal 36 to cause the resistance heating element 34 to generate heat, and in this state, a process gas such as a deposition gas or an etching gas from the gas supply hole 21. Is introduced into the vacuum processing chamber 20 to perform various processes on the wafer W.

ところが、上記セラミックヒータ32の発熱によって試料加熱装置31に室温域(25℃)から400℃以上の温度範囲で繰り返し熱サイクルが加わると、セラミックヒータ32とセラミック筒状支持体42との接合部における気密性が損なわれるため、真空処理室20内の真空度が低下し、その結果、成膜精度やエッチング精度に悪影響を与えるといった課題があった。   However, when the sample heater 31 is repeatedly subjected to a heat cycle in the temperature range from room temperature (25 ° C.) to 400 ° C. or more due to the heat generated by the ceramic heater 32, at the joint between the ceramic heater 32 and the ceramic cylindrical support 42. Since the airtightness is impaired, the degree of vacuum in the vacuum processing chamber 20 is lowered, and as a result, there is a problem that the film forming accuracy and the etching accuracy are adversely affected.

即ち、試料加熱装置31は大型で構造が複雑であるためにセラミックヒータ32とセラミック筒状支持体42とを一体物として成形、焼成して製作することは難しく、両者を個別に製作したのちガラス接合によって一体的に接合してあるのであるが、セラミックヒー
タ32と接合部40及びセラミック筒状支持体42と接合部40との間にはそれぞれ接合界面が存在するとともに、セラミックヒータ32とセラミック筒状支持体42との間には熱伝達特性の異なるガラスが介在することから、これらの接合界面には熱応力が集中し易く、その結果、繰り返し加わる熱応力によって接合部40にクラックが発生することを防ぐことができなかった。
That is, since the sample heating device 31 is large in size and complicated in structure, it is difficult to form and fire the ceramic heater 32 and the ceramic cylindrical support 42 as an integrated body. Although they are integrally joined by joining, there are joint interfaces between the ceramic heater 32 and the joint 40 and between the ceramic cylindrical support 42 and the joint 40, respectively, and the ceramic heater 32 and the ceramic cylinder. Since glass having different heat transfer characteristics intervenes between the support members 42, thermal stress tends to concentrate on these joint interfaces, and as a result, cracks occur in the joint 40 due to repeated thermal stress. I couldn't prevent that.

また、成膜装置やエッチング装置では、デポジッション用ガス、エッチング用ガス、あるいはクリーニング用ガスとして腐食性の高いハロゲン系ガスが使用されているのであるが、接合部40がガラスからなるために上記ハロゲン系ガスに曝されると腐食摩耗し易
く、短期間のうちに気密性が損なわれるとともに、この腐食摩耗により発生した摩耗粉がウエハWへの処理精度に悪影響を与えるといった課題もあった。
In the film forming apparatus and the etching apparatus, a highly corrosive halogen-based gas is used as a deposition gas, an etching gas, or a cleaning gas. When exposed to a halogen-based gas, there is a problem in that corrosion wear tends to occur, airtightness is lost in a short period of time, and wear powder generated by the corrosion wear adversely affects processing accuracy on the wafer W.

しかも、ガラス接合ではせいぜい400℃程度の温度域までしか使用に耐えられず、近年要求されている600℃以上の温度域での処理には対応することが出来なかった。   In addition, glass bonding can only be used up to a temperature range of about 400 ° C., and cannot cope with the processing in a temperature range of 600 ° C. or higher, which has been required in recent years.

そこで、本発明は上記課題に鑑み、抵抗発熱体を埋設してなる板状セラミック体の一方の主面を試料の載置面とし、他方の主面に上記抵抗発熱体と電気的に接続された給電端子を有するセラミックヒータと、上記給電端子を包囲するように記セラミックヒータの他方の主面に気密に接合一体化され、上記セラミックヒータを真空処理室内に設置するセラミック筒状支持体とからなる試料加熱装置において、上記セラミックヒータの他方の主面のうち、上記セラミック筒状支持体との接合部の内周縁に沿って環状溝を刻設したことを特徴とするものであるThe present invention has been made in view of the above problems, the one main surface of the ceramic plate formed by embedding a resistance heating element and a mounting surface of the sample, the resistance heating element and electrically connected to the other main surface a ceramic heater having a power supply terminal that is, integrally joined to the other main surface of the upper Symbol ceramic heater in an airtight so as to surround the power supply terminal, a ceramic tubular support for installing the ceramic heater in the vacuum processing chamber in the sample heating apparatus comprising a, of the other main surface of the ceramic heater, is characterized in that the engraved circular groove along the inner periphery of the joint between the ceramic tubular support.

以上のように、本発明によれば、抵抗発熱体を埋設してなる板状セラミック体の一方の主面を試料の載置面とし、他方の主面に上記抵抗発熱体と電気的に接続された給電端子を有するセラミックヒータと、上記給電端子を包囲するように記セラミックヒータの他方の主面に焼結によって気密に接合一体化され、上記セラミックヒータを真空処理室内に設置するセラミック筒状支持体とからなる試料加熱装置において、上記セラミックヒータの他方の主面のうち、上記セラミック筒状支持体との接合部の内周縁に沿って環状溝を刻設したことから、セラミックヒータとセラミック筒状支持体との接合部における温度勾配を小さくし、接合部に作用する熱応力を低減することができるため、接合部にクラックを生じることがなく、優れた気密性を維持することがきる。しかも、真空処理室内に露出するセラミックヒータ、接合部、及びセラミック筒状支持体は、いずれも緻密で耐熱性、耐食性、耐プラズマ性に優れたセラミックスからなるため、長寿命であるとともに、ウエハ等の試料に悪影響を与えることがなく、さらに成膜精度やエッチング精度を劣化させることがない。 As described above, according to the present invention, one main surface of a plate-like ceramic body in which a resistance heating element is embedded is used as a sample mounting surface, and the other main surface is electrically connected to the resistance heating element. a ceramic heater having a power supply terminal that is, integrally joined hermetically by sintering on the other main surface of the upper Symbol ceramic heater so as to surround the power supply terminal, a ceramic tube for installing the ceramic heater in the vacuum processing chamber in the sample heating apparatus comprising a Jo support, among other main surface of the ceramic heater, since it has engraved the annular groove along an inner peripheral edge of the joint between the ceramic tubular support, a ceramic heater The temperature gradient at the joint between the ceramic cylindrical support and the ceramic cylindrical support can be reduced and the thermal stress acting on the joint can be reduced. Kill is possible to maintain. In addition, the ceramic heater, the joint, and the ceramic cylindrical support exposed in the vacuum processing chamber are all made of ceramics that are dense and have excellent heat resistance, corrosion resistance, and plasma resistance, so that they have a long life, such as wafers. The sample is not adversely affected, and the film formation accuracy and etching accuracy are not deteriorated.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1は本発明の試料加熱装置を真空処理室に取り付けた状態を示す断面図、図2は試料加熱装置のみを示す斜視図、図3は試料加熱装置の分解図である。   FIG. 1 is a sectional view showing a state in which the sample heating apparatus of the present invention is attached to a vacuum processing chamber, FIG. 2 is a perspective view showing only the sample heating apparatus, and FIG. 3 is an exploded view of the sample heating apparatus.

図1において、20はプロセスガスを供給するためのガス供給孔21と真空引きするための排気孔22を備えた真空処理室で、該真空処理室20内にはセラミックヒータ2とセラミック筒状支持体12とからなる試料加熱装置1を設置してある。このセラミックヒータ2は、図2に示すように円盤状をなし上下面が平滑な板状セラミック体3からなり、その大きさとしてはウエハWのサイズにもよるが外径150〜350mm、厚み8〜25mm程度のものを用いることができる。また、板状セラミック体3中にはタングステンやモリブデンあるいは白金等の金属からなる抵抗発熱体4を埋設してあり、一方の主面をウエハWの載置面5とするとともに、他方の主面には上記抵抗発熱体4と電気的に接続される給電端子6を接合してある。なお、本発明において主面とは、板状セラミック体3のうち最も広い表面のことであり、他方の主面とは、一方の主面と反対側の表面のことを言う。   In FIG. 1, reference numeral 20 denotes a vacuum processing chamber having a gas supply hole 21 for supplying a process gas and an exhaust hole 22 for evacuating, in which a ceramic heater 2 and a ceramic cylindrical support are provided. A sample heating apparatus 1 including a body 12 is installed. As shown in FIG. 2, the ceramic heater 2 is composed of a plate-like ceramic body 3 having a disk shape and smooth upper and lower surfaces. The size of the ceramic heater 2 depends on the size of the wafer W, but has an outer diameter of 150 to 350 mm and a thickness of 8 A thing of about ~ 25 mm can be used. In addition, a resistance heating element 4 made of a metal such as tungsten, molybdenum, or platinum is embedded in the plate-like ceramic body 3, and one main surface is used as a mounting surface 5 for the wafer W and the other main surface. Is joined with a power supply terminal 6 electrically connected to the resistance heating element 4. In the present invention, the main surface is the widest surface of the plate-like ceramic body 3, and the other main surface is the surface opposite to one main surface.

また、上記板状セラミック体3の中心には熱電対等の温度検出手段8が内蔵してあり、載置面5の温度を検出するようになっている。   A temperature detecting means 8 such as a thermocouple is built in the center of the plate-shaped ceramic body 3 so as to detect the temperature of the mounting surface 5.

そして、上記板状セラミック体3の他方の主面には、給電端子6及び温度検出手段8のリード線9を包囲するように円筒状をしたセラミック筒状支持体12が焼結によって気密に接合一体化してあり、給電端子6及び温度検出手段8へ接続されるリード線7,9を真空処理室20外へ取り出すようになっている。   A cylindrical ceramic support 12 having a cylindrical shape so as to surround the power supply terminal 6 and the lead wire 9 of the temperature detecting means 8 is hermetically bonded to the other main surface of the plate-like ceramic body 3 by sintering. The lead wires 7 and 9 connected to the power supply terminal 6 and the temperature detecting means 8 are taken out of the vacuum processing chamber 20.

ここで、セラミックヒータ2を構成する板状セラミック体3及びセラミック筒状支持体12としては、緻密で耐熱性、耐蝕性、さらには耐プラズマ性に優れたセラミックスにより形成することが必要であり、このようなセラミックスとしては窒化珪素、サイアロン、窒化アルミニウム、窒化硼素を主成分とする窒化物系セラミックスを用いることができる。これらの中でも特に窒化アルミニウムを主成分とするセラミックスは、他のセラミックスと比較して高い熱伝導率を有することから、急速昇温が可能であるとともに、腐食性の高いハロゲン系ガスやプラズマに対して優れていることから好適である。   Here, as the plate-like ceramic body 3 and the ceramic cylindrical support body 12 constituting the ceramic heater 2, it is necessary to be formed of a ceramic that is dense and has excellent heat resistance, corrosion resistance, and plasma resistance. As such ceramics, nitride ceramics mainly composed of silicon nitride, sialon, aluminum nitride, and boron nitride can be used. Among these, ceramics mainly composed of aluminum nitride have a high thermal conductivity compared to other ceramics, so that rapid temperature rise is possible, and against highly corrosive halogen-based gases and plasmas. It is preferable because it is excellent.

また、板状セラミック体3とセラミック筒状支持体12とは、焼結によって接合一体化する観点から同種(主成分が同じ)のセラミックスにより形成することが必要であり、好ましくは同一組成のセラミックスにより形成することが良い。これにより両者の熱膨張差を極めて小さくすることができるため、接合界面に発生する熱応力を大幅に低減することができ、接合部10にクラックが発生するのを抑えることができる。   In addition, the plate-like ceramic body 3 and the ceramic cylindrical support 12 need to be formed of ceramics of the same kind (same main components are the same) from the viewpoint of joining and integrating by sintering, and preferably ceramics of the same composition It is good to form by. As a result, the difference in thermal expansion between them can be made extremely small, so that the thermal stress generated at the bonding interface can be greatly reduced, and the occurrence of cracks at the bonding portion 10 can be suppressed.

なお、本発明において、焼結により接合一体化するとは、接合部10も板状セラミック体3やセラミック筒状支持体12と同種あるいは同一組成のセラミックスからなり、板状セラミック体3と接合部10及び接合部10とセラミック筒状支持体12とがいずれも焼結されていることを言う。焼結によって接合一体化する方法としては、板状セラミック体3やセラミック筒状支持体12を構成するセラミックスと同種あるいは同一組成のセラミックスペーストをいずれか一方の接合面に塗布し、他方を上記接合面に当接させたあと押圧した状態で加熱して焼結させるホットプレス法により接合するか、あるいは上記セラミックペーストをいずれか一方の接合面に塗布し、他方を上記接合面に当接させたあと押圧した状態で超音波振動を加えて焼結させる超音波振動法により接合することができる。   In the present invention, joining and integrating by sintering means that the joining portion 10 is also made of a ceramic having the same kind or the same composition as the plate-like ceramic body 3 and the ceramic cylindrical support body 12, and the plate-like ceramic body 3 and the joining portion 10. And the joint part 10 and the ceramic cylindrical support body 12 say that all are sintered. As a method of joining and integrating by sintering, a ceramic paste of the same kind or the same composition as the ceramics constituting the plate-like ceramic body 3 and the ceramic cylindrical support 12 is applied to one of the joining surfaces, and the other is joined to the above-mentioned joining Joined by a hot press method of heating and sintering in a pressed state after being brought into contact with the surface, or applying the ceramic paste to one of the joining surfaces and bringing the other into contact with the joining surface Bonding can be performed by an ultrasonic vibration method in which ultrasonic vibration is applied and sintered in a pressed state.

このように、板状セラミック体3とセラミック筒状支持体12とを焼結によって接合一体化すれば、板状セラミック体3と接合部10との間、接合部10とセラミック筒状支持体12との間の熱膨張差を極めて小さくできるため、接合部10に集中する熱応力を大幅に低減することができる。しかも、接合部10は耐蝕性、耐プラズマ性にも優れることから腐食摩耗が少なく、摩耗粉の発生が少ないことからウエハWに悪影響を与えることもない。   Thus, if the plate-like ceramic body 3 and the ceramic cylindrical support 12 are joined and integrated by sintering, the joint 10 and the ceramic cylindrical support 12 are provided between the plate-like ceramic body 3 and the joint 10. Therefore, the thermal stress concentrated on the joint 10 can be greatly reduced. In addition, since the joint 10 is excellent in corrosion resistance and plasma resistance, there is little corrosive wear, and since there is little generation of wear powder, the wafer W is not adversely affected.

さらに、本発明の試料加熱装置1には、図1や図3に示すようにセラミックヒータ3の他方の主面のうち、セラミック筒状支持体12との接合部10の外周縁に沿って上記セラミック筒状支持体12の外形状と相似なリング状をした環状溝2aを刻設してあり、接合部10近傍の表面積を大きくして冷却効果を高めてある。   Furthermore, in the sample heating apparatus 1 of the present invention, as shown in FIG. 1 and FIG. 3, the other main surface of the ceramic heater 3, along the outer peripheral edge of the joint portion 10 with the ceramic cylindrical support 12. An annular groove 2a having a ring shape similar to the outer shape of the ceramic cylindrical support 12 is formed, and the surface area near the joint 10 is increased to enhance the cooling effect.

その為、セラミックヒータ2の発熱によって室温域から400℃以上の温度範囲で繰り返し熱サイクルが加わったとしても接合部10に集中する熱応力を緩和してクラックの発生を防ぐことができるため、長期使用においても気密性を維持することができる。   Therefore, even if a heat cycle is repeatedly applied in the temperature range from room temperature to 400 ° C. or more due to the heat generated by the ceramic heater 2, it is possible to relieve the thermal stress concentrated on the joint 10 and prevent the generation of cracks. Airtightness can be maintained even during use.

即ち、セラミックヒータ2とセラミック筒状支持体12とを焼結によって接合一体化してもセラミックヒータ2と接合部10との間、及び接合部10とセラミック筒状支持体12との間にはそれぞれ接合界面が存在し、これらの接合界面の存在によりセラミックヒータ1とセラミック筒状支持体12を同種のセラミックスにより形成して熱膨張差を小さくしたとしても熱伝達が悪いために熱応力が集中するのであるが、本発明は、セラミックヒータ2の他方の主面のうち、接合部10の外周縁に環状溝2aを設けて表面積を大きくすることで、接合部10の放熱性を高めてあることから、接合部10に熱応力が集中したとしてもその熱応力の大きさを低減し、クラックの発生を防ぐことができる。   That is, even if the ceramic heater 2 and the ceramic cylindrical support body 12 are joined and integrated by sintering, the ceramic heater 2 and the ceramic cylindrical support body 12 and the ceramic heater 2 and the ceramic cylindrical support body 12 are respectively connected. Even when the ceramic heater 1 and the ceramic cylindrical support 12 are formed of the same kind of ceramics to reduce the difference in thermal expansion due to the presence of these joint interfaces, thermal stress is concentrated due to poor heat transfer. However, in the present invention, the heat dissipation of the joint portion 10 is enhanced by providing the annular groove 2a on the outer peripheral edge of the joint portion 10 in the other main surface of the ceramic heater 2 to increase the surface area. Therefore, even if the thermal stress is concentrated on the joint 10, the magnitude of the thermal stress can be reduced and the generation of cracks can be prevented.

ところで、このような効果を得るためには、環状溝2aの寸法、特に深さTが重要であり、1mm未満では浅すぎるために熱応力を緩和する効果が小さい。その為、環状溝2aの深さTは少なくとも1mm以上とすることが良く、例えば、板状セラミック体3及びセラミック筒状支持体12が高熱伝導率を有する窒化アルニウムを主成分とするセラミックスである場合、環状溝2aの深さTを4〜6mmとすることで最も熱応力を緩和する効果を得ることができる。ただし、環状溝2aの深さTが板状セラミック体3の厚みの1/2mmより大きくなると、セラミックヒータ2の強度が大きく低下するとともに、載置面5の温度分布を均一にすることが難しくなるため、上限は板状セラミック体3の厚みの1/2mm以下とすることが良い。   By the way, in order to obtain such an effect, the dimension of the annular groove 2a, in particular, the depth T is important, and if it is less than 1 mm, the effect of relaxing the thermal stress is small because it is too shallow. Therefore, the depth T of the annular groove 2a is preferably at least 1 mm. For example, the plate-like ceramic body 3 and the ceramic cylindrical support 12 are ceramics mainly composed of aluminum nitride having high thermal conductivity. In this case, the effect of relieving the thermal stress most can be obtained by setting the depth T of the annular groove 2a to 4 to 6 mm. However, when the depth T of the annular groove 2a is larger than ½ mm of the thickness of the plate-like ceramic body 3, the strength of the ceramic heater 2 is greatly reduced and it is difficult to make the temperature distribution of the mounting surface 5 uniform. Therefore, the upper limit is preferably set to ½ mm or less of the thickness of the plate-like ceramic body 3.

また、環状溝2aの幅Lは、1〜25mmの範囲で設定することが良い。これは1mm未満では幅Lが狭すぎるために環状溝2aの深さTを1mm以上としても環状溝2a内に熱がこもり、熱応力を緩和する効果が小さいからであり、逆に25mmより広くなると、載置面5の温度分布にばらつきを生じる恐れがあるからである。   The width L of the annular groove 2a is preferably set in the range of 1 to 25 mm. This is because the width L is too narrow below 1 mm, so even if the depth T of the annular groove 2a is 1 mm or more, heat is trapped in the annular groove 2a, and the effect of relieving thermal stress is small. This is because the temperature distribution on the mounting surface 5 may vary.

さらに、環状溝2aの断面形状は、クラックの発生を防ぐ観点から図1に示すような底面を曲面状に形成したものが好ましく、その曲率半径R1 は0.5〜12.5mmの範囲が良い。このような環状溝2aを形成する方法としては、研削、ショットブラスト、超音波加工等の加工方法を用いることで形成することができる。   Further, the cross-sectional shape of the annular groove 2a is preferably a curved bottom surface as shown in FIG. 1 from the viewpoint of preventing the occurrence of cracks, and the radius of curvature R1 is preferably in the range of 0.5 to 12.5 mm. . As a method of forming such an annular groove 2a, it can be formed by using a processing method such as grinding, shot blasting or ultrasonic processing.

なお、図1では、セラミックヒータ2の他方の主面のうち、セラミック筒状支持体12との接合部10の外周縁に沿って環状溝2aを設けた例を示したが、図4に示すように、セラミック筒状支持体12との接合部10の内周縁に沿ってのみ環状溝2aを設けたものでも良く、さらには図示していないがセラミック筒状支持体12との接合部10の外周縁及び内周縁に沿ってそれぞれ環状溝2aを設けたものでも構わない。   FIG. 1 shows an example in which the annular groove 2a is provided along the outer peripheral edge of the joint portion 10 with the ceramic cylindrical support 12 in the other main surface of the ceramic heater 2. FIG. As described above, the annular groove 2a may be provided only along the inner peripheral edge of the joint portion 10 with the ceramic cylindrical support body 12. Further, although not shown, the joint portion 10 with the ceramic cylindrical support body 12 is provided. What provided the annular groove 2a along the outer periphery and the inner periphery may be sufficient respectively.

かくして、本発明の試料加熱装置1を用いてウエハWに成膜やエッチング等の処理を施せば、室温域から400℃以上の温度範囲で繰り返し熱サイクルが加わったとしてもセラミックヒータ2とセラミック筒状支持体12との接合部10における気密性を損なうことがなく、載置面5の温度分布を常に均一に保つことができるため、長期間にわたって精度の高い成膜やエッチングを安定して施すことができる。   Thus, if the sample heating apparatus 1 of the present invention is used to perform processing such as film formation and etching on the wafer W, the ceramic heater 2 and the ceramic cylinder can be applied even if repeated thermal cycles are applied in the temperature range from room temperature to 400 ° C. or higher. Since the temperature distribution of the mounting surface 5 can always be kept uniform without impairing the airtightness at the joint 10 with the cylindrical support 12, highly accurate film formation and etching can be performed stably over a long period of time. be able to.

次に、本発明の他の実施形態について説明する。   Next, another embodiment of the present invention will be described.

図5は本発明の試料加熱装置1の他の例を示す断面図で、セラミックヒータ2を構成する板状セラミック体3の他方の主面の中央部に円錐台状の凸状部2bを形成し、この凸状部2bにセラミック筒状支持体12を焼結によって気密に接合一体化したものである。   FIG. 5 is a cross-sectional view showing another example of the sample heating apparatus 1 of the present invention, in which a frustoconical convex portion 2 b is formed at the center of the other main surface of the plate-like ceramic body 3 constituting the ceramic heater 2. The cylindrical cylindrical support 12 is airtightly joined and integrated with the convex portion 2b by sintering.

このように、板状セラミック体3の他方の主面の中央部に凸状部2bを形成しておくことで接合部10の外周縁の表面積を大きくしたことと同様の効果が得られ、接合部10の放熱性を高めることができるため、接合部10に集中する熱応力を緩和してクラックの発生を防ぐことができる。   Thus, the same effect as having increased the surface area of the outer periphery of the junction part 10 by forming the convex part 2b in the center part of the other main surface of the plate-like ceramic body 3 is obtained. Since the heat dissipation of the part 10 can be improved, the thermal stress concentrated on the joint part 10 can be relieved and the generation of cracks can be prevented.

ただし、この構造の場合、凸状部2bの高さQが1mm未満では熱応力を緩和する効果が小さく、逆に、10mmより高くなると板状セラミック体3における中央部の厚みと周縁部の厚みの差が大きくなり過ぎるために、板状セラミック体3中に埋設されている抵抗発熱体4の抵抗値を中央部と周縁部で調整したとしても載置面5の温度分布を均一にすることが難しい。その為、凸状部2bの高さQは1〜10mmの範囲で設けることが良い。   However, in the case of this structure, when the height Q of the convex portion 2b is less than 1 mm, the effect of relaxing the thermal stress is small, and conversely, when the height Q is higher than 10 mm, the thickness of the central portion and the peripheral portion of the plate-like ceramic body 3 are reduced. Therefore, even if the resistance value of the resistance heating element 4 embedded in the plate-like ceramic body 3 is adjusted at the central portion and the peripheral portion, the temperature distribution on the mounting surface 5 is made uniform. Is difficult. Therefore, the height Q of the convex portion 2b is preferably provided in the range of 1 to 10 mm.

また、板状セラミック体3の他方の主面と凸状部2bの側面とのエッジは、クラックの発生を防ぐ観点から滑らかな曲面状に形成することが良く、その曲率半径R2 は0.3mm以上とすることが好ましい。   The edge of the other main surface of the plate-shaped ceramic body 3 and the side surface of the convex portion 2b is preferably formed in a smooth curved shape from the viewpoint of preventing the occurrence of cracks, and its radius of curvature R2 is 0.3 mm. The above is preferable.

このように、図5では板状セラミック体3の他方の主面の中央部に円錐台状の凸状部2bを形成した例を示したが、図6に示すように、板状セラミック体3の他方の主面の中央部に、セラミック筒状支持体12の接合部の形状と合致したリング状の凸状部2bを形成
し、この凸状部2bにセラミック筒状支持体12を焼結によって接合一体化しても、接合部10の気密性を長期間にわたって維持することができる。
As described above, FIG. 5 shows an example in which the frustoconical convex portion 2b is formed at the center of the other main surface of the plate-like ceramic body 3. However, as shown in FIG. A ring-shaped convex portion 2b that matches the shape of the joint portion of the ceramic cylindrical support body 12 is formed at the center of the other main surface of the ceramic cylindrical support body 12, and the ceramic cylindrical support body 12 is sintered on the convex portion 2b. Even if the joint is integrated, the airtightness of the joint 10 can be maintained for a long period of time.

(実施例1)ここで、セラミック筒状支持体12との接合部10の外周縁及び/又は内周縁に沿って環状溝2aを設けることによる効果を確認するために、環状溝2aを持たない従来の試料加熱装置31を真空処理室20に設置し、セラミックヒータ32の平均温度が800℃となるまで加熱したあと、赤外線放射温度計にて載置面35の温度を10点測定して温度分布を測定し、この温度分布をもとに有限要素法を用いたシミュレーション解析を行うことにより、セラミック筒状支持体12との接合部10の外周縁に沿って環状溝2aを設けた試料加熱装置1、セラミック筒状支持体12との接合部10の内周縁に沿って環状溝2aを設けた試料加熱装置1、セラミック筒状支持体12との接合部10の内周縁及び外周縁に沿って環状溝2aをそれぞれ設けた試料加熱装置1、及び環状溝2aを持たない従来の試料加熱装置31について、板状セラミック体3,33とセラミック筒状支持体12,42との接合部10,40に発生する熱応力を各々解析した。   (Embodiment 1) Here, in order to confirm the effect of providing the annular groove 2a along the outer peripheral edge and / or the inner peripheral edge of the joint portion 10 with the ceramic cylindrical support 12, no annular groove 2a is provided. A conventional sample heating device 31 is installed in the vacuum processing chamber 20 and heated until the average temperature of the ceramic heater 32 reaches 800 ° C., and then the temperature of the mounting surface 35 is measured by an infrared radiation thermometer at 10 points. Sample heating with an annular groove 2a provided along the outer peripheral edge of the joint 10 with the ceramic cylindrical support 12 by measuring the distribution and performing simulation analysis using the finite element method based on this temperature distribution The apparatus 1, the sample heating apparatus 1 provided with the annular groove 2a along the inner peripheral edge of the joint 10 with the ceramic cylindrical support 12, and the inner peripheral edge and the outer peripheral edge of the joint 10 with the ceramic cylindrical support 12 Ring groove 2 Are generated at the joints 10 and 40 of the plate-like ceramic bodies 3 and 33 and the ceramic cylindrical supports 12 and 42, respectively, with respect to the sample heating apparatus 1 and the conventional sample heating apparatus 31 without the annular groove 2a. Each thermal stress was analyzed.

なお、モデルの寸法は、板状セラミック体3,33が外径300mm、厚み15mm、セラミック筒状支持体12,42が外径50mm、肉厚8mmとし、板状セラミック体3,33及びセラミック筒状支持体12,42はいずれも25℃における熱伝導率が64W/mk、800℃における熱伝導率が32W/mkである窒化アルミニウムを主成分とするセラミックスを想定して実験を行った。   The dimensions of the model are as follows: the plate-like ceramic bodies 3 and 33 have an outer diameter of 300 mm and a thickness of 15 mm, and the ceramic cylindrical supports 12 and 42 have an outer diameter of 50 mm and a wall thickness of 8 mm. The experiments were conducted assuming that the cylindrical supports 12 and 42 are ceramics mainly composed of aluminum nitride having a thermal conductivity of 64 W / mk at 25 ° C. and a thermal conductivity of 32 W / mk at 800 ° C.

それぞれの結果は表1〜表3に示す通りである。   The respective results are as shown in Tables 1 to 3.

これらの結果、セラミック筒状支持体12との接合部10の内周縁及び/又は外周縁に沿って環状溝2aを設けることで、接合部10に発生する熱応力を大きく緩和できることが判る。しかも、環状溝2aの深さTが深くなるほど熱応力が小さくなる傾向にあり、環状溝2aの深さは深い方が良いことが判る。   As a result, it can be seen that by providing the annular groove 2a along the inner peripheral edge and / or the outer peripheral edge of the joint portion 10 with the ceramic cylindrical support 12, the thermal stress generated in the joint portion 10 can be greatly relieved. Moreover, it can be seen that the thermal stress tends to decrease as the depth T of the annular groove 2a increases, and that the depth of the annular groove 2a is better.

さらに、環状溝2aは、セラミック筒状支持体12との接合部10の内周縁に設けるよりも外周縁に設けた方が熱応力を小さくできることが判る。   Further, it can be seen that the thermal stress can be reduced if the annular groove 2a is provided on the outer peripheral edge rather than the inner peripheral edge of the joint portion 10 with the ceramic cylindrical support body 12.

次に、環状溝2aの幅Lを変えた時の効果を確認するため、環状溝2aの深さTを4mmに固定し、環状溝2aの幅Lを5mmより小さい2mmと逆に5mmより大きい10mmとした時の熱応力について有限要素法により解析したところ、熱応力には変化が見られなかった。   Next, in order to confirm the effect when the width L of the annular groove 2a is changed, the depth T of the annular groove 2a is fixed to 4 mm, and the width L of the annular groove 2a is larger than 5 mm as opposed to 2 mm which is smaller than 5 mm. When the thermal stress at 10 mm was analyzed by the finite element method, no change was found in the thermal stress.

このことから、接合部10に作用する熱応力は特に環状溝2aの深さTに大きく起因し、環状溝2aを設けることで熱応力を小さくできることが判る。

Figure 0004157541
Figure 0004157541
Figure 0004157541
From this, it can be seen that the thermal stress acting on the joint 10 is largely caused by the depth T of the annular groove 2a, and the thermal stress can be reduced by providing the annular groove 2a.
Figure 0004157541
Figure 0004157541
Figure 0004157541

(実施例2)次に、実施例1での効果を確認するため、セラミック筒状支持体12との接合部10の外周縁に沿って深さT1mmの環状溝2aを設けた試料加熱装置1と環状溝2aを持たない従来の試料加熱装置31をそれぞれ実際に試作し、これらの試料加熱装置1,31を真空処理室20に設置し、セラミックヒータ2,32を常温域(25℃)から800℃の温度範囲で加熱、冷却を繰り返す熱サイクルを行い、Heリークディテクターにより接合部10,40の気密性について確認する実験を行った。なお、セラミックヒータ2,32を構成する板状セラミック体3,33及びセラミック筒状支持体12,42はいずれも25℃における熱伝導率が64W/mkでかつ、800℃における熱伝導率が32W/mkである高純度窒化アルミニウムセラミックスにより形成するとともに、セラミックヒータ2,32及びセラミック筒状支持体12,42の寸法も実施例1と同様の寸法にて形成したものを使用した。   (Example 2) Next, in order to confirm the effect of Example 1, the sample heating apparatus 1 provided with an annular groove 2a having a depth of T1 mm along the outer peripheral edge of the joint 10 with the ceramic cylindrical support 12. And a conventional sample heating device 31 having no annular groove 2a is actually manufactured, and these sample heating devices 1, 31 are installed in the vacuum processing chamber 20, and the ceramic heaters 2, 32 are moved from a normal temperature range (25 ° C.). A heat cycle in which heating and cooling were repeated in a temperature range of 800 ° C. was performed, and an experiment was conducted to confirm the airtightness of the joints 10 and 40 using a He leak detector. The plate-like ceramic bodies 3 and 33 and the ceramic cylindrical supports 12 and 42 constituting the ceramic heaters 2 and 32 both have a thermal conductivity at 25 ° C. of 64 W / mk and a thermal conductivity at 800 ° C. of 32 W. The ceramic heaters 2 and 32 and the ceramic cylindrical supports 12 and 42 having the same dimensions as those of Example 1 were used while being formed of high-purity aluminum nitride ceramics of / mk.

この結果、環状溝2aを持たない従来の試料加熱装置31では、10回程度の熱サイクルでセラミックヒータ32とセラミック筒状支持体42との接合部40にクラックが発生し、気密性が低下したのに対し、環状溝2aを設けた本発明の試料加熱装置1は600回の熱サイクル試験においてもセラミックヒータ3とセラミック筒状支持体12との接合部10にクラックは見られず充分な気密性を有することを確認することができた。   As a result, in the conventional sample heating apparatus 31 that does not have the annular groove 2a, the joint 40 between the ceramic heater 32 and the ceramic cylindrical support 42 is cracked in about 10 thermal cycles, and the airtightness is lowered. On the other hand, the sample heating apparatus 1 of the present invention provided with the annular groove 2a is sufficiently airtight because no cracks are seen in the joint portion 10 between the ceramic heater 3 and the ceramic cylindrical support 12 even in 600 thermal cycle tests. It was confirmed that it has sex.

本発明の試料加熱装置を真空処理室に取り付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the sample heating apparatus of this invention to the vacuum processing chamber. 本発明の試料加熱装置のみを示す斜視図である。It is a perspective view which shows only the sample heating apparatus of this invention. 本発明の試料加熱装置の分解図である。It is an exploded view of the sample heating apparatus of this invention. 図1の試料加熱装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the sample heating apparatus of FIG. 本発明の試料加熱装置の他の例を示す断面図である。It is sectional drawing which shows the other example of the sample heating apparatus of this invention. 図5の試料加熱装置の変形例を示す断面図である。It is sectional drawing which shows the modification of the sample heating apparatus of FIG. 従来の試料加熱装置を真空処理室に取り付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the conventional sample heating apparatus to the vacuum processing chamber.

符号の説明Explanation of symbols

1,31・・・試料加熱装置
2,32・・・セラミックスヒータ
2a ・・・環状溝
2b ・・・凸
3,33・・・板状セラミック体
4,34・・・抵抗発熱体
5,35・・・載置面
6,36・・・給電端子
7,9,37・・・リード線
8 ・・・温度検出手段
10,40・・・接合部
W ・・・ウエハ
DESCRIPTION OF SYMBOLS 1,31 ... Sample heating apparatus 2, 32 ... Ceramic heater 2a ... Ring groove 2b ... Convex 3, 33 ... Plate-like ceramic body 4, 34 ... Resistance heating element 5, 35 ... Placement surfaces 6, 36 ... Power supply terminals 7, 9, 37 ... Lead wire 8 ... Temperature detection means 10, 40 ... Junction W ... Wafer

Claims (7)

抵抗発熱体を埋設してなる板状セラミック体の一方の主面を試料の載置面とし、他方の主面側に上記抵抗発熱体と電気的に接続された給電端子を有するセラミックヒータと、上記給電端子を包囲するように記セラミックヒータの他方の主面に接合された筒状支持体とを備えた試料加熱装置において、上記セラミックヒータの他方の主面のうち、上記筒状支持体との接合部の内周縁に沿って溝を刻設したことを特徴とする試料加熱装置。 A ceramic heater having a power supply terminal electrically connected to the resistance heating element on the other main surface side, with one main surface of the plate-shaped ceramic body formed by embedding the resistance heating element as a mounting surface of the sample, in the sample heating apparatus comprising an upper SL is joined to the other main surface of the ceramic heater cylindrical support so as to surround the power supply terminal, of the other main surface of the ceramic heater, the cylindrical support A sample heating apparatus, wherein a groove is formed along the inner peripheral edge of the joint portion. 上記溝の底面が曲面状であることを特徴とする請求項1に記載の試料加熱装置。 The sample heating apparatus according to claim 1, wherein a bottom surface of the groove is curved. 上記溝の深さが、上記板状セラミック体の厚みの1/2以下であることを特徴とする請求項1または2に記載の試料加熱装置。 The sample heating apparatus according to claim 1 or 2 , wherein a depth of the groove is 1/2 or less of a thickness of the plate-like ceramic body. 上記筒状支持体が、セラミックスからなることを特徴とする請求項1〜の何れか一項に記載の試料加熱装置。 The said cylindrical support body consists of ceramics, The sample heating apparatus as described in any one of Claims 1-3 characterized by the above-mentioned. 上記板状セラミック体および筒状支持体は同種のセラミックスにより形成されるとともに、焼結により接合一体化されていることを特徴とする請求項1〜の何れか一項に記載の試料加熱装置。 The sample heating apparatus according to any one of claims 1 to 4 , wherein the plate-like ceramic body and the cylindrical support are formed of the same kind of ceramics and bonded and integrated by sintering. . 請求項1〜の何れか一項に記載の試料加熱装置を備えた処理装置であって、少なくとも上記セラミックヒータを処理室内に設置し、上記セラミックヒータの一方の主面に試料を載置するとともに加熱し、処理室内にプロセスガスを導くことにより、試料に成膜またはエッチング処理を施すことを特徴とする処理装置。 It is a processing apparatus provided with the sample heating apparatus as described in any one of Claims 1-5 , Comprising: At least the said ceramic heater is installed in a processing chamber, and a sample is mounted in one main surface of the said ceramic heater. A processing apparatus characterized in that the sample is subjected to film formation or etching by heating together with the process gas and introducing a process gas into the processing chamber. 請求項1〜の何れか一項に記載の試料加熱装置が設置された処理室を真空にする工程と、上記処理室内に設置された上記試料加熱装置の載置面に試料を載置する工程と、試料加熱装置を400℃以上の温度まで加熱する工程と、上記処理室内にプロセスガスを導くことにより、上記試料に成膜またはエッチング処理を施すことを特徴とする試料の処理方法。 A step of evacuating a processing chamber in which the sample heating apparatus according to any one of claims 1 to 6 is evacuated, and a sample is mounted on a mounting surface of the sample heating apparatus installed in the processing chamber. A sample processing method comprising: a step, a step of heating a sample heating device to a temperature of 400 ° C. or higher; and a process gas is introduced into the processing chamber to perform film formation or etching on the sample.
JP2005126859A 2005-04-25 2005-04-25 Sample heating apparatus, processing apparatus, and sample processing method using the same Expired - Fee Related JP4157541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005126859A JP4157541B2 (en) 2005-04-25 2005-04-25 Sample heating apparatus, processing apparatus, and sample processing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005126859A JP4157541B2 (en) 2005-04-25 2005-04-25 Sample heating apparatus, processing apparatus, and sample processing method using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18669998A Division JP3810216B2 (en) 1998-07-01 1998-07-01 Sample heating apparatus, processing apparatus, and sample processing method using the same

Publications (2)

Publication Number Publication Date
JP2005333127A JP2005333127A (en) 2005-12-02
JP4157541B2 true JP4157541B2 (en) 2008-10-01

Family

ID=35487533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005126859A Expired - Fee Related JP4157541B2 (en) 2005-04-25 2005-04-25 Sample heating apparatus, processing apparatus, and sample processing method using the same

Country Status (1)

Country Link
JP (1) JP4157541B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7248607B2 (en) * 2020-02-03 2023-03-29 日本碍子株式会社 ceramic heater

Also Published As

Publication number Publication date
JP2005333127A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
JP3512650B2 (en) Heating equipment
JP3810216B2 (en) Sample heating apparatus, processing apparatus, and sample processing method using the same
JP2001237051A (en) Ceramic heater with cylindrical part and heating device using the same
JP5460184B2 (en) Support device
JP4569077B2 (en) HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME
JP4157541B2 (en) Sample heating apparatus, processing apparatus, and sample processing method using the same
JP3909248B2 (en) Sample heating device
JPH0677148A (en) Semiconductor wafer heating device
JPH0628258B2 (en) Semiconductor wafer heating device and manufacturing method thereof
JP4539035B2 (en) HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME
JP7064987B2 (en) Ceramic joint
JP2531874B2 (en) Ceramic heater
JP4443556B2 (en) Method for manufacturing sample heating apparatus
JP2004128232A (en) Ceramic junction, wafer holder, and semiconductor manufacturing equipment
JP3131010B2 (en) Semiconductor wafer heating equipment
KR20160000970A (en) Heater manufacturing method of semiconductor manufacturing apparatus and heater damage portion treating method
TWI737319B (en) Contactless workpiece temperature sensor
JP2023023670A (en) ceramic heater
JPH088246B2 (en) Heating device
JP2002121083A (en) Jointed body of ceramic member and metal member and wafer-supporting member using the same
JP3965470B2 (en) Electrostatic chuck and manufacturing method thereof
JP2698537B2 (en) Heating equipment
JP4683775B2 (en) Wafer mounting stage and semiconductor manufacturing apparatus using the same
JPH0785473B2 (en) Semiconductor wafer heating device
JP7109273B2 (en) Substrate mounting member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees