JPS61269359A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61269359A
JPS61269359A JP11034285A JP11034285A JPS61269359A JP S61269359 A JPS61269359 A JP S61269359A JP 11034285 A JP11034285 A JP 11034285A JP 11034285 A JP11034285 A JP 11034285A JP S61269359 A JPS61269359 A JP S61269359A
Authority
JP
Japan
Prior art keywords
gate electrode
insulating film
semiconductor region
field insulating
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11034285A
Other languages
Japanese (ja)
Other versions
JPH0793407B2 (en
Inventor
Katsuhiro Masujima
勝宏 増島
Eiichiro Sato
英一郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60110342A priority Critical patent/JPH0793407B2/en
Publication of JPS61269359A publication Critical patent/JPS61269359A/en
Publication of JPH0793407B2 publication Critical patent/JPH0793407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To increase electrostatic breakdown withstand voltage between a gate electrode and source-drain by forming a region in low concentration just under an insulating film, at the center thereof the gate electrode is shaped, and to both side sections of the gate electrode and forming source-drain regions adjacent to the region. CONSTITUTION:A gate electrode 81 for a parasitic MOS element as a clamping element is shaped at approximately the central section of a comparatively thick field insulating film 42, and first semiconductor regions 52, 53 in low concentration are formed where corresponding to both side sections of the gate electrode just under the field insulating film before shaping the field insulating film. Second semiconductor regions 91, 92 as a source and a drain are formed adjacent to the first semiconductor regions 52, 53 in the side sections of the field insulating film. Since the gate electrode 81 is offset and shaped from the second semiconductor regions 91, 92, dielectric breakdown withstand voltage between both regions 91, 92 is increased, and gate electrode itself can also be utilized as an input protective resistor.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体装置に関し、詳しくは靜電破墓保護回路
のクランプ素子として利用する寄生MO8素子に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a semiconductor device, and more particularly to a parasitic MO8 element used as a clamp element in a lightning protection circuit.

〔背景技術〕[Background technology]

半導体装置の静電破壊保護回路は、ポリシリコン抵抗や
拡散層抵抗による保護抵抗と、ダイオード形態とされた
MO8素子、寄生MO8素子等によるクランプ素子との
組合せで種々の回路が提案されている。一般に、ポリシ
リコン抵抗に対してはフィールド絶縁膜破壊や熱溶断破
壊への対策が考慮され、また拡散抵抗に対してはラッチ
アップ対策やPN接合破壊対策等が考慮されてきた。一
方、ダイオードやMO8素子に代えて、静電破壊耐圧の
向上のため寄生MO8素子が用いられている。この寄生
MO8素子にはポリシリコン寄生MO8素子やA!寄生
MO8素子が知られているが、これらも静電破壊耐圧向
上の観点よシ種々の対策がとられている。たとえば、本
出願人による特開昭筒   号には、寄生MO8素子の
ゲート電極と寄生MO8素子のソースおよびドレイン拡
散層とがオーバラップし、この間の絶縁膜が破壊される
ことを述べるとともにその解決策を開示している。
Various electrostatic breakdown protection circuits for semiconductor devices have been proposed in which a protective resistor such as a polysilicon resistor or a diffused layer resistor is combined with a clamp element such as an MO8 element in the form of a diode or a parasitic MO8 element. Generally, for polysilicon resistors, measures against field insulating film breakdown and thermal breakdown have been considered, and for diffused resistors, measures against latch-up and PN junction breakdown have been considered. On the other hand, instead of diodes and MO8 elements, parasitic MO8 elements are used to improve electrostatic breakdown voltage. This parasitic MO8 element includes a polysilicon parasitic MO8 element and A! Parasitic MO8 elements are known, and various measures have been taken for these as well from the viewpoint of improving electrostatic breakdown voltage. For example, the applicant's Japanese Patent Application Laid-Open No. 2003-110005 describes that the gate electrode of a parasitic MO8 element overlaps with the source and drain diffusion layers of the parasitic MO8 element, and that the insulating film between them is destroyed, and also describes how to solve the problem. The measures are disclosed.

ところで、 L CD (Liquid Crysta
l Device)等を直接駆動するためにいわゆる高
耐圧MO8素子構造を有した素子が知られている。この
高耐圧MO8素子はフィールド絶縁膜下に低濃度の半導
体領域を形成しこれによってPN接合逆方向破壊電圧及
びMO8素子のチャネルのブレークダウン電圧(BVD
8)’に上げ、もりて高電圧がドレインおよびゲートに
印加されうるようにしている。本発明者等はこの低濃度
の半導体領域形成プロセスを利用して寄生MOS素子の
静電破壊耐圧を向上させうろことを見出した。
By the way, L CD (Liquid Crysta)
Elements having a so-called high breakdown voltage MO8 element structure are known for directly driving devices such as 1Device). This high voltage MO8 element forms a low concentration semiconductor region under the field insulating film, which increases the PN junction reverse breakdown voltage and the channel breakdown voltage (BVD) of the MO8 element.
8)' so that a higher voltage can be applied to the drain and gate. The present inventors have discovered that the electrostatic breakdown voltage of a parasitic MOS element can be improved by utilizing this process for forming a low concentration semiconductor region.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、静電破壊保護回路に用いる寄生MO8
素子の静電破壊耐圧を向上した半導体装置を提供するも
のである。
The purpose of the present invention is to reduce parasitic MO8 used in an electrostatic discharge protection circuit.
The present invention provides a semiconductor device in which the electrostatic breakdown voltage of the element is improved.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおシである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、クランプ素子としての寄生MO8素子のゲー
ト電極を比較的厚いフィールド絶縁膜のほぼ中央部に形
成し、このフィールド絶縁膜形成前にフィールド絶縁膜
直下の前記ゲート電極両側部に対応する位置に低濃度の
第1の半導体領域を形成する。このあと、フィールド絶
縁膜側部にソースおよびドレインとしての第2の半導体
領域を前記第1の半導体領域に隣接して形成している。
That is, the gate electrode of the parasitic MO8 element as a clamp element is formed approximately at the center of a relatively thick field insulating film, and before the field insulating film is formed, a low-temperature electrode is formed at a position corresponding to both sides of the gate electrode directly under the field insulating film. forming a high concentration first semiconductor region; Thereafter, a second semiconductor region serving as a source and a drain is formed adjacent to the first semiconductor region on the side of the field insulating film.

ゲート電極は第2の半導体領域からオフセットされて形
成されているので両者間の絶縁破壊耐圧が向上し、従っ
て前記ゲート電極自身を、入力保護抵抗として利用する
ことも可能となるものである。
Since the gate electrode is formed offset from the second semiconductor region, the dielectric breakdown voltage between the two is improved, and therefore the gate electrode itself can be used as an input protection resistor.

〔実施例〕〔Example〕

第1図は同一半導体基板に高耐圧MO8素子構造のPチ
ャネルMO8素子と本発明の寄生MO8素子と全形成し
た縦断面構造図である。図において、符号lはNuシリ
コン半導体基板である。図の右側には高耐圧Pチャネル
MO8素子2が形成され、左側にはポリシリコンゲート
の寄生MO8素子3が形成されている。
FIG. 1 is a vertical cross-sectional structural view in which a P-channel MO8 element with a high breakdown voltage MO8 element structure and a parasitic MO8 element of the present invention are all formed on the same semiconductor substrate. In the figure, reference numeral 1 indicates a Nu silicon semiconductor substrate. A high breakdown voltage P-channel MO8 element 2 is formed on the right side of the figure, and a polysilicon gate parasitic MO8 element 3 is formed on the left side.

まず、高耐圧PチャネルMO8素子2の構造を説明する
。符号4は厚いS10.よ構成るフィールド絶縁膜であ
り、このフィールド絶縁膜4の形成前に低濃度のP−型
半導体領域5およびチャネルストッパのN型半導体領域
6がイオン打込みによって形成されている。P−産生導
体領域5が下部全域にわたって形成されたフィールド絶
縁膜4゜4の間にはstowゲート絶縁膜7を介してポ
リシリコンのゲート電極8が形成されている。また、P
チャネルMO8素子2のソースおよびドレインを形成す
るP 型半導体領域9が各々P−型半導体領域5と接し
てイオン打込みによって形成されている。なお、符号1
0(4ソースおよびドレインのアルミニウムコンタクト
電極、符号11はPSG等の眉間絶縁膜、そして符号1
2はバッジベージ冒ン膜でるる。このような構成のPチ
ャネルMO8素子2は、P−型半導体領域5が基板とソ
ースおよびドレイン間のPN接合逆方向ブレークダウン
電圧を上げ同時にゲート電極8の下部のチャネル両側の
P−型半導体領域によυMOSチャネルブレークダウン
電圧を上げる。このため、高電圧をドレインおよびゲー
トに印加することができ、九とえばLCD等を高電圧駆
動するのに用いられている。
First, the structure of the high voltage P-channel MO8 element 2 will be explained. Code 4 is thick S10. Before forming the field insulating film 4, a lightly doped P-type semiconductor region 5 and an N-type semiconductor region 6 as a channel stopper are formed by ion implantation. A polysilicon gate electrode 8 is formed with a stow gate insulating film 7 interposed between the field insulating films 4.4 in which the P- producing conductor region 5 is formed over the entire lower part. Also, P
P type semiconductor regions 9 forming the source and drain of the channel MO8 element 2 are formed in contact with the P- type semiconductor regions 5 by ion implantation. In addition, code 1
0 (4 source and drain aluminum contact electrodes, numeral 11 is a glabella insulating film such as PSG, and numeral 1 is
2 is a badge page attack film. In the P-channel MO8 element 2 having such a configuration, the P-type semiconductor region 5 increases the PN junction reverse breakdown voltage between the substrate and the source and drain, and at the same time increases the P-type semiconductor region on both sides of the channel under the gate electrode 8. Increase the υMOS channel breakdown voltage. Therefore, a high voltage can be applied to the drain and gate, and it is used, for example, to drive an LCD or the like at a high voltage.

このような高耐圧MO8素子2の製造プロセスにはP−
型半導体領域管形成する工程が含まれているが、本発明
の実施例においてはとのP−型半導体領域を利用して寄
生MO8素子の静電破壊耐圧を向上させている。すなわ
ち、図の左側に示す寄生MO8素子3Fi以下のように
して形成される。
In the manufacturing process of such a high voltage MO8 element 2, P-
Although the step of forming a type semiconductor region tube is included, in the embodiment of the present invention, the P- type semiconductor region is utilized to improve the electrostatic breakdown voltage of the parasitic MO8 element. That is, the parasitic MO8 element 3Fi shown on the left side of the figure is formed as follows.

まず、寄生MO8素子3を形成するために810゜フィ
ールド絶縁膜41.42および43が必要であるが、こ
れらSin、のフィールド絶縁膜41゜42および43
を形成する前に、P−ffl半導体領域5を形成するの
と同一プロセスにおいて、ボロンを打込み低濃度のP−
型半導体領域(第1の半導体領域)51,52,53,
54をフィールド絶縁膜41,42,43の直下に形成
する。このあと、公知の酸化層および酸化時のマスクと
なる(耐酸化膜)膜を全面に形成し、耐酸化膜の選択的
エツチングおよび熱酸化によりてフィールド絶縁膜41
,42.43を形成する。この際P−型半導体領域51
,52,53,54のイオン打込みされたボロンは拡散
され所要の深さとなる。
First, in order to form the parasitic MO8 element 3, 810° field insulating films 41, 42 and 43 are required.
Before forming the P-ffl semiconductor region 5, boron is implanted to form a low concentration P-ffl semiconductor region 5.
type semiconductor regions (first semiconductor regions) 51, 52, 53,
54 is formed directly under the field insulating films 41, 42, and 43. After this, a known oxide layer and a film (oxidation resistant film) that will serve as a mask during oxidation are formed on the entire surface, and the field insulating film 41 is selectively etched and thermally oxidized.
, 42.43. At this time, the P-type semiconductor region 51
, 52, 53, and 54 are diffused to a required depth.

つぎに、ポリシリコンを全面に堆積した後、エツチング
によりてゲート電極81fi−形成する。このゲート電
極81はフィールド絶縁膜42のほぼ中央部に形成され
、P−型半導体領域52.53間のチャネル部上方に形
成されている。さらに、畜生MO8素子30ソースおよ
びドレインとなるP+型半導体領域(第2の半導体領域
)91.92をイオン打込みによって形成する。このP
+型半導体領域91,92は各々P−型半導体領域51
゜52および53,54と隣接する。最後に、高耐圧M
O8素子2において説明したと同様に、アルミニウムの
コンタクト電極101.フォスフオシリケードガラス(
PSG)等からなる眉間絶縁膜111及びバッジベージ
1ン膜121を形成して寄生MO8素子3を完成させて
いる。
Next, after depositing polysilicon on the entire surface, a gate electrode 81fi is formed by etching. This gate electrode 81 is formed approximately at the center of the field insulating film 42, and above the channel portion between the P-type semiconductor regions 52 and 53. Furthermore, P+ type semiconductor regions (second semiconductor regions) 91 and 92 which will become the source and drain of the damn MO8 element 30 are formed by ion implantation. This P
Each of the + type semiconductor regions 91 and 92 is a P− type semiconductor region 51.
Adjacent to 52, 53 and 54. Finally, high voltage M
In the same manner as described for O8 element 2, aluminum contact electrodes 101. Phosphosilicate glass (
The parasitic MO8 element 3 is completed by forming a glabella insulating film 111 and a badge page 1 film 121 made of PSG) or the like.

このようにゲート電極81金フイールド絶縁膜42のほ
ぼ中央に形成し、ソースおよびドレインのP+型半導体
領域91.92と離しているので両者間の静電破壊耐圧
が向上することがわかる。
It can be seen that since the gate electrode 81 is formed almost in the center of the gold field insulating film 42 and separated from the source and drain P+ type semiconductor regions 91 and 92, the electrostatic breakdown voltage between them is improved.

なお、本実施例の寄生MO8素子3はポリシリコンゲー
トであるが、このポリシリコン層を利用して静電破壊保
護回路の保護抵抗を選択的に形成できることは明らかで
ある。また、実施例においてはP−型半導体領域51,
52および53.54を各々P+型半導体領域91およ
び92を囲むようにして形成した。しかしながら、P−
型半導体領域はP+型半導体領域の少なくともゲート電
極側にのみ存在するだけでも本発明の目的を達成できる
ことは明らかである。
Although the parasitic MO8 element 3 of this embodiment is a polysilicon gate, it is clear that this polysilicon layer can be used to selectively form the protective resistor of the electrostatic breakdown protection circuit. In addition, in the embodiment, the P-type semiconductor region 51,
52 and 53.54 were formed to surround P+ type semiconductor regions 91 and 92, respectively. However, P-
It is clear that the object of the present invention can be achieved even if the type semiconductor region exists only at least on the gate electrode side of the P+ type semiconductor region.

〔効果〕〔effect〕

ゲート電極を厚い絶縁膜上のほぼ中央に形成し、この絶
縁膜直下でありてかクゲート電極の両側部に低濃度の半
導体領域を形成し、この低濃度の半導体領域に隣接して
ソースおよびドレインの半導体領域を形成している。こ
のため、ゲート電極とソースおよびドレイン間の静電破
壊耐圧が向上する。
A gate electrode is formed approximately at the center of a thick insulating film, a low concentration semiconductor region is formed directly under this insulating film and on both sides of the gate electrode, and a source and a drain are formed adjacent to this low concentration semiconductor region. This forms a semiconductor region. Therefore, the electrostatic breakdown voltage between the gate electrode and the source and drain is improved.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。たとえば、実施例にお
いてはポリシリコンゲートの寄生MO8素子を説明した
が、アルミニウムゲートの寄生MO8素子にも適用でき
ることは明らかである。又同−の実施例tP型半導体基
板上又はP  −WELL領域内のNチャネルMO8F
ETで実現することも容易である。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor. For example, in the embodiment, a parasitic MO8 element with a polysilicon gate has been described, but it is clear that the present invention can also be applied to a parasitic MO8 element with an aluminum gate. Also, the same embodiment tN-channel MO8F on the P-type semiconductor substrate or in the P-WELL region
It is also easy to implement with ET.

〔利用分野〕[Application field]

静電破壊保護回路のクランプ素子として適用でき、特に
高耐圧プロセスを使ったCMO8−LSI、LCDドラ
イバ、4ビツトマイコン等に適用して好適である。
It can be applied as a clamp element in an electrostatic breakdown protection circuit, and is particularly suitable for application to CMO8-LSIs, LCD drivers, 4-bit microcomputers, etc. using high-voltage processes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は同一半導体基板に高耐圧MO8素子構造のPチ
ャネルMO8素子と本発明の一実施例であるポリシリコ
ンゲートの寄生MO8素子とを形成した縦断面構造図で
ある。 1・・・半導体基板、2・・・高耐圧PチャネルMO8
素子、3・・・ポリシリコンゲートの寄生MO8素子、
4.41,42,43・・・フィールド絶縁膜、5・・
・P−型半導体領域、51,52,53.54・・・P
−型半導体領域(第1の半導体領域)、6・・・チャネ
ルストッパ、7・・・ゲート絶縁膜、8,81・・・ゲ
ート電極、9・・・P 型半導体領域、91.92・・
・P+型半導体領域(第2の半導体領域)、10,10
1・・・アルミニウム電極、11,111・・・層間絶
縁膜、12.121・・・パッシベーション膜。 代理人 弁理士  小 川 勝 −一、(、、
FIG. 1 is a vertical cross-sectional structural view in which a P-channel MO8 element with a high breakdown voltage MO8 element structure and a parasitic MO8 element with a polysilicon gate, which is an embodiment of the present invention, are formed on the same semiconductor substrate. 1... Semiconductor substrate, 2... High voltage P-channel MO8
Element, 3... Parasitic MO8 element of polysilicon gate,
4.41,42,43...Field insulating film, 5...
・P-type semiconductor region, 51, 52, 53.54...P
- type semiconductor region (first semiconductor region), 6... Channel stopper, 7... Gate insulating film, 8, 81... Gate electrode, 9... P type semiconductor region, 91.92...
・P+ type semiconductor region (second semiconductor region), 10, 10
1... Aluminum electrode, 11,111... Interlayer insulating film, 12.121... Passivation film. Agent: Patent Attorney Masaru Ogawa -1, (,,

Claims (1)

【特許請求の範囲】[Claims] 1、比較的厚い絶縁膜上のほぼ中央部に形成されたゲー
ト電極と、前記絶縁膜の直下であってかつゲート電極の
両側に位置して形成された第1の半導体領域と、前記絶
縁膜の両側に前記第1の半導体領域と隣接して形成され
た、前記第1の半導体領域の濃度よりも高い第2の半導
体領域とより成るクランプ素子を有したことを特徴とす
る半導体装置。
1. A gate electrode formed approximately at the center of a relatively thick insulating film, a first semiconductor region formed directly below the insulating film and on both sides of the gate electrode, and the insulating film and a second semiconductor region formed adjacent to the first semiconductor region on both sides thereof and having a concentration higher than that of the first semiconductor region.
JP60110342A 1985-05-24 1985-05-24 Method for manufacturing semiconductor device Expired - Fee Related JPH0793407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60110342A JPH0793407B2 (en) 1985-05-24 1985-05-24 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60110342A JPH0793407B2 (en) 1985-05-24 1985-05-24 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS61269359A true JPS61269359A (en) 1986-11-28
JPH0793407B2 JPH0793407B2 (en) 1995-10-09

Family

ID=14533321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60110342A Expired - Fee Related JPH0793407B2 (en) 1985-05-24 1985-05-24 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0793407B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156520A (en) * 2012-03-12 2012-08-16 Renesas Electronics Corp Semiconductor device and manufacturing method of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153472A (en) * 1981-03-17 1982-09-22 Toshiba Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153472A (en) * 1981-03-17 1982-09-22 Toshiba Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156520A (en) * 2012-03-12 2012-08-16 Renesas Electronics Corp Semiconductor device and manufacturing method of the same

Also Published As

Publication number Publication date
JPH0793407B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
JP3041043B2 (en) Power MOSFET transistor circuit
JPH0427712B2 (en)
JPH08130307A (en) Semiconductor device and its manufacture
JPH04251983A (en) Semiconductor device
JP2937185B2 (en) High breakdown voltage MOS type semiconductor device
JPS6097661A (en) Semiconductor integrated circuit device
JPS6180860A (en) Power mosfet
JPH11243200A (en) Semiconductor device
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JP2755619B2 (en) Insulated gate semiconductor device
JPS61269359A (en) Semiconductor device
JPH07273320A (en) Semiconductor device
JPH08330581A (en) Semiconductor device
JPH0475387A (en) Mis-type semiconductor device
JPS61214576A (en) Semiconductor device
JP3381490B2 (en) MOS type semiconductor device
JP3193984B2 (en) High voltage MOS transistor
JPS60136374A (en) Semiconductor device and manufacture thereof
EP0360998B1 (en) Semiconductor device having improved element isolation area
KR900000070B1 (en) The apparatus of semiconductor and method
JP3426521B2 (en) Semiconductor device
JPH0758319A (en) Lateral high breakdown strength semiconductor element
JP3846395B2 (en) MOS type semiconductor device
JPS60103661A (en) Semiconductor ic device and manufacture thereof
JPS63115382A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees