JPH08330581A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH08330581A
JPH08330581A JP7136663A JP13666395A JPH08330581A JP H08330581 A JPH08330581 A JP H08330581A JP 7136663 A JP7136663 A JP 7136663A JP 13666395 A JP13666395 A JP 13666395A JP H08330581 A JPH08330581 A JP H08330581A
Authority
JP
Japan
Prior art keywords
type
region
semiconductor substrate
insulating film
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7136663A
Other languages
Japanese (ja)
Other versions
JP3694918B2 (en
Inventor
Hitoshi Yamaguchi
仁 山口
Keimei Himi
啓明 氷見
Yasushi Okayama
靖 岡山
Toshiyuki Morishita
敏之 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP13666395A priority Critical patent/JP3694918B2/en
Publication of JPH08330581A publication Critical patent/JPH08330581A/en
Application granted granted Critical
Publication of JP3694918B2 publication Critical patent/JP3694918B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To increase the breakdown voltage and the never or integration of a complementary transistor, by dividing a second conductivity type semicon ductor substrate into a plurality of regions by using a second insulating film, forming high power elements in a first region where a first insulating film is not arranged, and forming logic elements in a second region where the first insulating film is arranged. CONSTITUTION: Lightly doped N-type Si semiconductor substrates 2a-2c are laminated on a P-type Si semiconductor substrate 1. A buried oxide film 3 is arranged in the position corresponding to the bottom part of the substrate 2a where logic elements are to be formed. In the oxide film 3, oxide film insulators 5a, 5b are formed to divide the region in the vertical direction. High breakdown voltage elements are formed in a direct junction region 100 where the oxide film is not present in the boundary between the divided P-type Si semiconductor substrate l and the N-type Si semiconductor substrates 2a-2c. Logic control elements are formed in an SOI region 200 where the oxide film 3 is present. Oxide films 4c, 4d are formed in a plurality of trenches, and oxide insulators 5c, 5d are formed in the oxide films.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、SOI(Silicon On In
sulator)構造を有する高耐圧素子を構成する半導体装置
に係り、特にフラットパネルディスプレイ、とりわけエ
レクトロルミネッセンス(EL;Electro Luminescence) デ
ィスプレイやプラズマディスプレイ等に用いられる高電
圧で複数の出力段を有するディスプレイ駆動ICを構成
する高耐圧素子或いは車載用モータ駆動ICを構成する
半導体装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to SOI (Silicon On In
The present invention relates to a semiconductor device that constitutes a high breakdown voltage element having a (sulator) structure, and particularly to a flat panel display, especially a display driver IC having a plurality of output stages at high voltage used for an electroluminescence (EL; Electro Luminescence) display, a plasma display and the like. The present invention relates to a semiconductor device that constitutes a high breakdown voltage element or a vehicle-mounted motor drive IC.

【0002】[0002]

【従来の技術】従来、例えば電界効果型トランジスタに
おいて素子の耐圧を向上させる技術として、図2に示さ
れるように、ゲートとドレインの間に厚いLOCOS(L
OCal Oxidation of Silicon)酸化膜30を形成し、ゲー
ト・ドレイン間の電界を緩和するようにしたものがあ
る。
2. Description of the Related Art Conventionally, as a technique for improving the breakdown voltage of a field effect transistor, for example, as shown in FIG. 2, a thick LOCOS (L
In some cases, an OCal Oxidation of Silicon (Oxidation of Silicon) oxide film 30 is formed to relax the electric field between the gate and the drain.

【0003】この種の電界緩和として、例えば特開平1
−103851号公報では、SOI基板の下層に低濃度
(但し、その上層のSOI層よりは濃度が高い)の電界
緩和層を設けるようにしたことを特徴とする「高耐圧半
導体素子」に関する技術が開示されている。以下、図3
を参照して当該技術について説明する。
As this kind of electric field relaxation, for example, Japanese Patent Laid-Open No.
In Japanese Patent Laid-Open No. 103851, there is disclosed a technique related to a "high breakdown voltage semiconductor element" characterized in that an electric field relaxation layer having a low concentration (however, a concentration higher than that of an upper SOI layer) is provided in a lower layer of an SOI substrate. It is disclosed. Below, FIG.
The technique will be described with reference to.

【0004】この技術は、シリコン層54の中央部にチ
ャネル領域となるp型層58が形成され、このp型層5
8内にソース領域となるn+ 型層59a,bが形成さ
れ、p型層58のn+ 型層59a,bとシリコン層54
の間にゲート絶縁膜56を介してゲート電極57が形成
されている。p型層58から僅かな距離離れてゲート電
極57下のシリコン層54表面にp- 型層60a,bが
形成され、シリコン層54の周辺部にはドレイン領域と
なるn+ 型層61a,61b,62a,62bが形成さ
れている。n+ 型層61a,bにはドレイン電極である
第1の電極63a,bが、p型層58およびn+ 型層5
9a,bにはソース電極となる第2の電極64が形成さ
れている。高抵抗シリコン層54の底部の酸化膜52に
接する領域にn- 型層55が形成されている。
In this technique, a p-type layer 58 serving as a channel region is formed in the central portion of the silicon layer 54, and the p-type layer 5 is formed.
N + -type layer 59a serving as a source region in the 8, b is formed, n + -type layer 59a of the p-type layer 58, b and the silicon layer 54
The gate electrode 57 is formed between the gate insulating film 56. The p -type layers 60a and 60b are formed on the surface of the silicon layer 54 under the gate electrode 57 at a slight distance from the p-type layer 58, and the n + -type layers 61a and 61b to be drain regions are formed around the silicon layer 54. , 62a, 62b are formed. The n + -type layers 61a and b have the first electrodes 63a and 63b, which are drain electrodes, the p-type layer 58 and the n + -type layer 5, respectively.
A second electrode 64 serving as a source electrode is formed on 9a and 9b. An n type layer 55 is formed in a region in contact with the oxide film 52 at the bottom of the high resistance silicon layer 54.

【0005】このような構成において、第1の電極63
a,bに、第2の電極64に対して正となるドレイン電
圧を印加して動作させる。ゲート電圧が零又は正でp型
層58にチャネルが形成されないオフ状態では、P型層
58から伸びる空乏層は容易にp- 型層60a,bに達
する。ドレイン・ソース間の電圧は空乏化したシリコン
層54,60a,b及びn- 型層55により縦方向と横
方向に分担されるため、高耐圧特性が得られる。即ち、
この技術では、素子に印加される逆方向の高電圧の一部
を電界緩和層に分担させることで、素子に印加される電
圧の一部が埋め込み酸化膜に有効に分担され、高電圧が
達成される。
In such a structure, the first electrode 63
A drain voltage that is positive with respect to the second electrode 64 is applied to a and b to operate. In the off state where the gate voltage is zero or positive and no channel is formed in the p-type layer 58, the depletion layer extending from the p-type layer 58 easily reaches the p -type layers 60a and 60b. Since the drain-source voltage is shared in the vertical direction and the horizontal direction by the depleted silicon layers 54, 60a, b and the n type layer 55, high breakdown voltage characteristics can be obtained. That is,
In this technology, part of the reverse high voltage applied to the device is shared by the electric field relaxation layer, so that part of the voltage applied to the device is effectively shared by the buried oxide film, and high voltage is achieved. To be done.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述し
た従来技術では、SOI半導体基板の下部に用いられた
低濃度な電界緩和層と埋め込み酸化膜とにより高電圧を
支えているが、当該技術により上記ELディスプレイ駆
動用のICを構成しようとすると、上記高耐圧素子で大
電流を出力した場合にSOI領域に発熱が起こる。そし
て、このSOI領域の埋め込み酸化膜が熱伝導率がSi
半導体に比べ1/100と小さい為、発生した熱がSO
I領域にこもり易く、ICの温度が上昇してしまう。こ
の温度上昇を防ぐために、高耐圧素子を大きくして高耐
圧素子の電気抵抗を小さくし、電流の2乗と電気抵抗値
の積によって決まる発熱を減らす方法も考えられるが、
当該方法ではICの面積が大きくなり歩留まり、コスト
的に不便である。
However, in the above-mentioned conventional technique, the high voltage is supported by the low-concentration electric field relaxation layer and the buried oxide film used in the lower portion of the SOI semiconductor substrate. When an IC for driving an EL display is to be constructed, heat is generated in the SOI region when a large current is output by the high breakdown voltage element. The buried oxide film in the SOI region has a thermal conductivity of Si.
Since it is 1/100 that of semiconductors, the heat generated is SO
It is easy to stay in the I region and the temperature of the IC rises. In order to prevent this temperature rise, a method of enlarging the high breakdown voltage element to reduce the electrical resistance of the high breakdown voltage element and reducing the heat generation determined by the product of the square of the current and the electrical resistance value may be considered.
In this method, the area of the IC is increased and the yield is increased, which is inconvenient in cost.

【0007】本発明は上記問題に鑑みてなされたもの
で、その目的とするところは、相補型トランジスタなど
の高耐圧化、発熱対策、ノイズ干渉等に優れた高耐圧・
高集積化が可能な半導体装置を実現することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a high withstand voltage, which is excellent in high withstand voltage of complementary transistors and the like, measures against heat generation, noise interference and the like.
It is to realize a semiconductor device which can be highly integrated.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の半導体装置は、第1の導伝型半導体基板
と、上記第1の導伝型半導体基板上に積層される不純物
濃度が1×1014cm-3以下である第2の導伝型半導体
基板と、上記第1及び第2の導伝型半導体基板の積層面
の所定位置に部分的に配設される第1の絶縁膜と、上記
第2の導伝型半導体基板に設けられる所定の溝に配設さ
れる第2の絶縁膜とを具備し、上記第2の導伝型半導体
基板を上記第2の絶縁膜により複数の領域に分割し、上
記第1の絶縁膜が配設されていない上記第2の導伝型半
導体基板の第1の領域に高電力素子を形成し、上記第1
の絶縁膜が配設されている上記第2の導伝型半導体基板
の第2の領域に論理素子を形成することを特徴とする。
In order to achieve the above object, a semiconductor device of the present invention comprises a first conductive type semiconductor substrate and an impurity concentration laminated on the first conductive type semiconductor substrate. Of 1 × 10 14 cm −3 or less, and a first conductive film which is partially disposed at a predetermined position on the laminated surface of the first and second conductive semiconductor substrates. An insulating film and a second insulating film provided in a predetermined groove provided in the second conductive type semiconductor substrate are provided, and the second conductive type semiconductor substrate is provided with the second insulating film. A high power element is formed in a first region of the second conductive semiconductor substrate in which the first insulating film is not provided,
The logic element is formed in the second region of the second conductive type semiconductor substrate on which the insulating film is provided.

【0009】[0009]

【作用】即ち、上記第1の導伝型半導体基板上に不純物
濃度が1×1014cm-3以下である第2の導伝型半導体
基板が積層され、第1の絶縁膜が上記第1及び第2の導
伝型半導体基板の積層面の所定位置に部分的に配設さ
れ、第2の絶縁膜が上記第2の導伝型半導体基板に設け
られた所定の溝に配設され、上記第2の導伝型半導体基
板が上記第2の絶縁膜により複数の領域に分割され、上
記第1の絶縁膜が配設されていない上記第2の導伝型半
導体基板の第1の領域に高電力素子が形成され、上記第
1の絶縁膜が配設されている上記第2の導伝型半導体基
板の第2の領域に論理素子が形成される。このように、
上記第1の領域には第1の絶縁膜を配設しないことで放
熱性を良くし、更に不純物濃度が1×1014cm-3以下
の第2の導伝型半導体基板による低濃度層に高耐圧素子
を作り込むことで電界緩和がなされる。さらに、第2の
絶縁膜により第1の領域が複数に分割されるので、相異
なる複数の高電力素子を併設することができる。
That is, a second conductive type semiconductor substrate having an impurity concentration of 1 × 10 14 cm −3 or less is laminated on the first conductive type semiconductor substrate, and the first insulating film is the first conductive film. And a second insulating film partially disposed at a predetermined position on the laminated surface of the second conductive type semiconductor substrate, and a second insulating film disposed in a predetermined groove provided on the second conductive type semiconductor substrate. The second conductive semiconductor substrate is divided into a plurality of regions by the second insulating film, and the first conductive film semiconductor substrate is not provided with the first insulating film. A high power element is formed on the second conductive semiconductor substrate, and a logic element is formed on the second region of the second conductive semiconductor substrate on which the first insulating film is provided. in this way,
Heat dissipation is improved by not disposing the first insulating film in the first region, and a low-concentration layer of the second conductive semiconductor substrate having an impurity concentration of 1 × 10 14 cm −3 or less is formed. An electric field is relaxed by incorporating a high breakdown voltage element. Furthermore, since the first region is divided into a plurality of parts by the second insulating film, a plurality of different high power elements can be installed side by side.

【0010】[0010]

【実施例】以下、図1を参照して本発明の実施例に係る
半導体装置について説明する。同図に示されるように、
P型シリコン(Si)半導体基板上1に不純物(ドナ
ー)濃度が1×1014cm-3以下の低濃度のN型Si半
導体基板(以下、i基板と称する)2a〜2cを厚さ略
10μmで積層している。論理素子を形成すべき領域で
且つ上記i基板2aの底部あたる位置には、厚さ略2μ
mの埋め込み酸化膜(SiO2 )3を配設する。同様
に、上記i基板2aの表面から上記埋め込み酸化膜3に
達する深さの溝及びその側面には、厚さ0.5μmの酸
化膜4a,4bを素子の積層方向に垂直な方向に分離す
る目的で形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor device according to an embodiment of the present invention will be described below with reference to FIG. As shown in the figure,
On a P-type silicon (Si) semiconductor substrate 1, low-concentration N-type Si semiconductor substrates (hereinafter referred to as i-substrates) 2a to 2c having an impurity (donor) concentration of 1 × 10 14 cm −3 or less are approximately 10 μm thick. Are stacked in. A thickness of about 2 μm is formed in the region where the logic element is to be formed and at the position corresponding to the bottom of the i-substrate 2a.
A buried oxide film (SiO 2 ) 3 of m is provided. Similarly, oxide films 4a and 4b having a thickness of 0.5 μm are separated in a direction perpendicular to the stacking direction of the elements on the groove and the side surface of the groove reaching the buried oxide film 3 from the surface of the i-substrate 2a. Form for the purpose.

【0011】この酸化膜3内には、更に酸化膜絶縁体5
a,5bを設けて上記垂直な方向に分離している。こう
して分離された上記P型Si半導体基板1とi基板2a
〜2cの境界に上記酸化膜3が無い直接接合領域100
には高耐圧素子を設け、酸化膜3があるSOI領域20
0には論理制御素子を設けた構造とする。さらに、上記
直接接合領域100には、複数の高耐圧素子を配設すべ
く溝が設けられ、更にその溝に酸化膜4c,4dが設け
られ、該酸化膜内には酸化膜絶縁体5c,5dが設けら
れている。
In the oxide film 3, an oxide film insulator 5 is further provided.
a and 5b are provided to separate in the vertical direction. The P-type Si semiconductor substrate 1 and the i-substrate 2a thus separated
~ 2c direct bonding region 100 without the oxide film 3 at the boundary
A high breakdown voltage element is provided in the SOI region 20 where the oxide film 3 is present.
0 has a structure in which a logic control element is provided. Further, in the direct bonding region 100, a groove is provided to dispose a plurality of high breakdown voltage elements, and oxide films 4c and 4d are further provided in the groove, and an oxide film insulator 5c, 5d is provided.

【0012】このように直接接合領域100が複数に分
離されているので、高耐圧素子として、Nチャネル型、
Pチャネル型、或いは両タイプの電界効果型トランジス
タ(FET;Field Effect Transistor)などを設けることが
可能となる。装置を高耐圧化且つ高集積化するためには
上記直接接合領域100に設けられた電界効果型トラン
ジスタのソース・ドレイン間における電界を局所的に集
中することなく緩和させる必要があるが、上記i基板2
b,2cを用いることで空乏層を拡がり易くなり、上記
電界を緩和することが可能となる。更には、上記高耐圧
トランジスタにおいてNチャネルとPチャネルの両立化
のためには各々のドリフト領域よりも低濃度な基板が必
要となるが、上記i基板を用いればこれも可能となる。
Since the direct junction region 100 is divided into a plurality of parts as described above, an N channel type
It is possible to provide a field effect transistor (FET) of P-channel type or both types. In order to increase the breakdown voltage and the degree of integration of the device, it is necessary to relax the electric field between the source and drain of the field effect transistor provided in the direct junction region 100 without locally concentrating it. Board 2
By using b and 2c, the depletion layer can be easily expanded and the electric field can be relaxed. Furthermore, in order to make both the N channel and the P channel compatible with each other in the high breakdown voltage transistor, a substrate having a lower concentration than that of each drift region is required, but this is also possible by using the i substrate.

【0013】以下、この半導体装置の実際の製造工程に
ついて説明する。先ず、上記P型Si半導体基板1とi
基板2を直接接着技術を用いて貼り合わせる。即ち2枚
の基板1,2を鏡面研磨しておき、その研磨面同士を清
浄な雰囲気下で密着させ、所定の熱処理を加えることに
より一体化する。このとき、i基板2の所定領域には酸
化膜3を形成しておく。次に、フォトエッチングにより
素子分離溝を形成し、島状に分離されたi基板2a〜2
cの上面にN型Si半導体基板6、P型Si半導体基板
7、N型Si半導体基板8を形成する。
The actual manufacturing process of this semiconductor device will be described below. First, the P-type Si semiconductor substrate 1 and i
The substrates 2 are bonded together using a direct bonding technique. That is, the two substrates 1 and 2 are mirror-polished in advance, the polished surfaces are brought into close contact with each other in a clean atmosphere, and a predetermined heat treatment is applied to integrate them. At this time, the oxide film 3 is formed in a predetermined region of the i substrate 2. Next, the element isolation trenches are formed by photoetching, and the i-shaped substrates 2a to 2 are separated into islands.
An N-type Si semiconductor substrate 6, a P-type Si semiconductor substrate 7, and an N-type Si semiconductor substrate 8 are formed on the upper surface of c.

【0014】i基板上2aには、Pウェルの領域となる
パターンをフォトレジストにより形成した後、Pウェル
層9を形成する。そして、当該Pウェル層9にP+ 型層
10、N+ 型層11,12を拡散形成し、電極S1,D
1を形成し、Nチャネル型トランジスタを形成する。同
様に、N型Si半導体基板6上にP+ 型層13,14、
N+ 型層15を拡散形成し、電極S2,D2を形成し、
Pチャネル型トランジスタを形成する。こうしてSOI
領域200に論理制御素子が形成される。
On the i-substrate 2a, a P-well region 9 is formed after a pattern to be a P-well region is formed by photoresist. Then, a P + type layer 10 and N + type layers 11 and 12 are diffused and formed on the P well layer 9 to form electrodes S1 and D
1 is formed to form an N-channel type transistor. Similarly, on the N-type Si semiconductor substrate 6, the P + type layers 13 and 14,
N + type layer 15 is formed by diffusion, electrodes S2 and D2 are formed,
A P-channel transistor is formed. Thus SOI
A logic control element is formed in the region 200.

【0015】一方、i基板上2bには、Nウェルの領域
となるパターンをフォトレジストにより形成した後、N
ウェル層16を形成し、当該Nウェル層16にソース領
域となるP+ 型層17、N+ 型層18を拡散形成し、P
型Si半導体基板7上にドレイン領域となるP+ 型層1
9を拡散形成し、電極S3,G3,D3をそれぞれ形成
する。こうして、i基板2b上にPチャネル型トランジ
スタが形成される。
On the other hand, on the i-substrate 2b, a pattern to be an N well region is formed by a photoresist, and then N
A well layer 16 is formed, and a P + type layer 17 and an N + type layer 18 serving as a source region are diffused and formed in the N well layer 16,
Type Si semiconductor substrate 7 on which a P + type layer 1 serving as a drain region is formed
9 is diffused to form electrodes S3, G3 and D3, respectively. In this way, a P-channel type transistor is formed on the i substrate 2b.

【0016】i基板上2cには、Pウェルの領域となる
パターンをフォトレジストにより形成した後、Pウェル
層20を形成し、当該Pウェル層20にソース領域とな
るP+ 型層21,N+ 型層22を拡散形成し、N型Si
半導体基板上にドレイン領域となるN+ 型層23を拡散
形成し、電極S4,G4,D4を形成する。こうして、
i基板2c上にNチャネル型トランジスタが形成され
る。
On the i-substrate 2c, a pattern to be a P-well region is formed by photoresist, and then a P-well layer 20 is formed. In the P-well layer 20, a P + -type layer 21, N serving as a source region is formed. The + type layer 22 is diffused to form N type Si.
An N + type layer 23 which will be a drain region is diffused and formed on the semiconductor substrate to form electrodes S4, G4 and D4. Thus
An N channel type transistor is formed on the i substrate 2c.

【0017】前述したようにi基板2をSOI構造に用
いてしまうと、高耐圧素子領域に発生した熱は、熱伝導
率の低い酸化膜の存在の為に籠ってしまい温度上昇しや
すくなるが、上記直接接合領域100に高耐圧素子を形
成することにより放熱性を良くすることができる。尚、
i基板2は電気伝導率は小さいが、熱伝導率は通常のS
i基板程度であり、酸化膜よりは十分高い。
When the i substrate 2 is used for the SOI structure as described above, the heat generated in the high breakdown voltage element region is trapped due to the existence of the oxide film having a low thermal conductivity, and the temperature rises easily. By forming a high breakdown voltage element in the direct bonding region 100, heat dissipation can be improved. still,
The i-substrate 2 has a low electrical conductivity, but has a normal thermal conductivity of S.
It is on the order of the i substrate and is sufficiently higher than the oxide film.

【0018】以上説明したように、半導体素子の高耐圧
且つ高集積化のためには、高耐圧素子のソース・ドレイ
ン間における電界を局所的に集中することなく緩和させ
る必要があるが、本発明では、上記低濃度半導体層を用
いることでソース・ドレイン間の空乏層を拡がり易く
し、上記電界を緩和することができる。
As described above, in order to achieve high breakdown voltage and high integration of the semiconductor element, it is necessary to relax the electric field between the source and drain of the high breakdown voltage element without concentrating it locally. Then, by using the low-concentration semiconductor layer, the depletion layer between the source and the drain can be easily expanded, and the electric field can be relaxed.

【0019】さらに、上記低濃度の半導体層(i基板)
は電気伝導率は低いが、格子振動が支配的な熱伝導率は
酸化膜に比べて100倍近いため、高耐圧素子の発熱を
逃し易くすることができる。即ち、上記i基板は電界緩
和と放熱の両方に効果的な役割をすることになる。
Further, the low-concentration semiconductor layer (i substrate)
Has a low electrical conductivity, but the thermal conductivity in which lattice vibration is dominant is nearly 100 times that of an oxide film, so that it is possible to easily release the heat generated by the high breakdown voltage element. That is, the i-substrate plays an effective role in both electric field relaxation and heat dissipation.

【0020】また、高耐圧電界効果型素子として、Nチ
ャネルとPチャネルを両立させようとすると、薄い濃度
のP型拡散層と同じくN型拡散層の両方が必要となる
が、上記低濃度の半導体層を用いることにより、高耐圧
のNチャネル型、Pチャネル型FETの両方を形成する
ことが容易になる。
In order to make both the N channel and the P channel compatible with each other as the high breakdown voltage field effect device, both the P type diffusion layer having a low concentration and the N type diffusion layer are required, but the concentration of the above low concentration is required. By using the semiconductor layer, it becomes easy to form both high breakdown voltage N-channel type and P-channel type FETs.

【0021】尚、本発明の半導体装置は前述した実施例
に限定されることなく、その趣旨を逸脱しない範囲で種
々の改良・変更が可能であることは勿論である。例え
ば、上記実施例では、P型Si半導体基板の上に不純物
濃度が1×1014cm-3以下であるN型Si半導体基板
(i基板)を積層する構造としたが、N型Si半導体基
板の上に不純物濃度が1×1014cm-3以下であるP型
Si半導体基板を積層する構造としてもよい。
The semiconductor device of the present invention is not limited to the above-described embodiments, and it goes without saying that various improvements and modifications can be made without departing from the spirit of the invention. For example, in the above-described embodiment, the N-type Si semiconductor substrate (i substrate) having the impurity concentration of 1 × 10 14 cm −3 or less is laminated on the P-type Si semiconductor substrate. A structure in which a P-type Si semiconductor substrate having an impurity concentration of 1 × 10 14 cm −3 or less is laminated thereon may be used.

【0022】[0022]

【発明の効果】本発明によれば、放熱性に優れ、高耐圧
・高集積化が可能な半導体装置を提供することができ
る。
According to the present invention, it is possible to provide a semiconductor device which is excellent in heat dissipation and which can have high breakdown voltage and high integration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る半導体装置の構成を示
す図である。
FIG. 1 is a diagram showing a configuration of a semiconductor device according to an embodiment of the present invention.

【図2】従来技術に係る半導体装置の構成を示す図であ
る。
FIG. 2 is a diagram showing a configuration of a semiconductor device according to a conventional technique.

【図3】従来技術に係る半導体装置の構成を示す図であ
る。
FIG. 3 is a diagram showing a configuration of a semiconductor device according to a conventional technique.

【符号の説明】[Explanation of symbols]

1,7…P型Si半導体基板 2,2a,2b,2c,6,8…N型Si半導体基板 3,4a,4b,4c,4d…酸化膜 5a,5b,5c,5d…酸化膜絶縁体 9,20…Pウェル層 16…Nウェル層 10,13,14,17,19,21…P+ 層 11,12,15,18,22,23…N+ 層 100…直接接合領域、200…SOI領域 1, 7 ... P-type Si semiconductor substrate 2, 2a, 2b, 2c, 6, 8 ... N-type Si semiconductor substrate 3, 4a, 4b, 4c, 4d ... Oxide film 5a, 5b, 5c, 5d ... Oxide film insulator 9, 20 ... P well layer 16 ... N well layer 10, 13, 14, 17, 19, 21, ... P + layer 11, 12, 15, 18, 22, 23 ... N + layer 100 ... Direct junction region, 200 ... SOI area

フロントページの続き (72)発明者 森下 敏之 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内Front page continuation (72) Inventor Toshiyuki Morishita 1-1, Showa-cho, Kariya city, Aichi Nihon Denso Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1の導伝型半導体基板と、上記第1の
導伝型半導体基板上に積層される不純物濃度が1×10
14cm-3以下である第2の導伝型半導体基板と、上記第
1及び第2の導伝型半導体基板の積層面の所定位置に部
分的に配設される第1の絶縁膜と、上記第2の導伝型半
導体基板に設けられる所定の溝に配設される第2の絶縁
膜とを具備し、 上記第2の導伝型半導体基板を上記第2の絶縁膜により
複数の領域に分割し、上記第1の絶縁膜が配設されてい
ない上記第2の導伝型半導体基板の第1の領域に高電力
素子を形成し、上記第1の絶縁膜が配設されている上記
第2の導伝型半導体基板の第2の領域に論理素子を形成
することを特徴とする半導体装置。
1. A first conductive semiconductor substrate and an impurity concentration of 1 × 10 stacked on the first conductive semiconductor substrate.
A second conductive semiconductor substrate having a size of 14 cm −3 or less, and a first insulating film partially disposed at a predetermined position on the laminated surface of the first and second conductive semiconductor substrates, A second insulating film provided in a predetermined groove provided in the second conductive type semiconductor substrate, wherein the second conductive type semiconductor substrate is divided into a plurality of regions by the second insulating film. A high power element is formed in the first region of the second conductive semiconductor substrate on which the first insulating film is not provided, and the first insulating film is provided. A semiconductor device, wherein a logic element is formed in a second region of the second conductive semiconductor substrate.
JP13666395A 1995-06-02 1995-06-02 Semiconductor device Expired - Lifetime JP3694918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13666395A JP3694918B2 (en) 1995-06-02 1995-06-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13666395A JP3694918B2 (en) 1995-06-02 1995-06-02 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH08330581A true JPH08330581A (en) 1996-12-13
JP3694918B2 JP3694918B2 (en) 2005-09-14

Family

ID=15180593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13666395A Expired - Lifetime JP3694918B2 (en) 1995-06-02 1995-06-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3694918B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0996146A1 (en) * 1998-10-23 2000-04-26 STMicroelectronics SA Process for forming an isolated well in a silicon wafer
JP2006128230A (en) * 2004-10-27 2006-05-18 Fuji Electric Holdings Co Ltd Semiconductor device and manufacturing method thereof
JP2008263073A (en) * 2007-04-12 2008-10-30 Mitsubishi Electric Corp Semiconductor device
JP2009164460A (en) * 2008-01-09 2009-07-23 Renesas Technology Corp Semiconductor device
KR100916892B1 (en) * 2007-12-27 2009-09-09 주식회사 동부하이텍 Semiconductor device and manufacturing method of semiconductor device
JP2010141244A (en) * 2008-12-15 2010-06-24 Mitsumi Electric Co Ltd Semiconductor device
JP5021301B2 (en) * 2004-08-17 2012-09-05 ローム株式会社 Semiconductor device and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0996146A1 (en) * 1998-10-23 2000-04-26 STMicroelectronics SA Process for forming an isolated well in a silicon wafer
FR2785087A1 (en) * 1998-10-23 2000-04-28 St Microelectronics Sa METHOD OF FORMING IN A SILICON PLATE OF AN INSULATED CASE
US6204098B1 (en) 1998-10-23 2001-03-20 Stmicroelectronics S.A. Method of formation in a silicon wafer of an insulated well
JP5021301B2 (en) * 2004-08-17 2012-09-05 ローム株式会社 Semiconductor device and manufacturing method thereof
US8394695B2 (en) 2004-08-17 2013-03-12 Rohm Co., Ltd. Semiconductor device production method
JP2006128230A (en) * 2004-10-27 2006-05-18 Fuji Electric Holdings Co Ltd Semiconductor device and manufacturing method thereof
JP2008263073A (en) * 2007-04-12 2008-10-30 Mitsubishi Electric Corp Semiconductor device
KR100916892B1 (en) * 2007-12-27 2009-09-09 주식회사 동부하이텍 Semiconductor device and manufacturing method of semiconductor device
JP2009164460A (en) * 2008-01-09 2009-07-23 Renesas Technology Corp Semiconductor device
JP2010141244A (en) * 2008-12-15 2010-06-24 Mitsumi Electric Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JP3694918B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
US5939755A (en) Power IC having high-side and low-side switches in an SOI structure
US7436027B2 (en) Semiconductor device and fabrication method for the same
JP3291958B2 (en) Back source MOSFET
US6677622B2 (en) Semiconductor device having insulated gate bipolar transistor with dielectric isolation structure
EP0217288A2 (en) Substrate structure for a composite semiconductor device
JPH09266248A (en) Semiconductor device
KR101355282B1 (en) Semiconductor device and method of manufacturing the same
US6462379B2 (en) SOI semiconductor device and method for manufacturing the same
JPH0685177A (en) Semiconductor integrated circuit device
JP2822961B2 (en) Semiconductor device
JP3198959B2 (en) High voltage integrated circuit
JP5040135B2 (en) Dielectric isolation type semiconductor device and manufacturing method thereof
JP3827954B2 (en) IGBT with PN separation layer
JP3694918B2 (en) Semiconductor device
US10128331B1 (en) High-voltage semiconductor device and method for manufacturing the same
TWI634660B (en) High voltage semiconductor device and method for manufacturing the same
JP3932443B2 (en) Semiconductor element
JPH08316335A (en) Semiconductor device and fabrication thereof
JP2672184B2 (en) Method for manufacturing semiconductor device
JP3217552B2 (en) Horizontal high voltage semiconductor device
JPH07273340A (en) Soi type transistor
JPH08148684A (en) Semiconductor device and its manufacture
JP2001298195A (en) Mos transistor
JPH1126769A (en) N-type mosfet and manufacture thereof
JP3233002B2 (en) Field effect transistor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term