JPS61264251A - Eddy current flaw inspecting method and its device - Google Patents

Eddy current flaw inspecting method and its device

Info

Publication number
JPS61264251A
JPS61264251A JP60105228A JP10522885A JPS61264251A JP S61264251 A JPS61264251 A JP S61264251A JP 60105228 A JP60105228 A JP 60105228A JP 10522885 A JP10522885 A JP 10522885A JP S61264251 A JPS61264251 A JP S61264251A
Authority
JP
Japan
Prior art keywords
eddy current
examined
current flaw
materials
test material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60105228A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsutani
松谷 弘
Mikio Kato
幹雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60105228A priority Critical patent/JPS61264251A/en
Publication of JPS61264251A publication Critical patent/JPS61264251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To perform eddy current flaw inspection effectively by allowing a material to be examined to pass the flaw detecting part of a rotating coil type eddy current flaw inspector to inspect flaws after giving an alternating magnetic field to the material to be examined, which passes through a degausser consisting of a through type coil, by this degausser to degauss it. CONSTITUTION:A material supply base 1 drops arranged and prepared bar materials to be examined onto a carrying device 2 horizontally at every specified time one by one. This device 2 has many rolls whose outside peripheral surfaces having V-shaped grooves are provided on, and dropped materials to be examined are carried in a uniform speed in the direction of an arrow. A degausser 4 consists of the through type coil and gives the alternating magnetic field to materials to be examined, which pass through the degausser 4, to degauss them. Materials to be examined after degaussing pass the inside of a flaw inspecting part 3 of the rotating coil type eddy current flaw inspector and flaws are inspected in this stage. Materials to be examined are dropped to a defective goods frame 5 or an indefectible goods frame 6 in accordance with the results.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、回転コイル型渦流探傷方法及び装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotating coil type eddy current flaw detection method and apparatus.

〔従来の技術〕[Conventional technology]

渦流探傷法は、導体である被検材に交番磁界等時間的に
変化する磁界を与え、該被検材中に渦電流を発生させ、
この渦電流が被検材の傷その他の欠陥等により影響を受
けることを利用するものであり、通常被検材の接近した
2個所に対峙して設けた一対のコイルにより、それぞれ
が対峙する被検材の部分の渦電流を検出して比較し、又
は渦電流を誘起させるための励振コイルと、検出コイル
を共用してそのインピーダンスを比較すφことにより、
被検材の画部分の不均一性、つまり欠陥を検知する方法
が一般に採用されてい、る。
In the eddy current flaw detection method, a magnetic field that changes over time, such as an alternating magnetic field, is applied to the test material, which is a conductor, to generate eddy currents in the test material.
This method takes advantage of the fact that this eddy current is affected by scratches or other defects on the material to be inspected, and usually a pair of coils are placed facing each other in two close locations on the material to be inspected, and each coil is placed oppositely in the opposite location. By detecting and comparing the eddy current in the part of the inspection material, or by using the excitation coil for inducing eddy current and the detection coil in common and comparing their impedances,
A method that detects non-uniformity, that is, defects, in the image area of the material to be inspected is generally adopted.

また棒材等の被検材に対する渦流探傷装置は、被検材を
その長さ方向に連続的に走行通過させて行うものが多い
。この棒材に対する渦流探傷は、一般に貫通型及び回転
コイル型とそれぞれ呼称される方法に大別される。前者
は同軸状に互いに間隔を隔てて配置した一対の検出コイ
ル内に、被検材をその軸心に沿って貫通して走行させる
ものであり、後者は、被検材の周方向に隔てられ、軸方
向を被検材の半径方向として設けた一対の検出コイルを
、被検材の外周面の周りで高速回転させるものが一般的
である。後者は高感度である、棒状被検材において、そ
の両端部の不感長さが小さい等の理由で最近前者に代っ
て普及しつつある。
In addition, many eddy current flaw detection devices for test materials such as rods continuously run through the test material in the length direction thereof. Eddy current testing for bar materials is generally divided into two methods, each called a through-type method and a rotating coil-type method. The former is a pair of detection coils arranged coaxially and spaced apart from each other, and is passed through the material to be tested along its axis, while the latter is a sensor that is spaced apart in the circumferential direction of the material to be tested. Generally, a pair of detection coils, the axial direction of which is the radial direction of the specimen, are rotated at high speed around the outer peripheral surface of the specimen. The latter has recently become popular in place of the former because it is highly sensitive and has a small dead length at both ends of rod-shaped specimens.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

渦流探傷法は、被検材の傷を間接的に検出するもののた
め、傷以外の原因によっても傷と同様の出力(ノイズ)
を出す、いわば判定ミス、を犯すことが多い。特に回転
コイル型は高感度であることもあり、この判定ミスが多
い。
Since the eddy current flaw detection method indirectly detects flaws in the material being tested, the same output (noise) as caused by flaws may be generated due to causes other than flaws.
They often make errors in judgment, so to speak. In particular, the rotating coil type is highly sensitive, and this error in judgment is common.

本発明は、この判定ミスの原因を解明したことにより、
この原因を排除した回転コイル型渦流探傷方法及び装置
を提供することを目的とする。
The present invention, by elucidating the cause of this judgment error,
It is an object of the present invention to provide a rotating coil type eddy current flaw detection method and device that eliminates this cause.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、探傷に先立って予め被処理材を脱磁処理する
回転コイル型渦流探傷方法及び検出コイルの、被検材の
走行の上流側に脱磁器を設けた回転コイル型渦流探傷装
置である。
The present invention provides a rotating coil type eddy current flaw detection method in which a material to be treated is demagnetized in advance prior to flaw detection, and a rotating coil type eddy current flaw detection device in which a demagnetizer is provided on the upstream side of the travel of the test material of a detection coil. .

〔作用〕[Effect]

本発明者は、回転コイル型渦流探傷法において、判定ミ
スの原因を種々実験検討した。この結果、工具鋼等の強
磁性体の棒材では、傷以外の原因で不良と判定されたも
のの約半数が、被検材の以前の工程中で生じた微弱な帯
磁に起因するものであることを解明した。本発明はこの
解明結果に基づくものであり、脱磁処理後探傷を行うも
のである。
The present inventor conducted various experiments to examine the causes of judgment errors in the rotating coil type eddy current flaw detection method. As a result, for bar materials made of ferromagnetic materials such as tool steel, approximately half of the cases that are determined to be defective due to causes other than scratches are due to weak magnetization that occurred during the previous process of the test material. I figured it out. The present invention is based on this elucidation result, and flaw detection is performed after demagnetization treatment.

従来の貫通型渦流探傷法では、被検材の帯磁が判定ミス
の原因とはならず、したがって被検材を特に脱磁処理す
る必要はなかった。しかし回転コイル型では帯磁が判定
ミスの原因となる。この理由は不明である。しかし恐ら
く被検棒材は走行中に曲り又は走行案内装置とのギャッ
プにより振動すると考えられ、また装置の組立誤差から
被検材の軸心が検出コイルの回転中心軸に必ずしも一致
していないため、等が考えられる。すなわち、帯磁のた
め被検材から漏洩磁束が出ており、この囲りを検出コイ
ルが偏心して高速回転しておれば、検出コイル内に誘起
電力が発生し、この起電力は、位相が検出コイル間で異
なるから、比較の結果出力がでる。因みに、本発明者ら
の実験によると、被検材が走行を停止した場も被検材が
帯磁していれば、やはりノイズが発生する。この現象は
貫通コイル型には見られない現象である。
In the conventional penetrating eddy current flaw detection method, magnetization of the test material does not cause judgment errors, and therefore there is no need to specifically demagnetize the test material. However, in the case of a rotating coil type, magnetization causes errors in judgment. The reason for this is unknown. However, it is thought that the bar to be tested probably vibrates due to bending during travel or due to the gap with the travel guide device, and also because the axis of the bar to be tested does not necessarily align with the rotation center axis of the detection coil due to assembly errors in the device. , etc. are possible. In other words, leakage magnetic flux is emitted from the test material due to magnetization, and if the detection coil rotates eccentrically around this at high speed, an electromotive force will be generated within the detection coil, and this electromotive force will cause the phase to be detected. Since it differs between coils, the comparison result is output. Incidentally, according to experiments conducted by the present inventors, if the test material is magnetized even when the test material stops running, noise is still generated. This phenomenon is not observed in the through-coil type.

〔実施例〕〔Example〕

第1図に本発明の装置の実施例の配置を、第2図に従来
の装置の配置例を示す。材料供給台1は、整列して準備
された被検棒材を1本づつ定時間毎に水平に搬送装置2
上に落下させる。搬送装置2は、外周にV字型溝を設け
た多数のローラを有し、落下された被検材を矢印方向に
定速度で搬送する。
FIG. 1 shows the arrangement of an embodiment of the device of the present invention, and FIG. 2 shows an example of the arrangement of a conventional device. A material supply table 1 horizontally transports the lined and prepared test bars one by one at regular intervals to a conveying device 2.
drop it on top. The conveying device 2 has a large number of rollers having V-shaped grooves on the outer periphery, and conveys the dropped test material at a constant speed in the direction of the arrow.

脱磁器4は貫通型のコイルであり、貫通する被検材に交
番磁界を与えて脱磁する。脱磁後の被検材は、回転コイ
ル型渦流探傷装置の探傷部3内を通過し、この過程で探
傷され、その結果によって被検材は不良品枠5又は良品
枠6にそれぞれ落下?せられる。
The demagnetizer 4 is a penetrating coil, and applies an alternating magnetic field to the test material passing through it to demagnetize it. After demagnetization, the test material passes through the flaw detection section 3 of the rotating coil type eddy current flaw detection device, and is tested during this process. Depending on the results, the test material falls into the defective product frame 5 or the non-defective product frame 6, respectively? be given

探傷部3は、漏斗状に開口した案内が前後に設けられ、
その中間部に検出コイルが十文字の各辺に一対ずつ配列
され、十文字の交点を被検材の軸心と一致して高速回転
するごとく設けられ、コイルとの信号の授受は、回転ト
ランスで行うようになっている。
The flaw detection section 3 is provided with guides with funnel-shaped openings at the front and rear.
In the middle, a pair of detection coils are arranged on each side of the cross, and the intersection of the cross is aligned with the axis of the material being tested and rotates at high speed. Signals are exchanged with the coils using a rotating transformer. It looks like this.

従来の装置は第2図に示すように、脱磁器4が設けられ
ていなかった。従来の装置では、焼鈍状態の工具鋼等の
コイル線材から、直伸切断ロール矯正、センタレス研削
された棒材を探傷処理した場合、不良と判定された材料
のうち約36%が当時原因不明として原因の明らかなも
のとともに廃却されていたが、第1図の装置によって脱
磁処理したとき、原因不明の材料は、不良品中の約20
%となった。したがって、約16%に相当するものが、
廃却をまぬがれるという大きな効果を上げることができ
た。なお本発明の装置は、検出コイルと脱磁気量の距離
を旧来の装置の改造の関係から500 mとしまたもの
である。この距離で通常の1.5771以上の長さの被
検材を現在処理しているが、検出コイルへの脱磁器の影
響はない。この両コイル間の距離はさらに短縮可能と思
われる。
The conventional device was not provided with a demagnetizer 4, as shown in FIG. With conventional equipment, when testing a bar material that has been straight-stretched, straightened, and centerless ground from a coiled wire material such as annealed tool steel, about 36% of the material determined to be defective was found to be due to an unknown cause at the time. However, when the device shown in Figure 1 was used to demagnetize the materials, approximately 20 of the materials with unknown causes were discarded.
%. Therefore, about 16% of
This had the great effect of avoiding disposal. In addition, in the device of the present invention, the distance between the detection coil and the amount of demagnetization is 500 m due to the modification of the conventional device. At this distance, we are currently processing specimens with a length longer than the normal length of 1.5771, but the demagnetizer has no effect on the detection coil. It seems that the distance between these two coils can be further shortened.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明は回転コイル型渦流探傷法にお
いて、従来原因不明であったもののうち約半数が被検材
の帯磁によるものであることを究明したことに基づくも
のである。これにより従来不良品として扱われていた材
料を救済することが可能となった。なお本発明はコイル
材についても適用可能である。
As described above, the present invention is based on the discovery that, in the rotating coil type eddy current flaw detection method, about half of the causes of previously unknown flaws are due to magnetization of the test material. This has made it possible to salvage materials that were previously treated as defective products. Note that the present invention is also applicable to coil materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ本発明及び従来の回転コ
イル型渦流探傷装置の配置例を示すものである。 1;材料供給台、2;搬送装置、3;探傷部、4;脱磁
器。 第 1 図 手続補正帯(自発) 1、事件の表示 昭和60年 特許願 第105228号2、発 明 の
 名 称  渦流探傷方法及び装置3、補正をする者 事件との関係  特許出願人 住  所    東京都千代田区丸の内二丁目1番2号
名  称    (508)   日立金属株式会社明
!II書第2頁第13行「励振」を「励磁」に訂正する
FIG. 1 and FIG. 2 show examples of the arrangement of rotating coil type eddy current flaw detection devices of the present invention and a conventional one, respectively. 1; material supply table, 2; conveyance device, 3; flaw detection section, 4; demagnetizer. Figure 1 Procedure amendment band (spontaneous) 1. Indication of the case 1985 Patent Application No. 105228 2. Name of the invention Eddy current flaw detection method and device 3. Person making the amendment Relationship with the case Patent applicant address Tokyo 2-1-2 Marunouchi, Chiyoda-ku, Tokyo Name (508) Hitachi Metals Co., Ltd. Akira! Book II, page 2, line 13, ``excitation'' is corrected to ``excitation.''

Claims (1)

【特許請求の範囲】 1、導体で断面が円形の長尺材である被検材をその長さ
方向に連続的に通過させ、その通過途上に、軸心の方向
を前記被検材の半径方向とする検出コイルを、前記被検
材の外周面の囲りに回転する回転コイル型渦流探傷方法
おいて、探傷に先立って予め被検材を脱磁処理すること
を特徴とする回転コイル型渦流探傷方法。 2、導体で断面が円形の長尺材である被検材をその長さ
方向に連続的に通過させ、その通過途上に、軸心の方向
を前記被検材の半径方向とする検出コイルを、前記被検
材の外周面の回りに回転する回転コイル型渦流探傷装置
において、検出コイルの、被検材の運動の上流側に脱磁
器を設けたことを特徴とする回転コイル型渦流探傷装置
。 3、検出コイルと脱磁器との間を550mm以上隔離し
たことを特徴とする特許請求の範囲第2項記載の渦流探
傷装置。
[Claims] 1. A test material, which is a long conductor with a circular cross section, is passed continuously in its length direction, and during the passage, the direction of the axis is set to the radius of the test material. A rotating coil type eddy current flaw detection method in which a detection coil with a direction is rotated around the outer peripheral surface of the test material, characterized in that the test material is demagnetized in advance prior to flaw detection. Eddy current flaw detection method. 2. A test material, which is a long conductive material with a circular cross section, is passed continuously in the length direction, and a detection coil whose axis is oriented in the radial direction of the test material is installed in the middle of the passage. , a rotating coil type eddy current flaw detection device that rotates around the outer peripheral surface of the test material, characterized in that a demagnetizer is provided on the upstream side of the movement of the test material of the detection coil. . 3. The eddy current flaw detection device according to claim 2, wherein the detection coil and the demagnetizer are separated by 550 mm or more.
JP60105228A 1985-05-17 1985-05-17 Eddy current flaw inspecting method and its device Pending JPS61264251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60105228A JPS61264251A (en) 1985-05-17 1985-05-17 Eddy current flaw inspecting method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60105228A JPS61264251A (en) 1985-05-17 1985-05-17 Eddy current flaw inspecting method and its device

Publications (1)

Publication Number Publication Date
JPS61264251A true JPS61264251A (en) 1986-11-22

Family

ID=14401800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60105228A Pending JPS61264251A (en) 1985-05-17 1985-05-17 Eddy current flaw inspecting method and its device

Country Status (1)

Country Link
JP (1) JPS61264251A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384451A (en) * 1989-08-28 1991-04-10 Kawasaki Steel Corp Eddy current flaw detecting method
JP2006084225A (en) * 2004-09-14 2006-03-30 Denshi Jiki Kogyo Kk Eddy current flaw detection method
JP2008111753A (en) * 2006-10-31 2008-05-15 Osaka Univ Rail inspection device
US9091664B2 (en) 2012-06-07 2015-07-28 Thomas Krause Pulsed eddy current sensor for precision measurement at-large lift-offs on metallic surfaces
CN105784839A (en) * 2016-03-18 2016-07-20 中国计量学院 Method for detecting micro-defects on surfaces of metal container
KR20200061639A (en) * 2018-11-26 2020-06-03 현대제철 주식회사 Inspection device for material
EP4060334A1 (en) * 2021-03-17 2022-09-21 Tenaris Connections B.V. A method and system for testing a pipe for an airbag system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246532A (en) * 1975-10-11 1977-04-13 Omron Tateisi Electronics Co Control circuitfor cmbustion system
JPS599551A (en) * 1982-07-08 1984-01-18 Sumitomo Metal Ind Ltd Flaw detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246532A (en) * 1975-10-11 1977-04-13 Omron Tateisi Electronics Co Control circuitfor cmbustion system
JPS599551A (en) * 1982-07-08 1984-01-18 Sumitomo Metal Ind Ltd Flaw detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384451A (en) * 1989-08-28 1991-04-10 Kawasaki Steel Corp Eddy current flaw detecting method
JP2006084225A (en) * 2004-09-14 2006-03-30 Denshi Jiki Kogyo Kk Eddy current flaw detection method
JP2008111753A (en) * 2006-10-31 2008-05-15 Osaka Univ Rail inspection device
US9091664B2 (en) 2012-06-07 2015-07-28 Thomas Krause Pulsed eddy current sensor for precision measurement at-large lift-offs on metallic surfaces
CN105784839A (en) * 2016-03-18 2016-07-20 中国计量学院 Method for detecting micro-defects on surfaces of metal container
KR20200061639A (en) * 2018-11-26 2020-06-03 현대제철 주식회사 Inspection device for material
EP4060334A1 (en) * 2021-03-17 2022-09-21 Tenaris Connections B.V. A method and system for testing a pipe for an airbag system
WO2022195002A1 (en) * 2021-03-17 2022-09-22 Tenaris Connections B.V. A method and system for testing a pipe

Similar Documents

Publication Publication Date Title
US4602212A (en) Method and apparatus including a flux leakage and eddy current sensor for detecting surface flaws in metal products
JPH01203965A (en) Inspector for material to be inspected made of non-ferromagnetic metal
JPS61264251A (en) Eddy current flaw inspecting method and its device
US3469182A (en) Flaw detecting apparatus with mechanical scanning of detection means
US3437917A (en) Method of and apparatus for high speed magnetic inspection of tubular goods
JPS63221239A (en) Leak magnetic flux flaw detecting method
JP3266899B2 (en) Method and apparatus for flaw detection of magnetic metal body
JPH01212352A (en) Method and apparatus for electromagnetic flaw detection
US3763423A (en) Magnetic particle flaw detector including shield means to protect previously tested surfaces
JP2006084225A (en) Eddy current flaw detection method
JPS61147158A (en) Defect detecting device for strip
JPS626162A (en) Eddy current examination method
JPH04296648A (en) Method and device for magnetic crack detection
JPH06265526A (en) Leakage flux flaw detecting apparatus
JPS62145162A (en) Split type rotary magnetic field eddy current flaw detector
JPS63311165A (en) Method and apparatus for finding flaw with magnetism
JPS6315153A (en) Magnetizing device for magnetically recording and inspectingarticle
JPS626163A (en) Rotary magnetic field type eddy current examination method
JPS6011492Y2 (en) Automatic magnetic flaw detection equipment inspection equipment
JPH0211865B2 (en)
JPH10170481A (en) Eddy current flaw detector
JPS5935807Y2 (en) Eddy current flaw detection equipment
JPS6248191B2 (en)
JPS5910846A (en) Eddy current flaw detector for metallic surface
JPS61278755A (en) Flaw detector for wire rod