JPS5910846A - Eddy current flaw detector for metallic surface - Google Patents

Eddy current flaw detector for metallic surface

Info

Publication number
JPS5910846A
JPS5910846A JP57120364A JP12036482A JPS5910846A JP S5910846 A JPS5910846 A JP S5910846A JP 57120364 A JP57120364 A JP 57120364A JP 12036482 A JP12036482 A JP 12036482A JP S5910846 A JPS5910846 A JP S5910846A
Authority
JP
Japan
Prior art keywords
detection
coils
eddy current
differential
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57120364A
Other languages
Japanese (ja)
Inventor
Masayoshi Iwasaki
岩崎 全良
Yoshiro Nishimoto
善郎 西元
Yasushi Yoneda
米田 康司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP57120364A priority Critical patent/JPS5910846A/en
Publication of JPS5910846A publication Critical patent/JPS5910846A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/904Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To detect a surface defect securely by arranging three detection coils so that their center points form a regular triangle, and using differential detection signals between one specific coil and other two coils in combination. CONSTITUTION:The detection coils A, B, and C consisting of exciting coils 1a- 1c and detection coils 2a-2c are arranged at vertexes of a regular triangle to constitute a detector. An oscillator D supplies an AC current to the exciting coils 1a-1c, which are excited to flow the surface eddy current of a material to be detected. Voltages PA-PC induced across the detection coils 2a-2c are inputted to differential amplifiers DA1 and DA2 through amplifiers FA-FC and phase shifters SA-SC to send the difference between the induced voltages PA and PB and the difference between the PB and PC to phase detectors PD1 and PD2, which perform phase detection by a signal from a timing controller PB to obtain the differential detection signals. consequently, a surface defect is detected securely.

Description

【発明の詳細な説明】 本発明は金jFA表面の渦電流探傷装置に関し、平面状
金属材料表面の緩やかな導電率や透磁率の変化、す7ト
オーyf化に拘らず、様々な方向の金属表面の欠陥(f
−確実に検出し得るようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an eddy current flaw detection device for gold JFA surfaces, and is capable of detecting metal defects in various directions, regardless of gradual changes in conductivity and magnetic permeability on the surface of a planar metal material, and changes in Surface defects (f
-It is designed to be able to be detected reliably.

平面状金属材料の表面に存在する各種の欠陥を渦電流深
海法により自動検出する技術については従来種々の提案
がなされている。−f:のほとんどがプローブ形コイル
を用いており、表面欠陥によるインピーダンスの微小変
化全検出するために第1図に示すように、標準比較形(
絶対値形)のコイル構成をとる検知コイル+11と標準
コイル(2)とを有する検出1!+31に用いることが
多い。しかしこの方式では金属材料(4)の表面に存在
する欠陥により検知コイルil)のインピーダンス変化
(又I″ii誘導E変化)が絶対値で得られ、様々の形
態をもつ欠陥の全体を検出し得る反面、金属材料(4)
表面の導電率、透磁率変化、リフトオフ(コイルと材面
トの距離)変化、コイルの温度変化によるコイlしのイ
ンピーダンス変化またl−1:銹導′r!!、圧変化(
これらは欠陥によるものより一般に大きな寄与をもつ)
が重畳し7、検出器(3)のダイナミックレンジを越え
検出か不能となる場合が多い。
Various proposals have been made in the past regarding techniques for automatically detecting various defects on the surface of planar metal materials using the eddy current deep-sea method. -f: Most of the probe-type coils are used, and in order to detect all minute changes in impedance due to surface defects, the standard comparison type (
Detection 1 that has a detection coil +11 and a standard coil (2) that has an absolute value type) coil configuration! Often used for +31. However, in this method, the impedance change (also I''ii induction E change) of the detection coil il) due to defects existing on the surface of the metal material (4) is obtained as an absolute value, and the entirety of defects having various forms can be detected. On the other hand, metal materials (4)
Changes in the impedance of the coil due to surface conductivity, magnetic permeability changes, lift-off (distance between the coil and the material surface) changes, and coil temperature changes. ! , pressure change (
These generally have a larger contribution than those due to defects)
In many cases, the dynamic range of the detector (3) is exceeded and detection becomes impossible.

七のため、ヒ記の場合には導電率等の変化やリフトオフ
変化と比べて欠陥が十分局所的に存在することに基づい
て、策2図に示すように2個の検知コイルf51 (6
1k有する自己比較形C差動形)のコイル構成をとり、
導電率等の変化を相殺し、欠陥のみ検出する方式金とる
。特に、熱間探傷のような場合、2個の検知コイIしく
51 +6i間の温度差か問題となるため差動i成をと
ることが一般的である。
Therefore, in the case of item (h), two sensing coils f51 (6
A self-comparison type C differential type) coil configuration with 1k is adopted,
A method is used that cancels out changes in conductivity and detects only defects. In particular, in the case of hot flaw detection, the difference in temperature between the two detection coils becomes a problem, so it is common to use a differential configuration.

しかし、この場合表面欠陥が各種の杉粗をもつときには
検出不能になることがある。例えば箔3図に示すように
検知コイル(61fslの並ぶ方向(以下フィル方向と
称す)に平行な主成分をもつ欠陥(7)がある場合や、
第4図に示すようにフィル方向に直交する欠陥(7)が
検知コイル+5i +6+間にある場合である。
However, in this case, if the surface defect has various types of roughness, it may become undetectable. For example, as shown in Fig. 3, there is a defect (7) with a main component parallel to the direction in which the detection coil (61fsl) is arranged (hereinafter referred to as the fill direction),
As shown in FIG. 4, this is the case where a defect (7) perpendicular to the fill direction is located between the sensing coils +5i and +6+.

そして広幅の平面状金属材料の場合には、このプローグ
コイルを種々の方向に走査するか、多数個並1役する方
法が公知であるがミコイル方向に走査する場合、第4図
に示すようにコイル方向に直交する方向に欠陥(7)が
あるときには必ず検出し得る点を通過できる。しかし第
3図に示すようにコイル方向に欠陥(7)があるときに
は、欠陥(7)の端の部分のみ検出するに正寸り、欠陥
(7)の全容は把見られない。特に極端なケースとして
第5図に示すように欠陥(7)の長さがコイル方向に十
分長い場合公知の差動形プローブでは欠陥(7)の両端
やり(陥(7)深さが急変する部分しか検出できず、欠
陥の大部分は検出不能である。
In the case of a wide planar metal material, it is known to scan the probe coils in various directions, or to use multiple probe coils in parallel, but when scanning in the direction of the microcoils, as shown in Figure 4, When there is a defect (7) in the direction perpendicular to the coil direction, it is possible to pass through a point where it can be detected without fail. However, as shown in FIG. 3, when there is a defect (7) in the direction of the coil, only the end portion of the defect (7) is detected, and the entirety of the defect (7) cannot be grasped. In a particularly extreme case, as shown in Figure 5, when the length of the defect (7) is sufficiently long in the coil direction, the depth of the defect (7) suddenly changes with the known differential probe. Only a portion can be detected, and most of the defects are undetectable.

本発明は上記問題点を解消したもので、その福1の特徴
とするところは、平面状金属材料の表面欠陥全プローグ
形渦電流探傷法により検出する渦電流探傷装置において
、6個の検知コイル全容々の中心が正三角形の頂点とな
るように配置し、この検知コイルの内の特定の1個と他
の2個との間で夫々゛差動構成をとり、この2種の差動
構成に2る検出信号の組合せによって欠陥を検出するよ
うにした点VCあり、第2の特徴とするところは、平面
状金属材料の表面欠陥全プローグ形渦電流探傷法により
検出する渦電流探傷装置において、隣り合う3個の検知
コイルの各々の中心が正三角形の頂点となるように、多
数の検知コイルを金属材料の材幅方向に全幅に亘って2
列に配置し、その各隣接する検知コイル間の差動構成を
とり、これらの差動構成による検出信号の組合せによっ
て欠陥を検出するようにした点にある。
The present invention has solved the above-mentioned problems, and its first feature is that an eddy current flaw detection device that detects surface defects in planar metal materials by the all-prologue eddy current flaw detection method is equipped with six detection coils. They are arranged so that the centers of all the coils are at the vertices of an equilateral triangle, and a differential configuration is established between a specific one of these sensing coils and the other two, and these two types of differential configurations are used. There is a point VC in which defects are detected by a combination of two detection signals.The second feature is that in an eddy current flaw detection device that detects surface defects of planar metal materials using a probe-type eddy current flaw detection method, , a large number of sensing coils are installed across the entire width of the metal material in such a way that the center of each of the three adjacent sensing coils is at the vertex of an equilateral triangle.
They are arranged in rows and have a differential configuration between adjacent detection coils, and defects are detected by a combination of detection signals from these differential configurations.

以下、本発明を図示の実施例に従って説明すると、狛6
図乃至恰8図は相互誘導法により平面状金属材料の表面
欠陥を検出するようにし九−実施例全示し、第6図及び
箔7図において、(8)は検出器で、ホルダ(9)と該
ホルダ(9)に装着し走3個のコイJL/ ホビン(1
0A)(l0B)(IOc)と該各ボビンCl0A)(
lOB)(10C)に夫々巻回した検知コイル(A) 
(B) (C) (!:から構成され、各検知コイル(
A) (B) (C) ld外側の励磁コイル(1B)
(lb)(lc)と内側の検出コイル(2a)(2b)
(2c)とからlffル。
Hereinafter, the present invention will be explained according to the illustrated embodiments.
Figures 8 to 8 show all embodiments for detecting surface defects on a planar metal material by the mutual induction method, and in Figure 6 and Figure 7, (8) is a detector, and a holder (9) Attach it to the holder (9) and run 3 carp JL/Hobin (1
0A)(l0B)(IOc) and each bobbin Cl0A)(
Detection coils (A) each wound around lOB) (10C)
(B) (C) (!: Consisting of each detection coil (
A) (B) (C) ld outer excitation coil (1B)
(lb) (lc) and inner detection coil (2a) (2b)
(2c) and lffle.

ホlレダ(9)は非磁性の電気的絶縁物であることが好
ましいが、非磁性金属であっても構わない。寸たボビン
rlOA)(lOB)rlOc)け迩゛常ボット形(壷
形)のフェライトコア(強磁性体)を用いるが、丸棒形
のフェライトコアも用い得るし、非磁性金属でも非磁性
電気的絶縁物でも使用可である。各検知コイル(A)(
B) (C)は各々の中心が正三角形の頂点となるよう
に隣接して配置され、(正三角形の頂点からずれた位置
も可)そ、の直径りけ検出すべき最小の欠陥の長さと同
程変ないし数倍程度とされている。
The holder (9) is preferably made of a non-magnetic electrical insulator, but may also be made of a non-magnetic metal. Usually a pot-shaped ferrite core (ferromagnetic material) is used, but a round bar-shaped ferrite core can also be used, and even non-magnetic metal can be used. It can also be used with standard insulators. Each detection coil (A) (
B) (C) are arranged adjacently so that their centers are the vertices of an equilateral triangle (positions shifted from the vertices of an equilateral triangle are also possible), and their diameter and length are the minimum defects to be detected. It is said to be about the same amount or several times that amount.

第8図は制餌1系のブロック図ケ示し、同図において、
(++lVi制御回路で、該制御回路Illは発振器(
D)、増幅器(FA)(FB)(FC)、移相器(SA
)(SB)(SC)、差動増幅器(L)A+ )C[A
2 )、位相検波器(R)I ’I(PD2)、タイミ
ング制御器(0等に工り構成される。発振器(D)は所
定周波数の交流電流全検知コイル(A) (B) (C
)の励磁コイルrla)(ib)(lc) VC与えて
それを励磁し、被検材の表向に渦電流(誘導iざ流)紫
流す。差!i)+増幅器(L)A+ )は検出コイル(
2a)に生じる誘導電圧PAと検出コイル(2b)に生
じる誘導電圧PBとを増幅器(FA)(FB)及び移相
器rsA)/SB)を介して入力し、この誘導7ざ王P
Aと誘導室1(1)Bとの差を求める。差動増幅器(D
A2)は検出コイル(2b)iで生じる誘導室[1fP
Bと検出コイlしく2c)に生じる誘導?I!王PCと
(I:増幅Q (FB)(FC)及び移相器(SB)(
SC)をブトして入力し、この誘導電王■゛13と誘導
?l!王PC吉のpきを氷める。タイミング制御器(G
) l−1発振器(D)の出力信号全入力し7て、位相
検波器(PI)+)CPD2)のタイミング全制御する
。位相検波器(Fol)け差動増幅器(11)の出力を
位相検波するC1とにより検出コイル(2a)(2b)
間のインピーダンス差のインピーダンス平面上での直交
成分出力VA−B及びHA−B’に得る。位相検波器(
1’D2)fi差動増幅器(Ilu)の出力を位相検波
することンこより検出1イル(21〕)(2c)間のイ
ンピーダンス差のインピーダンス平面上Tの直交成分出
力VC−B及びHe−B 1&:得る。増幅器(FA 
) (FC)及び移相器(5A)(SC) (7) y
J+’ IJ ニー ムケ自動若しくけ手動にて調整で
きるようになっている。
Figure 8 shows a block diagram of the feeding control system 1, and in the figure,
(++lVi control circuit, the control circuit Ill is an oscillator (
D), amplifier (FA) (FB) (FC), phase shifter (SA
)(SB)(SC), differential amplifier (L)A+ )C[A
2), a phase detector (R) I'I (PD2), a timing controller (0, etc.).The oscillator (D) has a predetermined frequency of AC current detection coils (A) (B) (C
)'s excitation coil (rla) (ib) (lc) is energized by applying VC, causing a purple eddy current (induced current) to flow on the surface of the test material. difference! i)+amplifier (L)A+) is the detection coil (
The induced voltage PA generated in 2a) and the induced voltage PB generated in the detection coil (2b) are inputted via amplifiers (FA) (FB) and phase shifters rsA)/SB),
Find the difference between A and induction chamber 1 (1) B. Differential amplifier (D
A2) is the induction chamber [1fP
B and the induction that occurs in the detection coil 2c)? I! King PC and (I: Amplification Q (FB) (FC) and phase shifter (SB) (
SC) and enter this induction power ■゛13 and induction? l! Freeze King PC Kichi's puki. Timing controller (G
) All output signals of the l-1 oscillator (D) are input 7, and the timing of the phase detector (PI) +)CPD2) is fully controlled. Detection coils (2a) (2b) are detected by phase detector (Fol) and C1 which detects the phase of the output of the differential amplifier (11).
The orthogonal component outputs VA-B and HA-B' on the impedance plane of the impedance difference between the two are obtained. Phase detector (
1'D2) Phase detection of the output of the fi differential amplifier (Ilu) is performed to detect the orthogonal component outputs of the impedance difference between Il (21) and (2c) on the impedance plane T VC-B and He-B 1&: get. Amplifier (FA)
) (FC) and phase shifter (5A) (SC) (7) y
J+' IJ Knee Muke It can be adjusted automatically or manually.

上記実施例の構成によれば、最初、金属材料(4)の表
面或いは表面近傍に有害な欠陥(7)の存在しない而即
ち健全面に各検知コイル(A) (B) (C)を置き
、増幅器(FAMFC)及び移相器(SA)(SC)の
ボリュームを位相検波器(Pr)+)(R)2)の出力
が金てOとなるようにしておくと、例えば検知コイル(
んの直下にのみ欠陥(7)が存在する場合には、検出コ
イル(2b)(2c)の誘導電圧PB、誘導電圧PCは
変化せず、検出コイル(2a)の誘導w1.匝PAのみ
変化する故、誘導電圧PA七誘導電圧PBとの間に差を
生じ、位相検波の結果位相検波器(Iす1)に検知コイ
ル(Mの直下の欠陥(7)に対F5″rる出力が得られ
る。この位相検波出力は欠陥(7)が存在1.たことに
よる検知コイル(A)のインピーダンス変化暇に近似的
に比例する。そして19図のけ)〜(へ)に示すように
検出端に対して代表的な表面欠陥である割れ(7)が種
々の向きや相対位置をもつ場合についても、従来の2コ
イル差動形のプローブと異なり確実に検出することがで
きる。即ち第9図の(イ)の場合K ij VA−B 
(Q、VC−B < Oとなり(ロ)の場合はVA−B
 > 01VC−B : Ol(ハ)の場合けVA−B
〉0、VC−BzQ、(勾)場合h VA−B<0. 
Vc−B= 0、(ホ)の場合けVA−B :; 0、
VC−B>0、(へ)の場合K 11 VA−Bく0、
VC−B < 0とナル。ナオ検知コイル(A)(B)
(c)ノいずれにも寄与するような欠陥の存在の確率は
極  “めてまれである。
According to the configuration of the above embodiment, each of the detection coils (A), (B), and (C) is initially placed on a healthy surface where there is no harmful defect (7) on or near the surface of the metal material (4). For example, if the volumes of the amplifier (FAMFC) and phase shifter (SA) (SC) are set so that the output of the phase detector (Pr)
When the defect (7) exists only directly under the detection coil (2b) (2c), the induced voltage PB and induced voltage PC of the detection coil (2b) and (2c) do not change, and the induction w1. of the detection coil (2a) does not change. Since only the voltage PA changes, a difference occurs between the induced voltage PA and the induced voltage PB, and as a result of phase detection, the phase detector (Isu1) detects the defect (7) directly under the detection coil (F5''). This phase detection output is approximately proportional to the impedance change time of the detection coil (A) due to the presence of defect (7). As shown in the figure, unlike conventional two-coil differential probes, it is possible to reliably detect cracks (7), which are typical surface defects, in various directions and relative positions with respect to the detection end. .That is, in the case (a) of Fig. 9, Kij VA-B
(Q, VC-B < O, and if (B), then VA-B
> 01VC-B: VA-B for Ol (c)
〉0, VC-BzQ, (gradient) if h VA-B<0.
In the case of Vc-B=0, (e) VA-B:; 0,
If VC-B>0, (to) then K 11 VA-Bku0,
VC-B < 0 and null. Nao detection coil (A) (B)
The probability of the existence of a defect that contributes to either of (c) is extremely rare.

第10図乃至爪12図は定電流駆動法により平面状金属
材料の表面欠陥を検出するようにした他の実施例を示し
、第10図及び咽11図に示すように検出器(sl f
i yJ−tv タi91 ト3個ノホビン(10A)
(10B)(l0C)と検知コイル八)(13)(c)
(!:がら構成される。ホルダ19Bl)’ホビンrl
OA)(IORX l0C) K ツいては第6図及び
第7図の場合と同様である。各検知フィル(A) (B
) fc)け各々の中心が正三角形の頂点、!:なるよ
うに隣接して配置されるか、検知コイIしくA) (B
) (C)は検出用のフィルのみで構成され、千の直径
りは検出すべき最小の欠陥(7)と同程度ないし数倍程
度の長さである。制御回路fll+は@12図に示すよ
うに箔8図の場合と同9<発振器の)、増幅器(FA)
(FB)(IrC)、移相器(’5A)(SB)(SC
)、差動増幅器(DAl)(DA2)、位相検波器(P
D+ )(PD2)及びタイミング制御器(G)等によ
り構成される。そl−で発振器(D)の出方を入力して
各検知フィル(A) (B)(C) K一定の振幅及び
位相をもつ交流電流を流す定電流駆動源(Q)を設け、
各検知コイルfA) (B) (C)の線端のSEEが
各検知コイル(A) (B) (C)のインピーダンス
差ソのものに比例するようにしている。従ってこの場合
欠陥(7)の検出の仕方は1lrJ記実施例の場合と同
様であり、種々の表面欠陥+71 k ?lfl実に検
出し得る。
10 to 12 show another embodiment in which surface defects of a planar metal material are detected by a constant current drive method, and as shown in FIGS. 10 and 11, a detector (sl f
i yJ-tv Thailand i91 3 Nohobin (10A)
(10B) (l0C) and detection coil 8) (13) (c)
(!: Constructed. Holder 19Bl) 'Hobinrl
OA) (IORX l0C) K The situation is the same as in FIGS. 6 and 7. Each detection filter (A) (B
) fc) ke each center is a vertex of an equilateral triangle,! : The detection carp should be placed adjacent to each other so that A) (B
) (C) consists only of a detection filter, and its diameter is about the same or several times as long as the smallest defect (7) to be detected. As shown in Figure @12, the control circuit fll+ is the same as in Figure 8, 9<of the oscillator), and an amplifier (FA).
(FB) (IrC), phase shifter ('5A) (SB) (SC
), differential amplifier (DAl) (DA2), phase detector (P
D+) (PD2), a timing controller (G), etc. Input the output of the oscillator (D) and install a constant current drive source (Q) that flows an alternating current with a constant amplitude and phase to each detection filter (A), (B), and (C).
The SEE at the wire end of each detection coil fA) (B) (C) is made to be proportional to the impedance difference of each detection coil (A) (B) (C). Therefore, in this case, the method of detecting defect (7) is the same as in the embodiment described in 1lrJ, and various surface defects +71 k ? lfl can actually be detected.

次にブルームやスラブ等の広幅の鋼材半成品や薄板、厚
板等の成品等の金属材料(4)の表面欠陥(7)金主面
に亘って検査する方法につめて説明する。
Next, a method for inspecting surface defects (7) over the main surface of metal materials (4) such as wide steel semi-finished products such as blooms and slabs, and finished products such as thin plates and thick plates will be explained.

この場合前述したように検知コイル(A)(13)(c
)の直径りを太きぐすると、欠陥検出の感度および分解
能が低下することヵ為ら次の2種の方法のいずれかを適
用する。
In this case, as mentioned above, the detection coil (A) (13) (c
), the sensitivity and resolution of defect detection decreases, so one of the following two methods is applied.

千のP!J1は、第13図に示すように検出器(8)を
広幅の金属材料(4)の幅方向に機械的走査させる方式
である。金属材料(4)は1ffl常コンベアライン上
を矢印(a)方向に定速で搬送されるため、走査速度V
が次の条件を満せば抜けなぐ金属材料(4)の主面の検
査を行なうことができる。
Thousand P! J1 is a method in which a detector (8) is mechanically scanned in the width direction of a wide metal material (4) as shown in FIG. Since the metal material (4) is conveyed at a constant speed on the 1ffl conveyor line in the direction of arrow (a), the scanning speed V
If the following conditions are satisfied, the main surface of the metal material (4) can be inspected without fail.

2・7−8≦” II: 0.7X2.Dlここで W
:被検材板幅 S:被検材搬送速度 a:有効探瘍範囲 D二″Jイル直径 連aスラ7’17)−例rH1W = 1500+o+
−5=10DO朋/分 検出すべき最小の欠陥の長さI
、zDχ3Dsmであるから、a=42ms  となり
、従って=1.2作勉 となる。
2.7-8≦” II: 0.7X2.Dl where W
: Test material plate width S: Test material conveyance speed a: Effective detection range D 2" J ile diameter continuous a slur 7'17) - Example rH1W = 1500 + o +
-5=10DO/min Minimum defect length to be detected I
, zDχ3Dsm, so a=42ms, and therefore =1.2 work.

上記には単一の検出器(8)を走査することにより、広
幅金属材料の全面を探傷する方法及び装置を開示したが
、検出器(8)を材料幅方向に一定間隔に複数個配置す
ることKよって、走査幅及び走査速変を減らすこともも
ちろん可能である。
Although the method and apparatus for detecting flaws on the entire surface of a wide metal material by scanning a single detector (8) have been disclosed above, a plurality of detectors (8) may be arranged at regular intervals in the width direction of the material. Therefore, it is of course possible to reduce the scanning width and scanning speed variation.

第2の方式は、晴14図に示すように多数の検知フィル
(A+XA2)・、−・・・(AJ1+ 1)(B T
 ) (B21・曲用(Bn)を金属材料(4)の表面
に全幅に亘って十の材幅方向に隙間な(2列に並設して
、隣り合う3個の検知コイル(A)(B)の各々の中心
が正三角形の頂点になるように配置する方式である。こ
の方式では機械的走査は不要であるが、検知コイル(A
) (B)の数を示T n 17)値がW/I)となる
。連鋳スラグの場合、−例としてW−1500m、n=
30mm  とするとn=50となり、検知コイlしく
A)(B)が略50個ずつ必要となる。差動のとり方は
一例として下記に示すような組合せが考えられる。
The second method uses a large number of detection filters (A+XA2)...(AJ1+1)(B T
) (B21/bending (Bn) is placed on the surface of the metal material (4) over the entire width in the width direction of the metal material (4) with a gap in the width direction of the metal material (2), and three adjacent detection coils (A) ( In this method, the centers of each of the sensing coils (A
) (B) indicates the number T n 17) The value is W/I). In the case of continuous cast slag - for example W-1500m, n=
If it is 30 mm, n=50, and approximately 50 each of detection coils A) and (B) are required. As an example of how to create a differential, the following combinations can be considered.

そしてこの場合の制御回路(11)は箸15図又は第1
6図に示すような構成になる。即ち、第15図では1個
の発振器(D)により(’2n−1−1)個の検知コイ
ルIA)(B)の各励磁コイル(1a+)(” 1a2
)・=41 an−t−1) (1b+ X 1b2)
= ・Dbn)’jc駆動し、(2吐1)個の増幅器(
FA+)(Ph2)・(FA411−+ )(FB+)
(FB2)・(FB+−1)及び移相器(SA1)(S
A2)=−(sAn41M SB+)(SB2)・・・
(SRn)を設けると共に、2n fl!の差動増幅器
(匿2)(DA31・・・(DAhl−11(DB+ 
1・・・l’DBn)及び位相検波器(Ph3)(PA
s)・・・(PAnト+)(R3+)・・rPBn) 
k Rけている。ま念拍16図では増Wr m (Ft
vrx;s)、!:移相器(’A)(S!’l)と差動
増’flFIL (m) ト位相検波器(PD)とを1
セツトのみ設け、名検知コイル(A) (B)からの銹
尋v8田を9ノ換タイミング発生器(R)の出力を受け
る切換器rW+)(w2)  K Xり順次切換えると
共に、位相検波器(PD)の出方をサンプルホールド器
(11によりサンプルホールドするようKL。
In this case, the control circuit (11) is shown in Fig. 15 or the first
The configuration is as shown in Figure 6. That is, in FIG. 15, one oscillator (D) generates each excitation coil (1a+) (''1a2) of ('2n-1-1) detection coils IA) and (B).
)・=41 an-t-1) (1b+X 1b2)
= ・Dbn)'jc drive, (2 discharges 1) amplifiers (
FA+) (Ph2)・(FA411-+)(FB+)
(FB2)/(FB+-1) and phase shifter (SA1) (S
A2)=-(sAn41M SB+)(SB2)...
(SRn) and 2n fl! Differential amplifier (2) (DA31...(DAhl-11(DB+)
1...l'DBn) and phase detector (Ph3) (PA
s)...(PAnto+)(R3+)...rPBn)
kR is getting better. In the 16th figure, increase Wr m (Ft
vrx;s),! : Phase shifter ('A) (S!'l) and differential intensifier 'flFIL (m) and phase detector (PD) are 1
A switch is provided that receives the output of the timing generator (R) from the detection coils (A) and (B) and sequentially switches the output of the timing generator (R). KL so that the output of (PD) is sampled and held by the sample and hold device (11).

ている。ただし、この場合1つの差動対に許される処理
時間−ごは次のようになる。即ち、2nT≦a15  
(二〇−7X2D/S)ζこで、a−有効探傷範囲 S−被検材搬送速変 D−コイル径 々なる。連鋳スラグの一例では、W= 1500+u+
、D =30m−n=50であり、S = 1000 
m/分である故T < i、4 D/ 2 nS、; 
0.025秒となる。そして通常の渦流探傷では5KH
z〜100KHzの試験周波数が用いられるが、5 K
Hzの場合1周期2X10−4秒ゆえ丁−12511’
6期となる。なお、箔15図及び@16図rけ回路を相
互誘導法により欠陥(7)を検出するように構成してい
るが、これに代え定電流駆動法により欠陥(7)を検出
できるように回路m収してもよい。
ing. However, in this case, the processing time allowed for one differential pair is as follows. That is, 2nT≦a15
(20-7X2D/S) ζ Here, a - Effective flaw detection range S - Test material conveyance speed change D - Coil diameter changes. In an example of continuous casting slag, W=1500+u+
, D = 30m-n = 50, and S = 1000
m/min, so T < i, 4 D/2 nS;
It becomes 0.025 seconds. And in normal eddy current testing, it is 5KH.
Test frequencies from z to 100 KHz are used, but 5 K
In the case of Hz, one period is 2X10-4 seconds, so D-12511'
This will be the 6th term. Note that the foil circuits shown in Fig. 15 and @16 are configured to detect the defect (7) by the mutual induction method, but instead of this, the circuit is configured to detect the defect (7) by the constant current drive method. m may be harvested.

次に実験結果につき記述する。Next, the experimental results will be described.

実施例 0被検材 熱延鋼板、表面温麿1000℃、1200騎
中畠 0材   速  500m/分 O検出方式 マルチコイル(tK14図の方式)制御回
路並設方式(@15図の方式)、コイル数40個 0試Wk同波u   50KHz Oコイル径  V2O朋 Oリフトオフ 5 rxrx Oプローグ  水冷式 O結  果  疵検出車89鴨c数回のサンプリングの
結果より) 実施例 O被検 材 連鋳スラグ、表面温度850″C1500
mm幅 C材   速   1m/分 0検出力式  6フイぜし差動機械走査方式C試験問波
敗  100KHz Oコイル径  ダろO關 Cリフトオフ   81uR Oプローグ  水冷式 %式% O結  果  割れ検出率82チ(スラグ冷却後の実施
々の対応より) なお、従来の差動プローグ(2つの検知コイルをスラブ
幅方向に並べた場合)では45チの検出率しか得られな
かったが、これは連鋳スラブの場合横割れの発生比率が
高く、これに対し検出率が非常に低かったことに起因す
ると考えられる。
Example 0 Test material Hot-rolled steel plate, surface temperature 1000°C, 1200 m/min O detection method Multi-coil (method shown in tK14), control circuit parallel arrangement method (method shown in Fig. 15), coil Several 40 pieces 0 test Wk same wave u 50KHz O coil diameter V2O friend O liftoff 5 rxrx O prologue water-cooled O result flaw detection car 89 duck c Based on the results of several samplings) Example O test Material Continuously cast slag, Surface temperature 850″C1500
mm width C material Speed 1m/min 0 detection force type 6 fixture differential mechanical scanning method C test question failure 100KHz O coil diameter Daro O connection C lift-off 81uR O prologue water-cooled type % type % O result crack detection rate 82 inches (based on the actual response after cooling the slag) The conventional differential probe (when two detection coils are arranged in the width direction of the slab) could only obtain a detection rate of 45 inches; This is thought to be due to the fact that the occurrence rate of transverse cracks was high in the case of cast slabs, and the detection rate was very low.

本発明によれば、3個の検知コイル全容々の中心が正三
角形の頂点となるように配置し、この検知コイIしの内
の特定の1個と他の2個との間の差l!IJ構成による
検出信号の組合せに1って欠陥を検出するようにしてい
るので、欠陥の検出に指向性が無(なり、様々の方向の
割れ等の表面欠陥全確実に検出できる。また、隣り合う
6個の検知コイルの各々の中心が正三角形の頂点になる
ように、多数の検知コイルを金属材料の材幅方向に全幅
に亘って2列に配置し、その各隣接する検知コイル間の
差動構成による検出信号の組合せによって欠陥を検出す
るようにしているので、検知コイル紫材幅方回に走査さ
伊ることなく、金属材料の全幅に亘って様々の方向の表
面欠陥を確実に検出でき、千の効果は著大である。
According to the present invention, the centers of all three sensing coils are arranged at the vertices of an equilateral triangle, and the difference l between a particular one of the sensing coils I and the other two is determined. ! Since defects are detected based on the combination of detection signals provided by the IJ configuration, there is no directivity in detecting defects, and surface defects such as cracks in various directions can be detected with certainty. A large number of sensing coils are arranged in two rows across the entire width of the metal material so that the center of each of the six matching sensing coils is at the vertex of an equilateral triangle, and the distance between each adjacent sensing coil is Defects are detected by a combination of detection signals using a differential configuration, so the detection coil does not have to scan across the width of the metal material, and can reliably detect surface defects in various directions across the entire width of the metal material. It can be detected, and the effect of thousands is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

箔1図及び第2図は夫々従来例を示す斜視図、第3図乃
至第5図は従来例を示す平面図、第6図は本発明の一実
施例を示す側面図、粱7図は同底面図、第8図は同制御
系のブロック図、第9図は作用説明用の平面図、8g1
0図は他の実施例を示す側面図、応11図は同底面図、
第12図は同ル1JIf[I]系のブロック図、第13
図は他の実施例全示す平面図、$14図は他の実施例を
示す平面図、第15図は同制御系のブロック図、第16
図は第15図の変形例を示す制御系のグロック図である
。 (4)・・・金属材料、(7)・・・欠陥、(A)(圃
(C)・・・検知コイル、III・VII机回路。 第9図 第13図 第74図 第15図 第76図
Figures 1 and 2 are perspective views of conventional examples, Figures 3 to 5 are plan views of conventional examples, Figure 6 is a side view of an embodiment of the present invention, and Figure 7 is a perspective view of a conventional example. The bottom view, Figure 8 is a block diagram of the control system, Figure 9 is a plan view for explaining the operation, 8g1
Figure 0 is a side view showing another embodiment, Figure 11 is a bottom view of the same,
Figure 12 is a block diagram of the same 1JIf [I] system, Figure 13
The figure is a plan view showing all other embodiments, Figure 14 is a plan view showing another embodiment, Figure 15 is a block diagram of the same control system, and Figure 16 is a plan view showing another embodiment.
This figure is a block diagram of a control system showing a modification of FIG. 15. (4)... Metal material, (7)... Defect, (A) (field (C)... Detection coil, III/VII mechanical circuit. Figure 9 Figure 13 Figure 74 Figure 15 Figure 76

Claims (1)

【特許請求の範囲】 1、 平面状金属材料の*面欠陥分プローブ形渦電流探
傷法により検出する渦電流探傷装置において、6個の検
知コイルを各々の中心が正三角1にの頂点となるように
配置し、この検知コイルの内の特定の1個と他の2個と
の間で夫々差動構成をとり、この2種の差動構成による
検出信号の組合せによって欠陥全検出するようにしたこ
とを特徴とする金属表面の渦電流探傷装置。 Z 平面状金属材料の表面欠陥をプローグ形渦電流探傷
法により検出する渦電流探傷装置fにおいて、隣り合う
6個の検知コイルの各々の中心が正三角形の頂点になる
ように、多数の検知コイルを金属材料の材幅方向に全幅
に亘って2列に配置し、七の各隣接する検知コイル間の
差動構成をとり、これらの差動構成による検出信号の組
合せによって欠陥全検出するようにしたことを特徴とす
る金FA表面の渦電流探傷装置。
[Claims] 1. In an eddy current flaw detection device that detects surface defects in planar metal materials using a probe-type eddy current flaw detection method, six detection coils are arranged so that the center of each is the vertex of an equilateral triangle 1. A differential configuration is established between a specific one of these detection coils and the other two, and all defects are detected by a combination of detection signals from these two types of differential configurations. This is an eddy current flaw detection device for metal surfaces. Z In an eddy current flaw detection device f that detects surface defects in planar metal materials using the prologue type eddy current flaw detection method, a large number of detection coils are arranged so that the center of each of the six adjacent detection coils is at the vertex of an equilateral triangle. are arranged in two rows across the entire width in the width direction of the metal material, a differential configuration is adopted between each of the seven adjacent detection coils, and all defects are detected by the combination of detection signals from these differential configurations. This is an eddy current flaw detection device for gold FA surfaces.
JP57120364A 1982-07-09 1982-07-09 Eddy current flaw detector for metallic surface Pending JPS5910846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57120364A JPS5910846A (en) 1982-07-09 1982-07-09 Eddy current flaw detector for metallic surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57120364A JPS5910846A (en) 1982-07-09 1982-07-09 Eddy current flaw detector for metallic surface

Publications (1)

Publication Number Publication Date
JPS5910846A true JPS5910846A (en) 1984-01-20

Family

ID=14784364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57120364A Pending JPS5910846A (en) 1982-07-09 1982-07-09 Eddy current flaw detector for metallic surface

Country Status (1)

Country Link
JP (1) JPS5910846A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375859U (en) * 1986-11-06 1988-05-20
JPH06179051A (en) * 1992-03-27 1994-06-28 Sumitomo Metal Ind Ltd Thin plate continuous manufacturing method and device
JP2006329642A (en) * 2005-05-23 2006-12-07 Kanazawa Inst Of Technology Defect inspection equipment
EP2866026A1 (en) * 2013-10-22 2015-04-29 Mitsubishi Heavy Industries, Ltd. Eddy current testing probe and eddy current testing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375859U (en) * 1986-11-06 1988-05-20
JPH06179051A (en) * 1992-03-27 1994-06-28 Sumitomo Metal Ind Ltd Thin plate continuous manufacturing method and device
JP2006329642A (en) * 2005-05-23 2006-12-07 Kanazawa Inst Of Technology Defect inspection equipment
EP2866026A1 (en) * 2013-10-22 2015-04-29 Mitsubishi Heavy Industries, Ltd. Eddy current testing probe and eddy current testing method
US9903838B2 (en) 2013-10-22 2018-02-27 Mitsubishi Heavy Industries, Ltd. Eddy current testing probe and eddy current testing method

Similar Documents

Publication Publication Date Title
WO2000008458A1 (en) Eddy-current flaw detector probe
US4303883A (en) Apparatus for detecting the center of a welded seam in accordance with fundamental harmonic component suppression
GB2262346A (en) Detecting defects in steel material
WO2017158898A1 (en) Inspection device, inspection method and non-contact sensor
US4207519A (en) Method and apparatus for detecting defects in workpieces using a core-type magnet with magneto-sensitive detectors
RU2442151C2 (en) Method for subsurface flaw detection in ferromagnetic objects
GB2071331A (en) Non-destructive Testing of Ferromagnetic Articles
WO2003091657A1 (en) Magnetic probe
US3271662A (en) Flaw detecting apparatus having multiple pick-up and exciting coils on the same side of the test piece
JPH0989843A (en) Eddy current flaw detection method and eddy current flaw detection device
JP2001318080A (en) Detection coil and inspecting device using the same
JPS5910846A (en) Eddy current flaw detector for metallic surface
JPH10197493A (en) Eddy-current flow detecting probe
US4675605A (en) Eddy current probe and method for flaw detection in metals
JP4175181B2 (en) Magnetic flux leakage flaw detector
JPH05142204A (en) Electromagnetic-induction type inspecting apparatus
RU2016404C1 (en) Method of detecting breakage of ropes of rubber-rope conveyer belt rope base
RU2841896C1 (en) Two-channel eddy current transducer for flaw detection
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
JPH06242076A (en) Electromagnetic flaw detecting equipment
JPS6015020B2 (en) Electromagnetic induction detection device using orthogonal crossed magnetic fields
JPH09166582A (en) Electromagnetic flaw detection
JP3648713B2 (en) Eddy current flaw detector
JPS6011493Y2 (en) Electromagnetic induction detection device
JPH07113788A (en) Probe coil for eddy current flaw detection