JP4175181B2 - Magnetic flux leakage flaw detector - Google Patents

Magnetic flux leakage flaw detector Download PDF

Info

Publication number
JP4175181B2
JP4175181B2 JP2003153956A JP2003153956A JP4175181B2 JP 4175181 B2 JP4175181 B2 JP 4175181B2 JP 2003153956 A JP2003153956 A JP 2003153956A JP 2003153956 A JP2003153956 A JP 2003153956A JP 4175181 B2 JP4175181 B2 JP 4175181B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic flux
sensor
flaw detector
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003153956A
Other languages
Japanese (ja)
Other versions
JP2004354282A (en
Inventor
廣幸 横田
元太郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003153956A priority Critical patent/JP4175181B2/en
Publication of JP2004354282A publication Critical patent/JP2004354282A/en
Application granted granted Critical
Publication of JP4175181B2 publication Critical patent/JP4175181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、磁性材、特に薄鋼板(薄板)を製造するラインに設置して被探傷材の内部欠陥、表面欠陥を探傷する漏洩磁束探傷装置に関し、特に、漏洩磁束を検出する磁気センサの感度校正を簡便かつ高精度に行うことを可能とする。
薄板の探傷に用いる磁気センサは、一般に、複数の磁気センサを連続して配置して、薄板を磁気センサに対して相対的に移動させながら広い面積の探傷を可能とするように構成される。本発明は、この複数個の磁気センサ(検出素子)を容易に感度校正することを可能とする。
【0002】
【従来の技術】
ブリキ、亜鉛鉄板、表面処理鋼板等の薄板を製造するラインにおいては、漏洩磁束式の探傷装置の導入が進みつつある(特許文献1等参照)。
漏洩磁束探傷の原理を図7に基づいて説明する。
図7に示すように、被探傷材である薄板1に直流励磁を掛けて薄板1内の内部欠陥3からの磁束7を飽和状態にし、当該欠陥による磁束7の乱れ(この乱れは、主に磁気抵抗の違いによって発生するものであることが知られている。)から漏れ出てくる磁束7を、磁気感知面11a を薄板に対向させて配置した磁気電気変換素子、すなわち、磁気センサ11にて電気信号に変換して検出する(特許文献1、特許文献2等参照)。
【0003】
次に、薄板に適用される漏洩磁束探傷装置の代表的な例を、図8に基づいて説明する。
図8において、被探傷材である薄板1が、非磁性ロール2に巻回して搬送されている。
非磁性ロール2上には、励磁コイル5を具備する磁化ヨーク6が配置され、搬送されている薄板1を励磁し、漏洩磁束を発生させる。そして、この漏洩磁束を磁気センサ11で検出し、薄板の欠陥検出を行う。なお、磁気センサ11は、図8の紙面に鉛直方向(すなわち、薄板の幅方向)に多数配置されており、薄板1の全面の探傷をカバーしている。例えば、幅500mm 程度の冷延鋼板ラインに設置する漏洩磁束探傷装置の場合、幅方向に300 個を超える磁気センサが配置される。なお、励磁コイル5を具備する磁化ヨーク6と磁気センサ11を一体化して磁気センサヘッド10が構成されている。
【0004】
磁気センサ11で検出した信号の出力である検出信号は、アンプ12で増幅されてさらに検査信号として出力され、その検査信号を入力として欠陥判定手段13において欠陥判定がなされる。
ところで、多数の磁気センサを備えた漏洩磁束探傷装置を使用するにあたっては、定期的に各センサの感度の変化を確認し調整する校正作業が必要になる。この感度校正には、検出対象の実際の欠陥サンプルを用いるか、もしくは、同等な検査出力となるような模擬サンプル、もしくは模擬的な磁気入力が用いられ、これらの模擬的な入力に基づいて、各センサの感度確認とゲイン調整を実施する。従来の感度調整方法や、感度調整機能を具備する装置には以下に示すものがあり、それぞれ既に実用化されている。
(1)検出素子(磁気センサ)の非磁気感知面11b 側に、一定交流磁界を発生するコイルと交流電源を配置し、そのコイルの磁界によって得られる検査出力が一定となる感度に調整する(特許文献3参照)。
(2)検出素子(磁気センサ)に磁界を発生する校正コイル(銅線)を巻き、そのコイルの磁界によって得られる検査出力が一定となる感度に調整する(特許文献4参照)。
(3)磁気センサの磁気感知面11a 側近傍に検査対象と同等な漏洩磁束を発生する疵サンプルを検査速度と同じ速度で移動、もしくは回転させるオフラインの感度校正装置を配置し、その疵サンプルによって得られる検査出力が一定となるように感度調整する(特許文献5参照)。なお、疵サンプルは、自然欠陥や同等の検査出力となる人工欠陥、例えば、ドリル穴や凹疵を用いる。また、人口疵に替えて磁性金属線を用いる検定方法も実用化されている(特許文献6参照)。
(4)感度校正用の校正ロールの表面に校正磁気発生装置を埋め込み、当該ロールを回転させながら模擬磁界を発生させ、装置のゲインを調整する(特許文献7参照)。
【0005】
【特許文献1】
特開昭56-61645号公報
【特許文献2】
特開2002-195984 号公報
【特許文献3】
特開平3 −134555号公報
【特許文献4】
特開平5 −10926 号公報
【特許文献5】
特開平11-108899 号公報
【特許文献6】
特開昭58−135954号公報
【特許文献7】
特開平11−211698号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記(1)のように検出素子(磁気センサ)の磁気感知面11a 側に校正用のコイルを配するためには、探傷装置をオフライン側に移動する必要がある。
上記(2)では、一列に配置した多数の検出素子(磁気センサ)のそれぞれに校正コイル(銅線)を巻くことから、構造が複雑になり、また、校正コイルの分だけ個々の磁気センサを離間させる必要があり、不感帯が生じて検出能が低下する恐れがある。
【0007】
上記(3)と(4)では、探傷装置をオフライン側に移動し、かつ、校正のための大がかりなオフライン設備を用意しておく必要がある。
また、探傷装置は、できるだけ短時間に校正を行い、操業に復帰させる必要があることから、装置の移動や脱着、あるいは、校正に要する作業時間を短縮する必要がある。
【0008】
本発明は、探傷装置をオフライン側に移動させることなく、オンライン位置で短時間に感度校正を行うことを可能とする漏洩磁束探傷装置を提供するものである。
【0009】
【課題を解決するための手段】
本発明は、磁性材に適用する漏洩磁束探傷装置であって、前記磁性材からの漏洩磁束を模した磁束を発生することのできる導線を具備するにあたり、該導線は導線対とされ、一列に並設された複数の磁気センサを前記導線対で挟まないよう、磁気感知面と反対側の非磁気感知面側に配置され、前記一列に並設された複数の磁気センサの非磁気感知面と並行し、前記導線対に流れる電流方向が互いに異なる平行導線としてなることを特徴とする漏洩磁束探傷装置によって上記課題を解決した
【0010】
【発明の実施の形態】
本発明の感度校正機能を具備してなる漏洩磁束探傷装置の好適な実施の形態を図1に基づいて説明する。なお、図9において説明した従来の漏洩磁束探傷装置と同一の部材には同一の番号を付し、再度の説明を省略する。また、図1では、薄板1を巻きつけてなる非磁性ロール2の記載を省略しているが、非磁性ロール2は本発明に必須のものではない。
【0011】
本発明の図1に示す実施形態では、磁性材(薄板1)の幅方向に多数配設してなる磁気センサ11の非磁気感知面11b に、感度校正用として磁性材からの漏洩磁束を模した磁束を発生する導線15を具備してなることを特徴とする。非磁気感知面11b 側に校正装置の要部を構成する感度校正用の導線を配置することにより、磁気感知面11a 側にある、薄板1や非磁性ロール2との干渉をさけるために探傷装置をオフライン側に退避することなく校正ができるようになる。
【0012】
この導線15は、磁気センサ11の非磁気感知面11b 側に並行し、電流方向が互いに異なる導線対であることを好適とする。特に、磁気センサ11が、薄板1の幅方向に一列に並設されてなり、導線15が、一列に並設された当該磁気センサ11に並行してなる1対の平行導線である1ターンコイルであることを好適とする。
このように、1ターンコイルの平行導線としてなる導線15を配することで図2に示す磁束20が生じ、その磁束20が磁気センサ11を垂直に横切ることになる。そして、磁気センサ11を横切る磁束20は、導線15に流す電流を調整することで、欠陥に起因して発生する漏洩磁束を検知する磁気感知面11a 側での感知レベルと同等のレベルに調整することは容易である。
【0013】
なお、導線15を2ターン以上のコイルとして配置してもよいことは言うまでもないが、構造が複雑となる。
すでに説明したように、漏洩磁束探傷装置を冷延鋼板ラインに設置する場合、磁気センサ11のチャネル数は幅方向に300 を超えることになる。そのため、通常は、図3あるいは図5に示すように20個程度のセンサを1つのセンサブロック17に集約し、そのセンサブロック17をセンサホルダ18に装着する工夫がなされている。ここで、センサブロック17には、磁気センサ11に接続した接続ピン17a を設けておき、その接続ピン17a をセンサホルダ18の接続孔18a に挿入する。なお、接続孔18a はアンプ12に接続されている。
【0014】
なお、図4に示すようように、センサブロック17内の磁気センサ11の磁気感知面11a と反対側の裏面近傍に導線15を埋め込んでおくと、導線15と薄板1等との干渉による、導線の変形等に起因する故障を避けることができる。ただし、この場合、センサブロック17間で導線15を互いに接続することが必要となる。
また、磁気センサ11の非磁気感知面11b 側に導線15を図5に示すように引き回しても、個々の磁気センサに対しては、すでに説明した実施形態と同等の1ターンコイルとして機能する。さらに、各磁気センサに対して個別に、非磁気感知面11b 側に校正用の導線を個別に配置してもよいことは明らかである。
【0015】
本発明において、導線15に入力する模擬信号は、実際の欠陥がオンラインで通過するときの時間/信号強度プロファイルを入力するとよい。また、入力電圧(あるいは電流)の波高値を任意に選択することで種々の欠陥を模することができる。
一例として、入力する模擬信号を図6(a)に示す。図は100msec ごとに2msecの欠陥に相当する信号が入力する場合を模している。信号強度は、1Aである。模擬信号の波形は、再現が容易でかつ発生させやすい矩形波(図6(a))や半波の正弦波とすることを好適とする。図6(b)は、磁気センサから信号強度2Vの検出信号を得る様子を示す。そして、この検出信号を目標の検査信号の強度に合わせる様にアンプのゲインを調整することで容易に高精度に感度の校正をおこなうことができる。
【0016】
【発明の効果】
本発明によって、探傷装置をオフラインに引き出す必要もなくなった。また、300 個を超える多数の磁気センサの感度校正をほぼ同時に実施することができ、感度校正に要する時間を大幅に短縮することができた。
【図面の簡単な説明】
【図1】本発明の感度校正機能を具備した漏洩磁束探傷装置の構成を示す模式図(a)と、そのA−A視図(b)である。
【図2】本発明の感度校正機能を適用した場合の磁束分布を示す模式図である。
【図3】漏洩磁束探傷装置における感度校正用導線の配置例を示す模式図である。
【図4】感度校正用導線をセンサホルダに組み込んで配置した一例を示す模式図である。
【図5】センサホルダに組み込んだ感度校正用導線の別の配置例を示す模式図である。
【図6】感度校正用導線に入力する模擬信号の好適例(a)と、その場合のセンサからの検出信号(b)を示す時間/信号強度プロファイルの模式図である。
【図7】漏洩磁束探傷の原理説明図である。
【図8】漏洩磁束探傷装置の代表的な例を示す模式図である。
【符号の説明】
1 薄鋼板(薄板)
2 非磁性ロール
3 内部欠陥
5 励磁コイル
6 磁化ヨーク
7 漏洩磁束
10 磁気センサヘッド
11 磁気センサ
11a 磁気感知面
11b 非磁気感知面
12 アンプ(増幅器)
13 欠陥判定手段
15 コイル導線
17 センサブロック
17a 接続ピン
18 センサホルダ
18a 接続孔
20 磁束
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a leakage magnetic flux inspection apparatus that is installed in a line for manufacturing a magnetic material, particularly a thin steel plate (thin plate), and detects an internal defect and a surface defect of a material to be detected, and in particular, a sensitivity of a magnetic sensor for detecting leakage magnetic flux Calibration can be performed easily and with high accuracy.
In general, a magnetic sensor used for flaw detection on a thin plate is configured such that a plurality of magnetic sensors are continuously arranged so that flaw detection over a wide area is possible while moving the thin plate relative to the magnetic sensor. The present invention makes it possible to easily calibrate the sensitivity of the plurality of magnetic sensors (detecting elements).
[0002]
[Prior art]
In a line for producing a thin plate such as a tin plate, a galvanized iron plate, a surface-treated steel plate, etc., introduction of a leakage magnetic flux type flaw detection apparatus is proceeding (see Patent Document 1).
The principle of leakage magnetic flux flaw detection will be described with reference to FIG.
As shown in FIG. 7, direct current excitation is applied to the thin plate 1 that is the material to be inspected to saturate the magnetic flux 7 from the internal defect 3 in the thin plate 1, and the magnetic flux 7 is disturbed by the defect (this disturbance is mainly It is known that the magnetic flux 7 leaks from the magneto-resistive element, that is, the magnetic sensor 11 arranged with the magnetic sensing surface 11a facing the thin plate. And converted into an electrical signal for detection (see Patent Document 1, Patent Document 2, etc.).
[0003]
Next, a typical example of a leakage magnetic flux flaw detector applied to a thin plate will be described with reference to FIG.
In FIG. 8, a thin plate 1 that is a flaw detection material is wound around a nonmagnetic roll 2 and conveyed.
A magnetizing yoke 6 having an exciting coil 5 is disposed on the nonmagnetic roll 2 and excites the transported thin plate 1 to generate a leakage magnetic flux. Then, the leakage magnetic flux is detected by the magnetic sensor 11, and the defect of the thin plate is detected. A large number of magnetic sensors 11 are arranged in the vertical direction (that is, the width direction of the thin plate) on the paper surface of FIG. 8 to cover flaw detection on the entire surface of the thin plate 1. For example, in the case of a leakage magnetic flux flaw detector installed on a cold-rolled steel plate line having a width of about 500 mm, more than 300 magnetic sensors are arranged in the width direction. A magnetic sensor head 10 is constructed by integrating a magnetizing yoke 6 having an exciting coil 5 and a magnetic sensor 11.
[0004]
A detection signal which is an output of a signal detected by the magnetic sensor 11 is amplified by the amplifier 12 and further output as an inspection signal, and the defect determination means 13 makes a defect determination using the inspection signal as an input.
By the way, when using a leakage magnetic flux flaw detector having a large number of magnetic sensors, it is necessary to perform a calibration work for periodically checking and adjusting changes in sensitivity of each sensor. For this sensitivity calibration, an actual defect sample to be detected is used, or a simulated sample or a simulated magnetic input that provides an equivalent inspection output is used. Based on these simulated inputs, Check the sensitivity of each sensor and adjust the gain. Conventional sensitivity adjustment methods and apparatuses having a sensitivity adjustment function include the following, which have already been put into practical use.
(1) A coil that generates a constant alternating magnetic field and an alternating current power source are arranged on the non-magnetic sensing surface 11b side of the detection element (magnetic sensor), and the inspection output obtained by the magnetic field of the coil is adjusted to a constant sensitivity ( (See Patent Document 3).
(2) A calibration coil (copper wire) that generates a magnetic field is wound around the detection element (magnetic sensor), and the inspection output obtained by the magnetic field of the coil is adjusted to a constant sensitivity (see Patent Document 4).
(3) An off-line sensitivity calibration device is installed near the magnetic sensing surface 11a side of the magnetic sensor to move or rotate the saddle sample that generates a leakage flux equivalent to the inspection target at the same speed as the inspection speed. The sensitivity is adjusted so that the obtained inspection output is constant (see Patent Document 5). In addition, a natural defect and the artificial defect used as an equivalent test output, for example, a drill hole and a concave pit, are used for a saddle sample. In addition, a test method using a magnetic metal wire in place of the artificial cage has been put into practical use (see Patent Document 6).
(4) A calibration magnetism generator is embedded on the surface of a calibration roll for sensitivity calibration, a simulated magnetic field is generated while rotating the roll, and the gain of the apparatus is adjusted (see Patent Document 7).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 56-61645 [Patent Document 2]
JP 2002-195984 A [Patent Document 3]
JP-A-3-134555 [Patent Document 4]
JP-A-5-10926 [Patent Document 5]
Japanese Patent Laid-Open No. 11-108899 [Patent Document 6]
Japanese Patent Laid-Open No. 58-135954 [Patent Document 7]
JP-A-11-211698 [0006]
[Problems to be solved by the invention]
However, in order to arrange the calibration coil on the magnetic sensing surface 11a side of the detection element (magnetic sensor) as in (1) above, it is necessary to move the flaw detection device to the offline side.
In the above (2), the calibration coil (copper wire) is wound around each of a large number of detection elements (magnetic sensors) arranged in a row, so that the structure becomes complicated. It is necessary to separate them from each other, and there is a possibility that a dead zone occurs and the detection ability is lowered.
[0007]
In the above (3) and (4), it is necessary to move the flaw detection apparatus to the off-line side and prepare a large off-line facility for calibration.
In addition, since the flaw detection apparatus needs to be calibrated in as short a time as possible and returned to operation, it is necessary to reduce the work time required for the movement and detachment of the apparatus or for calibration.
[0008]
The present invention provides a leakage magnetic flux flaw detector capable of performing sensitivity calibration in a short time at an online position without moving the flaw detector to the offline side.
[0009]
[Means for Solving the Problems]
The present invention relates to a magnetic flux leakage inspection apparatus applied to a magnetic material, when comprising a conductor capable of generating a magnetic flux which simulates the leakage magnetic flux from the magnetic material, conductor line is the conductor pairs, in a row The non-magnetic sensing surfaces of the plurality of magnetic sensors arranged in a row are arranged on the side of the non-magnetic sensing surface opposite to the magnetic sensing surface so as not to sandwich the plurality of magnetic sensors arranged in parallel with the pair of conductors. in parallel, to solve the above problems by leakage flux flaw detection apparatus and a current direction flowing through the conductor pair is formed by the different parallel wires.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of a leakage magnetic flux flaw detector having a sensitivity calibration function of the present invention will be described with reference to FIG. In addition, the same number is attached | subjected to the same member as the conventional leakage magnetic flux flaw detector demonstrated in FIG. 9, and description for the second time is abbreviate | omitted. Moreover, in FIG. 1, although description of the nonmagnetic roll 2 formed by winding the thin plate 1 is omitted, the nonmagnetic roll 2 is not essential to the present invention.
[0011]
In the embodiment shown in FIG. 1 of the present invention, the leakage magnetic flux from the magnetic material is simulated for sensitivity calibration on the nonmagnetic sensing surface 11b of the magnetic sensor 11 arranged in the width direction of the magnetic material (thin plate 1). It is characterized by comprising a conducting wire 15 for generating a magnetic flux. In order to avoid interference with the thin plate 1 and the nonmagnetic roll 2 on the magnetic sensing surface 11a side by arranging a sensitivity calibration lead wire constituting the main part of the calibration device on the nonmagnetic sensing surface 11b side Can be calibrated without evacuating to the offline side.
[0012]
The conducting wire 15 is preferably a conducting wire pair parallel to the nonmagnetic sensing surface 11b side of the magnetic sensor 11 and having different current directions. In particular, the magnetic sensor 11 is arranged in a row in the width direction of the thin plate 1, and the conducting wire 15 is a one-turn coil that is a pair of parallel conducting wires in parallel with the magnetic sensor 11 arranged in a row. It is preferable that
As described above, by arranging the conducting wire 15 as a parallel conducting wire of the one-turn coil, the magnetic flux 20 shown in FIG. 2 is generated, and the magnetic flux 20 crosses the magnetic sensor 11 vertically. Then, the magnetic flux 20 traversing the magnetic sensor 11 is adjusted to a level equivalent to the sensing level on the magnetic sensing surface 11a side for detecting the leakage magnetic flux generated due to the defect by adjusting the current flowing through the conducting wire 15. It is easy.
[0013]
Needless to say, the conductor 15 may be arranged as a coil having two or more turns, but the structure becomes complicated.
As already described, when the leakage magnetic flux flaw detector is installed in the cold-rolled steel plate line, the number of channels of the magnetic sensor 11 exceeds 300 in the width direction. For this reason, usually, as shown in FIG. 3 or FIG. 5, about 20 sensors are gathered in one sensor block 17, and the sensor block 17 is mounted on the sensor holder 18. Here, the sensor block 17 is provided with a connection pin 17a connected to the magnetic sensor 11, and the connection pin 17a is inserted into the connection hole 18a of the sensor holder 18. The connection hole 18a is connected to the amplifier 12.
[0014]
As shown in FIG. 4, if the conductor 15 is embedded in the vicinity of the back surface opposite to the magnetic sensing surface 11a of the magnetic sensor 11 in the sensor block 17, the conductor due to interference between the conductor 15 and the thin plate 1 etc. It is possible to avoid failures caused by deformation of the material. However, in this case, it is necessary to connect the conducting wires 15 between the sensor blocks 17.
Further, even if the lead wire 15 is routed to the non-magnetic sensing surface 11b side of the magnetic sensor 11 as shown in FIG. 5, it functions as a one-turn coil equivalent to the already described embodiment for each magnetic sensor. Further, it is apparent that a calibration lead may be individually arranged on the non-magnetic sensing surface 11b side for each magnetic sensor.
[0015]
In the present invention, the simulation signal input to the conductor 15 may be a time / signal intensity profile when an actual defect passes online. Various defects can be simulated by arbitrarily selecting the peak value of the input voltage (or current).
As an example, an input simulation signal is shown in FIG. In the figure, a signal corresponding to a defect of 2 msec is input every 100 msec. The signal strength is 1A. The waveform of the simulation signal is preferably a rectangular wave (FIG. 6A) that is easy to reproduce and easy to generate, or a half-wave sine wave. FIG. 6B shows how a detection signal having a signal intensity of 2 V is obtained from the magnetic sensor. The sensitivity can be easily calibrated with high accuracy by adjusting the gain of the amplifier so that the detection signal matches the intensity of the target inspection signal.
[0016]
【The invention's effect】
The present invention also eliminates the need to pull the flaw detection device off-line. In addition, sensitivity calibration of a large number of magnetic sensors exceeding 300 was performed almost simultaneously, and the time required for sensitivity calibration could be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram (a) showing a configuration of a leakage magnetic flux flaw detector having a sensitivity calibration function of the present invention, and an AA view (b) thereof.
FIG. 2 is a schematic diagram showing a magnetic flux distribution when the sensitivity calibration function of the present invention is applied.
FIG. 3 is a schematic diagram showing an example of arrangement of sensitivity calibration lead wires in a leakage magnetic flux flaw detector.
FIG. 4 is a schematic view showing an example in which a sensitivity calibration lead is incorporated and arranged in a sensor holder.
FIG. 5 is a schematic view showing another arrangement example of the sensitivity calibration lead wire incorporated in the sensor holder.
FIG. 6 is a schematic diagram of a time / signal intensity profile showing a suitable example (a) of a simulated signal input to a sensitivity calibration lead and a detection signal (b) from the sensor in that case.
FIG. 7 is a diagram for explaining the principle of leakage magnetic flux flaw detection.
FIG. 8 is a schematic diagram showing a typical example of a leakage magnetic flux flaw detector.
[Explanation of symbols]
1 Thin steel plate (thin plate)
2 Nonmagnetic roll 3 Internal defect 5 Excitation coil 6 Magnetization yoke 7 Leakage magnetic flux
10 Magnetic sensor head
11 Magnetic sensor
11a Magnetic sensing surface
11b Non-magnetic sensing surface
12 Amplifier
13 Defect judgment means
15 Coil conductor
17 Sensor block
17a connection pin
18 Sensor holder
18a Connection hole
20 Magnetic flux

Claims (1)

磁性材に適用する漏洩磁束探傷装置であって、
前記磁性材からの漏洩磁束を模した磁束を発生することのできる導線を具備するにあたり、該導線は導線対とされ、一列に並設された複数の磁気センサを前記導線対で挟まないよう、磁気感知面と反対側の非磁気感知面側に配置され、前記一列に並設された複数の磁気センサの非磁気感知面と並行し、前記導線対に流れる電流方向が互いに異なる平行導線としてなることを特徴とする漏洩磁束探傷装置。
A leakage magnetic flux flaw detector applied to a magnetic material,
In providing a conductor that can generate magnetic flux imitating leakage magnetic flux from the magnetic material, the conductor is a conductor pair, so that a plurality of magnetic sensors arranged in parallel in a row are not sandwiched between the conductor pairs. Parallel conductors arranged on the non-magnetic sensing surface side opposite to the magnetic sensing surface and parallel to the non-magnetic sensing surfaces of the plurality of magnetic sensors arranged in a row and having different current directions flowing in the pair of conductors. A leakage magnetic flux flaw detector characterized by comprising
JP2003153956A 2003-05-30 2003-05-30 Magnetic flux leakage flaw detector Expired - Fee Related JP4175181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153956A JP4175181B2 (en) 2003-05-30 2003-05-30 Magnetic flux leakage flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153956A JP4175181B2 (en) 2003-05-30 2003-05-30 Magnetic flux leakage flaw detector

Publications (2)

Publication Number Publication Date
JP2004354282A JP2004354282A (en) 2004-12-16
JP4175181B2 true JP4175181B2 (en) 2008-11-05

Family

ID=34048741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153956A Expired - Fee Related JP4175181B2 (en) 2003-05-30 2003-05-30 Magnetic flux leakage flaw detector

Country Status (1)

Country Link
JP (1) JP4175181B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432665C (en) * 2005-08-05 2008-11-12 营口市北方检测设备有限公司 Online detecting device and method for two-field leakage magnetic flux of defects on steel products surface
JP4742757B2 (en) * 2005-09-02 2011-08-10 Jfeスチール株式会社 Magnetic flux leakage inspection device
JP2010014701A (en) * 2008-06-04 2010-01-21 Toshiba Corp Array-type magnetic sensor substrate
TW201100791A (en) * 2009-03-09 2011-01-01 Toshiba Kk Array-type magnetic sensor substrate
JP6355097B2 (en) * 2013-10-03 2018-07-11 Jukiオートメーションシステムズ株式会社 Mounting system, calibration method and program
JP6327185B2 (en) * 2015-03-24 2018-05-23 Jfeスチール株式会社 Sensitivity correction method and sensitivity correction apparatus for eddy current flaw detector
JP6565849B2 (en) * 2016-09-26 2019-08-28 Jfeスチール株式会社 Magnetic flux leakage inspection device
KR20230014782A (en) * 2020-07-03 2023-01-30 제이에프이 스틸 가부시키가이샤 Sensitivity calibration method, inspection device and magnetic sensor group

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339762B2 (en) * 1995-06-02 2002-10-28 新日本製鐵株式会社 Steel strip defect detector
JP3303650B2 (en) * 1996-02-20 2002-07-22 日本鋼管株式会社 Calibration method of magnetic sensor array
JP3317178B2 (en) * 1997-02-27 2002-08-26 日本鋼管株式会社 Array sensor sensitivity calibration method and device

Also Published As

Publication number Publication date
JP2004354282A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
EP2084524B1 (en) Magnetic sensor apparatus for detecting defects
US6400146B1 (en) Sensor head for ACFM based crack detection
JP5522699B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using pulse magnetism
US20050093536A1 (en) Manual probe carriage system and method of using the same
JP4175181B2 (en) Magnetic flux leakage flaw detector
JP2008032575A (en) Eddy current measuring probe and flaw detection device using it
WO2018100715A1 (en) Damage evaluation method and damage evaluation device for magnetic linear object
JP4742757B2 (en) Magnetic flux leakage inspection device
RU2566416C1 (en) Device for eddy-current magnetic examination of ferromagnetic objects
JP2007163263A (en) Eddy current flaw detection sensor
JP3303650B2 (en) Calibration method of magnetic sensor array
JPH06281625A (en) Device for calibrating sensitivity of leakage magnetic flaw detection device
KR100946285B1 (en) The apparatus for detecting a wire rope using an eddy current
JP2005031014A (en) Magnetic sensor
JP2004294341A (en) Flaw detection method and flaw detection apparatus by pulsed remote field eddy current
Pelkner et al. MR-based eddy current probe design for hidden defects
JP2617605B2 (en) Magnetic measuring device and diagnostic method for magnetic flaw detector
JP6565849B2 (en) Magnetic flux leakage inspection device
KR20120015566A (en) Apparatus for detecting thickness of the conductor using dual core
JPH05142204A (en) Electromagnetic-induction type inspecting apparatus
JPH05203629A (en) Electromagnetic flaw detection and device
JP2019039779A (en) Exciting coil, nondestructive inspection device, and nondestructive inspection method
WO1992021963A1 (en) Method for sensing magnetism and device thereof
JPH07113788A (en) Probe coil for eddy current flaw detection
JP3223991U (en) Nondestructive inspection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4175181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees