JPS62145162A - Split type rotary magnetic field eddy current flaw detector - Google Patents

Split type rotary magnetic field eddy current flaw detector

Info

Publication number
JPS62145162A
JPS62145162A JP60286610A JP28661085A JPS62145162A JP S62145162 A JPS62145162 A JP S62145162A JP 60286610 A JP60286610 A JP 60286610A JP 28661085 A JP28661085 A JP 28661085A JP S62145162 A JPS62145162 A JP S62145162A
Authority
JP
Japan
Prior art keywords
detection
magnetic field
coil
inspected
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60286610A
Other languages
Japanese (ja)
Inventor
Michiaki Takahashi
高橋 道明
Tetsuya Oba
大庭 哲哉
Mitsuo Yoshida
吉田 三男
Kazuyoshi Miyazawa
宮沢 和義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60286610A priority Critical patent/JPS62145162A/en
Publication of JPS62145162A publication Critical patent/JPS62145162A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a detection output from being deteriorated due to a gas variation, by executing an inspection by making a detecting part constituted of an exciting coil which is divided in the peripheral direction of a material to be inspected, and plural pieces of detecting coils, follow the material to be inspected. CONSTITUTION:In a slot of the inside periphery of an exciting iron core 2 which has been divided in the peripheral direction of a material to be inspected 1, an exciting coil 4 is provided so that a winding of each phase of three phases is placed at every two slots each. On the side of the material to be inspected 1 of this exciting coil 4, plural pieces of detecting coils 6a... are placed in the peripheral direction. ACs from a low frequency power source 7 and a high frequency power source 8 are superposed by a waveform synthesizer 9, converted to a three-phase AC by shifting a phase by 120 deg. each, amplified by a power amplifier 10, and applied to the energizing coil 4. An eddy current which is induced on the surface of the material to be inspected by a shifting magnetic field generated by the energizing coil 4 is detected by the detecting coils 6a..., and amplified by an amplifier 11. Subsequently, after a detection by a detector 13, a signal of the detecting coils 6a... is detected by synchronizing with a moving speed of a magnetic field by a switching circuit 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、キューり点以上の熱間状態にある鉄鋼製品等
の磁性体もしくはアルミニウム製品等の非磁性体の被検
材の渦流探傷装置に関するものであり、特に被検材のサ
イズ変更、被検材の振動によるギャップ変動による検出
能力の低下を防止し、疵の検出力向上を図る装置に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an eddy current flaw detection device for test materials such as magnetic materials such as steel products or non-magnetic materials such as aluminum products that are in a hot state above the cue point. In particular, it relates to a device that prevents a decrease in detection ability due to gap fluctuations due to changes in the size of the material to be inspected or vibrations of the material to be inspected, and improves the ability to detect flaws.

〔従来の技術〕[Conventional technology]

鉄鋼製品及び非鉄金属製品に対する品質要求水準は近年
ますます高度化しており、特に鉄鋼製品における表面疵
の品質レベルは二次加工における熱間鍛造あるいは冷間
鍛造時の製品破壊等の重大な不良につながるため、その
内容は厳しくなっている。このため、従来より鉄鋼製造
工程における造り込み段階での品質管理は勿論、最終製
品段階での非破壊的な検査によって表面疵のチェックが
行われている。又、最近は、省プロセス、省コスト等の
目的から製造中間段階、即ち中間素材における熱間状態
での表面疵検査の要求が強まっている。
Quality requirements for steel products and non-ferrous metal products have become increasingly sophisticated in recent years, and the quality level of surface flaws in steel products in particular can lead to serious defects such as product destruction during hot forging or cold forging during secondary processing. Because of the connection, the content has become stricter. For this reason, surface flaws have conventionally been checked by non-destructive inspection at the final product stage, as well as quality control at the build-up stage in the steel manufacturing process. Furthermore, recently, there has been an increasing demand for surface flaw inspection in the intermediate stage of manufacturing, that is, in the hot state of intermediate materials, for the purpose of process and cost savings.

従来、熱間状態での表面疵検査は、渦流探傷方法による
のが一般的である。渦流探傷方法は、例えば検査機器ニ
ュース第579号(昭和59年4月5日付)X、′7開
示されているように渦電流損失発生用の磁界化成用励磁
コイルと、ワレ疵による渦電流変化を誘起電圧又はイン
ピーダンス変化として検知するための検知コイルとから
なるもので、励磁及び検知の仕方により三方式に分けら
れ、励磁と検知を同一のコイルで行うものを自己誘導型
、別々のコイルで行うものを相互誘導型という。
Conventionally, surface flaw inspection in a hot state has generally been performed using an eddy current flaw detection method. The eddy current flaw detection method uses an excitation coil for magnetic field formation to generate eddy current loss, and eddy current changes due to cracks, as disclosed in Inspection Equipment News No. 579 (dated April 5, 1980) X, '7. It consists of a detection coil to detect induced voltage or impedance change, and is divided into three types depending on the method of excitation and detection.The self-induction type uses the same coil for excitation and detection, and the self-induction type uses separate coils. What is done is called a mutual induction type.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第7図に丸棒、板材、部品等の表面疵検査に一般的に使
用される相互誘導型のプローブ型コイルによる探傷の様
子を示す。プローブ型コイル22は、励磁コイル4と検
知コイル6とから構成され、被検材1がプローブ型コイ
ル22を矢印23方向に通過する場合、励磁コイル4及
び検知コイル6の真下にある被検材1の表面にワレ疵が
あると、ワレ疵によって発生する渦電流変化を検知コイ
ル6で検出する事が出来る。第8図にプローブ型コイル
による探傷装置の構成の一例を示す。励磁コイル4によ
って発生する渦電流を検知コイル6で検出し、平衡回路
24からの出力信号を増幅器11により増幅後、発振器
25の励磁周波数で検波器13により周期検波して、直
流増幅器26により増幅後、記録計16に探傷信号が記
録される。
FIG. 7 shows a state of flaw detection using a mutual induction type probe type coil which is generally used for inspecting surface flaws on round bars, plate materials, parts, etc. The probe type coil 22 is composed of an excitation coil 4 and a detection coil 6. When the specimen 1 passes through the probe type coil 22 in the direction of an arrow 23, the specimen directly below the excitation coil 4 and the detection coil 6 If there are cracks on the surface of the material 1, the detection coil 6 can detect changes in eddy current caused by the cracks. FIG. 8 shows an example of the configuration of a flaw detection device using a probe type coil. The eddy current generated by the excitation coil 4 is detected by the detection coil 6, and the output signal from the balance circuit 24 is amplified by the amplifier 11, then periodically detected by the detector 13 at the excitation frequency of the oscillator 25, and amplified by the DC amplifier 26. After that, the flaw detection signal is recorded on the recorder 16.

この様なプローブ型コイルによる探傷方法は、検知コイ
ルが小型であるため、検出力が良い反面、被検材の全周
を検査するにはプローブを被検材の周方向に回転させる
かもしくは被検材を回転させる必要がある。プローブを
被検材の周方向に機械的に回転する方法は回転機構が複
雑となり更に、被検材の径が大きくなるにつれてプロー
ブの回転数も低下するため、長さの短いワレ疵の検出が
難しくなり、又被検材を回転する方法は被検材のIn送
設備に費用がかさみ、処理能力も低い等の問題がある。
This type of flaw detection method using a probe-type coil has good detection power because the detection coil is small, but in order to inspect the entire circumference of the test material, the probe must be rotated in the circumferential direction of the test material or the It is necessary to rotate the inspection material. The method of mechanically rotating the probe in the circumferential direction of the material to be inspected requires a complicated rotation mechanism, and the rotation speed of the probe decreases as the diameter of the material to be inspected increases, making it difficult to detect short cracks. In addition, the method of rotating the test material has problems such as increasing the cost of In transport equipment for the test material and low throughput.

この様なプローブ型コイルの欠点を解消するために、第
9図に示す回転磁界渦流探傷方法が考えられている。こ
の方法は、機械的なプローブの回転方式にかわって同じ
効果を電気的に実現するもので、励磁コイル4を被検材
1の周方向に三相誘導電動機の固定子巻線と同様の巻き
方で構成し、更に検知コイル6を励磁コイル4の内側に
複数個配置して、探傷周波数である数十KHzの高周波
を重畳した数十〜数百Hzの低周波の三相交流を励磁コ
イル4に印加して、被検材1の周方向に磁界を回転させ
、この回転磁界によって被検材1の表面に誘起する渦電
流を被検材1の周方向に配置した検知コイル6を回転磁
界に同期してスイッチングで切換えて検出し、ワレ疵の
検査を行うものである。
In order to eliminate such drawbacks of probe-type coils, a rotating magnetic field eddy current flaw detection method shown in FIG. 9 has been considered. This method achieves the same effect electrically instead of mechanically rotating the probe, and the excitation coil 4 is wound in the circumferential direction of the specimen 1 in the same manner as the stator winding of a three-phase induction motor. Furthermore, a plurality of detection coils 6 are arranged inside the excitation coil 4, and a low frequency three-phase alternating current of several tens to hundreds of Hz is superimposed on a high frequency of several tens of KHz, which is the flaw detection frequency, to the excitation coil. 4 to rotate a magnetic field in the circumferential direction of the test material 1, and this rotating magnetic field induces an eddy current on the surface of the test material 1 by rotating the detection coil 6 arranged in the circumferential direction of the test material 1. It detects cracks by switching in synchronization with the magnetic field and inspects for cracks.

本方法は、電気的に磁界を回転するものであるため回転
数を高速化出来、長さの短いワレ疵の検出に適する利点
を有するが、一方、励磁コイルは誘導電動機の固定子巻
線同様一体化構造であるため、被検材のサイズ変更時に
は、励磁コイルと検知コイルとからなる検出部全体を交
換する必要があり、更に、励磁コイルを貫通して移送さ
れる被検材が振動すると、それが励磁イイルと被検材の
間のギャップ変動となり、検出力の悪化を招く問題があ
る。
Since this method electrically rotates a magnetic field, the rotation speed can be increased and it has the advantage of being suitable for detecting short cracks. However, on the other hand, the excitation coil is similar to the stator winding of an induction motor. Due to the integrated structure, when changing the size of the specimen, the entire detection section consisting of the excitation coil and detection coil must be replaced.Furthermore, if the specimen being transferred through the excitation coil vibrates, This causes a gap variation between the excitation coil and the test material, leading to a problem of deterioration of detection power.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、この様な問題点を解消するために創案したも
ので、電気的に励磁磁界を回転する回転磁界探傷方法に
おいて、励磁コイルを被検材の周方向に複数個に分割し
、分割した励磁コイルと複数個の検知コイルから構成さ
れるヰ食出部を被検材と一定のギャップを保つ様に機械
的に追従させて表面疵の検査を行う事によって、ギャッ
プ変動に伴う検出力の悪化を防止し、更に被検材のサイ
ズ変更に対しても2組の分割した検出部を前後に千鳥配
置し、未探傷エリアができないよう対応できる構成とし
たものである。
The present invention was devised to solve these problems, and in a rotating magnetic field flaw detection method in which an excitation magnetic field is electrically rotated, the excitation coil is divided into a plurality of pieces in the circumferential direction of the test material. The detection power due to gap fluctuations can be improved by mechanically tracking the surface flaws by mechanically following the exposed part, which consists of an excitation coil and multiple detection coils, to maintain a constant gap with the material to be inspected. In addition, two sets of divided detection sections are arranged in a staggered manner in the front and back to prevent the deterioration of the test material, and also to cope with changes in the size of the material to be inspected, so that there are no undetected areas.

〔作用〕[Effect]

以下、本発明の分割型回転磁界渦流探傷装置を詳細に説
明する。
Hereinafter, the split type rotating magnetic field eddy current flaw detection apparatus of the present invention will be explained in detail.

第2図に本発明の分割型回転磁界用検出部の断面図を示
す。第2図(イ)に示すように、被検材1の周方向で分
割した励磁用鉄心2の被検材1側内周にn個のスロット
3を入れ、このスロット3には、第2図(ロ)に示す様
に三相の各相の巻線が各々2スロツトとびになる様に励
磁コイル4を付設する。励磁用鉄心2に励磁コイルイを
付設した様子は、丁度三相誘導電動機の固定子鉄心に固
定子巻線を付設した状態と同様である。この、励磁コイ
ル4に、探傷周波数である数十KHzO高周波を重畳し
た数十Hzから数百Hzの低周波三相交流を流すと探傷
周波数成分を持つ磁界は、第2図(イ)に示す様にスロ
ットの#lから#nの方向へ、励磁用鉄心2の磁極数と
低周波三相交流の周波数で決まる周期で矢印5の方向に
移動する。
FIG. 2 shows a sectional view of the split type rotating magnetic field detection section of the present invention. As shown in FIG. 2(A), n slots 3 are inserted into the inner periphery of the excitation core 2 on the side of the test material 1, which is divided in the circumferential direction of the test material 1. As shown in Figure (b), excitation coils 4 are attached so that the windings of each of the three phases are separated by two slots. The manner in which the excitation coil I is attached to the excitation core 2 is exactly the same as the state in which a stator winding is attached to the stator core of a three-phase induction motor. When a low-frequency three-phase alternating current of several tens of Hz to several hundred Hz with a high frequency of several tens of KHz, which is the flaw detection frequency, superimposed on this excitation coil 4 is applied, a magnetic field with a flaw detection frequency component is generated as shown in Fig. 2 (a). It moves in the direction of slot #l to #n in the direction of arrow 5 at a period determined by the number of magnetic poles of exciting iron core 2 and the frequency of the low frequency three-phase alternating current.

即ち、移動磁界5が発生し、これはあたかもプローブを
被検材1の周方向に走査するのと同様の効果となる。従
゛って、励磁コイル4の内側に複数個の検知コイル6を
配置して、励磁コイル4による移動磁界に同期して検知
コイルを動作させる事によって、プローブを移動させて
被検材lの表面疵探傷を行うのと同様の動作をさせる事
が出来る。
That is, a moving magnetic field 5 is generated, which has the same effect as scanning the probe in the circumferential direction of the specimen 1. Therefore, by arranging a plurality of detection coils 6 inside the excitation coil 4 and operating the detection coils in synchronization with the moving magnetic field generated by the excitation coil 4, the probe can be moved to detect the specimen l. The same operation as surface flaw detection can be performed.

第1図に、本発明の探傷装置で検出部を4分割した場合
の実施例を示す。探傷装置は、第1図A。
FIG. 1 shows an embodiment in which the detection section of the flaw detection apparatus of the present invention is divided into four parts. The flaw detection device is shown in Figure 1A.

B、C,Dで示す各々4式の<a>で示す検出部、<1
)>で示す発信回路及び<c>で示す受信回路から構成
される。検出部<a>は、励磁用鉄心2、励磁コイル4
及び検知コイル6から構成され、励磁コイル4は第2図
に示す様に励磁用鉄心2に付設され、この励磁コイルの
被検材1側には複数個の検知コル6a、6b、6c、・
・・・・・が周方向に配置される。被検材lは、各々検
出部Aくa〉、B<a>、()、<a>及びD<a>の
4個によって、その全周が同時にカバーされる。発信回
路<b>は、低周波交流電源7、高周波交流電源8、波
形合成器9、電力増幅器10から構成され、低周波交流
電源7では磁界の移動速度を決める数十Hz〜数百Hz
の交流を作り、高周波交流電i1mBでは渦流探傷の探
傷周波数となる数KHz〜数十KH2の交流を作る。波
形合成器9ではこれら両方の交流を加算もしくは乗算の
方法で重畳し、且つ、120°ずつ移相をずらせて三相
交流を作成する。
Detection unit shown by <a> of 4 formulas shown by B, C, D, <1
)> and a receiving circuit shown as <c>. The detection unit <a> includes an exciting iron core 2 and an exciting coil 4.
The excitation coil 4 is attached to the excitation core 2 as shown in FIG. 2, and the excitation coil has a plurality of detection coils 6a, 6b, 6c, .
... are arranged in the circumferential direction. The entire circumference of the test material 1 is simultaneously covered by four detection units A, B, (), D, and D. The transmitting circuit <b> is composed of a low frequency AC power supply 7, a high frequency AC power supply 8, a waveform synthesizer 9, and a power amplifier 10.
An alternating current of several kilohertz to several tens of kilohertz, which is the flaw detection frequency of eddy current flaw detection, is produced with high frequency alternating current i1mB. The waveform synthesizer 9 superimposes both of these alternating currents by addition or multiplication, and shifts the phase by 120 degrees to create a three-phase alternating current.

この波形合成器で作られた三相交流は、各相銀に電力増
幅器工0で増幅されて、励磁コイル4に印加される。こ
の様にして検出部<3>では、励磁コイル4の巻き方に
よって決まる磁極数と、低周波三相交流の周波数によっ
て決まる速度で、探傷周波数である高周波交流が移動す
る。
The three-phase alternating current generated by this waveform synthesizer is amplified by a power amplifier device 0 for each phase, and is applied to the excitation coil 4. In this manner, in the detection unit <3>, the high frequency alternating current, which is the flaw detection frequency, moves at a speed determined by the number of magnetic poles determined by the winding method of the excitation coil 4 and the frequency of the low frequency three-phase alternating current.

次に受信回路<c>は、増幅器11、移相器12、検波
器13、スイッチング回路14、差動増幅815及び記
録計16から構成される。検出部<a>の励磁コイル4
で作られる移動磁界によって被検材1の表面に誘起され
る渦電流は、被検材lの周方向に配置した検知コイル6
a、6b、6C1・・・・・・によって検出される。即
ち、検知コイル6a、6b、6c、・・・・・・により
検出された信号は各々増幅器11により増幅され、高周
波交流電源8と移相器12に基づく周波数によって検波
器13で検波された後、低周波交流電源7と移相器12
によるタイミングによってスイッチング回路14で切換
える事により、磁界の移動速度に同期して、検知コイル
6a、6b、6c、・・・・・・の信号が検出される。
Next, the receiving circuit <c> is composed of an amplifier 11, a phase shifter 12, a detector 13, a switching circuit 14, a differential amplifier 815, and a recorder 16. Excitation coil 4 of detection unit <a>
The eddy current induced on the surface of the test material 1 by the moving magnetic field created by the detection coil 6 arranged in the circumferential direction of the test material 1
a, 6b, 6C1... are detected. That is, the signals detected by the detection coils 6a, 6b, 6c, . , low frequency AC power supply 7 and phase shifter 12
By switching the switching circuit 14 according to the timing, signals from the detection coils 6a, 6b, 6c, . . . are detected in synchronization with the moving speed of the magnetic field.

検知コイル6a、6b、6c、・・・・・・からの信号
の検出は、検知コイル2個の信号が同時のタイミングで
検出され、同時のタイミングで検出された2つの信号は
、差動増幅器15により信号のレベル差が比較され、表
面疵の有無の判定がなされる。又、記録計16に出力さ
れる。検知コイル6の寸法は数ミリメートル中である事
がら、同時タイミングで動作させる2個の検知コイル6
は隣り合う2個にしておけば良い。
The signals from the detection coils 6a, 6b, 6c, . 15, the level difference of the signals is compared, and the presence or absence of surface flaws is determined. It is also output to the recorder 16. Although the size of the detection coil 6 is within a few millimeters, two detection coils 6 are operated at the same time.
It is better to have two adjacent pieces.

第3図に、第1図x−x” の断面図を示す。検知コイ
ル6は、励磁コイル4の長手方向中央に配置する。これ
は、励磁コイル4の長平方向端部の磁界の乱れに影響さ
れない様にするためである。
FIG. 3 shows a cross-sectional view taken along line x-x'' in FIG. This is to avoid being influenced.

又、励磁コイル4と被検材1とのギャップ変動による検
出力の変化を小さくする目的で励磁コイル4は長手方向
に100〜150鶴と長く構成し、又検出力を良くする
目的で検知コイル6は数鰭中と小さくしている。複数の
検知コイル6からの信号線は、取出口17から受信回路
へ接続される。
In addition, the excitation coil 4 is configured to be as long as 100 to 150 mm in the longitudinal direction in order to reduce changes in detection power due to gap fluctuations between the excitation coil 4 and the test material 1, and the detection coil 4 is configured to be as long as 100 to 150 mm in the longitudinal direction. Number 6 is small, with only a few fins. Signal lines from the plurality of sensing coils 6 are connected to the receiving circuit from the outlet 17.

第4図および第5図(第4図の正面図で(イ)は左側、
(ロ)は右側)に検出部を周方向に4分割した場合の追
従機構の構成例を示す。追従機構は、検出部18の前後
のVローラ19とエアシリンダー20とで一体構成され
る。被検材1への検出部18の接材、離村は、エアシリ
ンダー20の動作により行われる。被検材lと検出部1
8とのギャップは、検出部18の前後のVローラ19に
より設定され、この設定されたギャップは、被検材1が
搬送される時に伴う振動があっても、Vローラ19とエ
アシリンダー20で構成される追従機能により常に一定
に保持され、ギャップ変動による検出力の低下を防止出
来る。さらに第4図は左右2組の分割した検出部の配置
状態を、また同図の左右の正面図を第5図に示すが、第
4図左側の第5図(イ)と、第4図右側の第5図(ロ)
は互に45°ずらし、未探傷部のエリアができないよう
に重複させている。このことから被検材の1つのサイズ
の全周の検査だけでなく、サイズが大きくなった時にも
探傷可能とすることができる。
Figures 4 and 5 (In the front view of Figure 4, (A) is on the left side,
(B) on the right) shows an example of the configuration of the follow-up mechanism when the detection section is divided into four parts in the circumferential direction. The follow-up mechanism is integrally constituted by V rollers 19 before and after the detection section 18 and an air cylinder 20. The detection unit 18 is brought into contact with and separated from the test material 1 by the operation of the air cylinder 20. Test material 1 and detection unit 1
The gap between the V roller 19 and the air cylinder 20 is set by the V rollers 19 before and after the detection unit 18, and even if there is vibration when the test material 1 is conveyed, the gap between the V roller 19 and the air cylinder 20 is maintained. The built-in follow-up function keeps the gap constant and prevents a drop in detection power due to gap fluctuations. Furthermore, FIG. 4 shows the arrangement of the two divided detection units on the left and right sides, and FIG. 5 shows the left and right front views of the same figure. Figure 5 on the right (b)
are shifted by 45 degrees from each other and overlapped to avoid undetected areas. This makes it possible not only to inspect the entire circumference of one size of the material to be inspected, but also to perform flaw detection when the size becomes larger.

第6図に本探傷装置による探傷例を示す。第6図(イ)
において縦軸は、第1図に示す被検材の断面周方向に配
置した検知コイル6a、6b、6す・・・・・・を示し
、横軸は被検材の長手方向を示し、斜線部は、励磁コイ
ルによる移動磁界によって被検材表面に誘起する渦電流
を検出する検知コイルを示す。励磁コイルによる磁界は
前述の通り被検材の断面周方向を一定の速度で移動する
ため、この磁界によって被検材の表面を誘起する渦電流
も移動し、従ってこの渦電流を検出する検知コイルも断
面周方向で磁界の移動速度と同期して、第6図(イ)斜
線に示すように動作する事となる。ここで、同図に示す
様にワレ疵21が被検材の表面に存在すると、ワレ疵2
1の存在する真上にある検知コイル2個が動作する毎に
第6図(t2)に示す疵信号が得られる。この疵信号は
、移動磁界の速度を高速化するにつれて得られる回数が
多くなり、検出力を向上出来る。
Figure 6 shows an example of flaw detection using this flaw detection device. Figure 6 (a)
, the vertical axis indicates the detection coils 6a, 6b, 6, etc. arranged in the circumferential direction of the cross section of the test material shown in Fig. 1, the horizontal axis indicates the longitudinal direction of the test material, and the diagonal line 2 shows a detection coil that detects an eddy current induced on the surface of a test material by a moving magnetic field generated by an excitation coil. As mentioned above, the magnetic field generated by the excitation coil moves at a constant speed in the circumferential direction of the cross section of the material to be tested, so the eddy current induced on the surface of the material to be tested also moves due to this magnetic field, and therefore the detection coil detects this eddy current. Also, in the circumferential direction of the cross section, it operates in synchronization with the moving speed of the magnetic field, as shown by diagonal lines in FIG. 6 (a). Here, as shown in the same figure, if a crack 21 exists on the surface of the material to be inspected, the crack 21
A flaw signal shown in FIG. 6 (t2) is obtained every time the two detection coils located directly above the one where the number 1 is operated. This flaw signal is obtained more frequently as the speed of the moving magnetic field is increased, and the detection power can be improved.

〔発明の効果〕〔Effect of the invention〕

以上の様に、本発明の分割型回転磁界渦流探傷装置によ
れば、第7図に示す従来のプローブ回転方式又は被検材
回転方式の機械的な回転に伴う回転機構の複雑さ、追従
の難かしさ、処理能力の問題等を解決出来るばかりでな
く、第9図に示す回転磁界渦流探傷のサイズ変更及びリ
フトオフ変動の問題も解決出来、熱間状態の磁性体もし
くは、非磁性体の被検材の表面疵検査用として産業上極
めて有効である。更に、本探傷装置は、断面円形状の被
検材ばかりでなく、断面角状の被検材及び板状の被検材
に適用出来るのは、勿論である。
As described above, according to the split type rotating magnetic field eddy current flaw detection apparatus of the present invention, the complexity of the rotation mechanism associated with the mechanical rotation of the conventional probe rotation method or test material rotation method shown in FIG. This not only solves problems such as difficulty and processing capacity, but also solves the size change and lift-off fluctuation problems of rotating magnetic field eddy current flaw detection shown in Figure 9. It is extremely effective industrially for inspecting surface defects on inspection materials. Furthermore, it goes without saying that the present flaw detection apparatus can be applied not only to test materials having a circular cross section, but also to test materials having a square cross section and plate-shaped test materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の分割型回転磁界渦流探傷装置の実施例
を示す図、第2図(イ)(ロ)は本発明の分割型回転磁
界の原理を示す図、第3図は第1図のx−x’検出部の
断面図、第4図は検出部の追従機構を示す側面図、第5
図(イ)(ロ)は第4図の正面図、第6図は探傷例を示
す図、第7図は従来使用しているプローブ型コイルによ
る探傷方法を示す図、第8図はその探傷回路のブロック
図、第9図は回転磁界渦流方式による探傷方法を示す説
明図である。 ■・・・被検材、 2・・・励磁用鉄心、 3・・・ス
ロット、 4・・・励磁コイル、 5・・・移動磁界、
6 (6a、6b、6c、・・・・・・)・・・検知コ
イル、7・・・低周波交流電源、 8・・・高周波交流
電源、9・・・波形合成器、 10・・・電力増幅器、
 11・・・増幅器、 12・・・移相器、 13・・
・検波器、14・・・スイッチング回路、  15・・
・差動増幅器、16・・・記録計、  17・・・取出
口、  18・・・検出部、19・・・Vローラ、  
20・・・エアシリンダー、21・・・ワレ疵、  2
2・・・プローブ型コイル、23・・・被検材の移動方
向、 24・・・平衡回路、25・・・発振器、   
26・・・直流増幅器。 出 願 人  新日本製鐵株式会社 代理人弁理士  青 柳    稔 11図 abc jiTZ図
Fig. 1 is a diagram showing an embodiment of the split type rotating magnetic field eddy current flaw detection device of the present invention, Figs. 2 (a) and (b) are diagrams showing the principle of the split type rotating magnetic field of the present invention, and Fig. Figure 4 is a side view showing the tracking mechanism of the detection unit;
Figures (A) and (B) are front views of Figure 4, Figure 6 is a diagram showing an example of flaw detection, Figure 7 is a diagram showing a conventional flaw detection method using a probe type coil, and Figure 8 is a diagram showing the flaw detection method. A block diagram of the circuit, FIG. 9 is an explanatory diagram showing a flaw detection method using a rotating magnetic field eddy current method. ■...Test material, 2...Exciting core, 3...Slot, 4...Exciting coil, 5...Moving magnetic field,
6 (6a, 6b, 6c,...)...Detection coil, 7...Low frequency AC power supply, 8...High frequency AC power supply, 9...Waveform synthesizer, 10... power amplifier,
11...Amplifier, 12...Phase shifter, 13...
・Detector, 14...Switching circuit, 15...
・Differential amplifier, 16... Recorder, 17... Outlet, 18... Detection section, 19... V roller,
20...Air cylinder, 21...Crack, 2
2... Probe type coil, 23... Moving direction of the test material, 24... Balance circuit, 25... Oscillator,
26...DC amplifier. Applicant Minoru Aoyagi, Patent Attorney for Nippon Steel Corporation Figure 11 abc jiTZ diagram

Claims (1)

【特許請求の範囲】[Claims] 励磁コイルと検知コイルを被検材の断面周方向に配置し
、探傷周波数の高周波交流を重畳した低周波三相交流を
励磁コイルに印加して、被検材の断面周方向に磁界を回
転させて、回転磁界中の高周波交流による誘導渦電流を
検知コイルにより検出して表面疵の検査を行う渦流探傷
装置において、励磁コイルと検知コイルからなる検出部
を周方向に複数個に分割して構成した事を特徴とする分
割回転磁界渦流探傷装置。
An excitation coil and a detection coil are arranged in the circumferential direction of the cross section of the material to be inspected, and a low frequency three-phase AC superimposed with a high frequency alternating current at the flaw detection frequency is applied to the excitation coil to rotate the magnetic field in the circumferential direction of the cross section of the material to be inspected. In an eddy current flaw detection device that inspects surface flaws by detecting eddy currents induced by high-frequency alternating current in a rotating magnetic field using a detection coil, the detection section consisting of an excitation coil and a detection coil is divided into multiple pieces in the circumferential direction. A split rotating magnetic field eddy current flaw detection device that is characterized by:
JP60286610A 1985-12-19 1985-12-19 Split type rotary magnetic field eddy current flaw detector Pending JPS62145162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60286610A JPS62145162A (en) 1985-12-19 1985-12-19 Split type rotary magnetic field eddy current flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60286610A JPS62145162A (en) 1985-12-19 1985-12-19 Split type rotary magnetic field eddy current flaw detector

Publications (1)

Publication Number Publication Date
JPS62145162A true JPS62145162A (en) 1987-06-29

Family

ID=17706640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60286610A Pending JPS62145162A (en) 1985-12-19 1985-12-19 Split type rotary magnetic field eddy current flaw detector

Country Status (1)

Country Link
JP (1) JPS62145162A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127063A (en) * 1995-11-06 1997-05-16 Nippon Steel Corp Detector for flaw of conductor
JPH09127062A (en) * 1995-11-02 1997-05-16 Nippon Steel Corp Detector for flaw of conductor
JPH09171003A (en) * 1995-12-20 1997-06-30 Mitsubishi Heavy Ind Ltd Eddy-current flow detector and flow detection method for pipe
WO2009139432A1 (en) * 2008-05-15 2009-11-19 住友金属工業株式会社 Magnetic flaw detecting method and magnetic flaw detection device
JP2011252875A (en) * 2010-06-04 2011-12-15 Mitsubishi Electric Corp Turbine monitoring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127062A (en) * 1995-11-02 1997-05-16 Nippon Steel Corp Detector for flaw of conductor
JPH09127063A (en) * 1995-11-06 1997-05-16 Nippon Steel Corp Detector for flaw of conductor
JPH09171003A (en) * 1995-12-20 1997-06-30 Mitsubishi Heavy Ind Ltd Eddy-current flow detector and flow detection method for pipe
WO2009139432A1 (en) * 2008-05-15 2009-11-19 住友金属工業株式会社 Magnetic flaw detecting method and magnetic flaw detection device
JP2009276232A (en) * 2008-05-15 2009-11-26 Sumitomo Metal Ind Ltd Magnetic flaw detecting method and magnetic flaw detecting device
US8466674B2 (en) 2008-05-15 2013-06-18 Nippon Steel & Sumitomo Metal Corporation Magnetic testing method and magnetic testing apparatus
JP2011252875A (en) * 2010-06-04 2011-12-15 Mitsubishi Electric Corp Turbine monitoring device

Similar Documents

Publication Publication Date Title
US4602212A (en) Method and apparatus including a flux leakage and eddy current sensor for detecting surface flaws in metal products
JPH02147950A (en) Ac leakage magnetic flux detector for plane flaw
JP2011002409A (en) Leak flux flaw detecting device
US4477776A (en) Apparatus and process for flux leakage testing using transverse and vectored magnetization
JPH10111279A (en) Eddy current flaw detection device
US6377040B1 (en) Eddy current probe and process for checking the edges of metal articles
JPS62145162A (en) Split type rotary magnetic field eddy current flaw detector
US3900793A (en) Eddy current testing apparatus including a rotating head with probe and null circuit means mounted thereon including rotary transformer windings
JPS626162A (en) Eddy current examination method
JPS626163A (en) Rotary magnetic field type eddy current examination method
JPH01212352A (en) Method and apparatus for electromagnetic flaw detection
JP3327701B2 (en) Conductor flaw detection device
JPH10288603A (en) Surface flaw detecting method for steel material
JPS61264251A (en) Eddy current flaw inspecting method and its device
JP2006084225A (en) Eddy current flaw detection method
JPH0376707B2 (en)
JP3255834B2 (en) Conductor flaw detection device
JPS62123352A (en) Rotational magnetic field type magnetic flaw detection
JPS5910846A (en) Eddy current flaw detector for metallic surface
JPH0125019B2 (en)
JPH10170481A (en) Eddy current flaw detector
JP2009287981A (en) Eddy-current flaw detector and eddy-current flaw detecting method
JP2013104807A (en) Apparatus for detecting defect on roll surface
JPH08160015A (en) Component inspecting apparatus
JPS63235854A (en) Flaw detector