JPS6125619A - Pressure swing system gas separation utilizing cold heat - Google Patents

Pressure swing system gas separation utilizing cold heat

Info

Publication number
JPS6125619A
JPS6125619A JP14677084A JP14677084A JPS6125619A JP S6125619 A JPS6125619 A JP S6125619A JP 14677084 A JP14677084 A JP 14677084A JP 14677084 A JP14677084 A JP 14677084A JP S6125619 A JPS6125619 A JP S6125619A
Authority
JP
Japan
Prior art keywords
adsorption
cold heat
vacuum pump
air
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14677084A
Other languages
Japanese (ja)
Inventor
Jun Izumi
順 泉
Seiichi Shirakawa
白川 精一
Hiroyuki Tsutaya
博之 蔦谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14677084A priority Critical patent/JPS6125619A/en
Publication of JPS6125619A publication Critical patent/JPS6125619A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To lower power consumption of a vacuum pump in pressure swing adsorbing process, by utilizing cold heat of an adjoining detaching gas. CONSTITUTION:Air is introduced to pretreating towers 6, 6' through an air compressor 1, a flow passage 2, an air cooler 3 and a flow passage 4 and processed by adsorbents 7, 7'. The adsorbed H2O and CO2 are removed by a vacuum pump 12, and the adsorbent repeats regeneration and adsorption. Then, air entered a flow passage 9 is cooled through heat exchangers 13, 14, and further cooled by a heate exchanger 29 with LNG cold heat 30 and enters adsorbing towers 18, 18'. There, N2 is adsorbed, and O2 of high purity is put out to outside of the system. Adsorbing towers 18, 18' are regenerated alternately by a vacuum pump 26, and the entrance of the vacuum pump is cooled by a heat exchanger 28 with LNG cold heat.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は吸着剤を利用したガス分離法に関するもので、
特に圧力スイング式ガス分離法の改良に関するものであ
る。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a gas separation method using an adsorbent.
In particular, it relates to improvements in pressure swing gas separation methods.

(従来の技術) 従来例として、N!吸着剤としてNa4  型ゼオライ
トを使用し、吸着圧力として1〜3ata。
(Prior art) As a conventional example, N! Na4 type zeolite is used as the adsorbent, and the adsorption pressure is 1 to 3 ata.

脱着圧力として0.05〜0.5 ata 、吸着温度
として10〜−50℃の操作条件での空気からの03製
造を挙げて第2図に従い説明する。
The production of 03 from air under operating conditions of 0.05 to 0.5 ata as desorption pressure and 10 to -50°C as adsorption temperature will be described with reference to FIG.

第2図に於いて、1は空気圧縮機であり、最高5 at
a近傍に昇圧された空気は流路2を通じて、エアクーラ
3で30℃前後に冷却され流路4、開状態のバルブ5を
通じて前処理塔6に入る。前処理塔(吸着塔)6及び6
′に社前方半分に脱湿用シリカゲルが、後方半分には0
0g除去用のMa−’X  の吸着剤7,7′が充填さ
れており、開状態のバルブ8、流路9を通じて、露点−
70℃以下003濃度2 PPm以下の清浄空気が流過
する。吸着塔6′に於いては、ノ(ルブS/ 、 a/
が閉じておりバルブ10′が開いている為、流路11、
真空ポンプ12を通じて吸着剤7′に吸着された130
 、 co!は除去されて吸着能が再生される。
In Figure 2, 1 is an air compressor, with a maximum of 5 at
The air pressurized near a passes through a flow path 2, is cooled to around 30° C. by an air cooler 3, and enters a pretreatment tower 6 through a flow path 4 and an open valve 5. Pretreatment tower (adsorption tower) 6 and 6
' Dehumidifying silica gel is placed in the front half of the building, and zero is placed in the back half.
It is filled with Ma-'X adsorbents 7 and 7' for removing 0g, and the dew point -
Clean air with a temperature of 70°C or lower and a concentration of 2 PPm or lower flows through. In the adsorption tower 6', no(lube S/, a/
is closed and valve 10' is open, flow path 11,
130 adsorbed on the adsorbent 7' through the vacuum pump 12
, co! is removed and the adsorption capacity is regenerated.

この方法を交互にくり返すのが圧力スイング法の運転態
様であるが、流路9の後方のN3吸着も同様の方法によ
っている。
The operation mode of the pressure swing method is to repeat this method alternately, and the N3 adsorption at the rear of the flow path 9 is also performed using the same method.

流路9の後方の熱交換器15、熱交換器14を通じて冷
却された空気は冷凍機15で最とも低い温度に冷却され
て流路16、開状態のバルブ17を通じて吸着塔18に
至る。吸着塔18にa、N3吸着剤として使用されるN
a−”  が充填されており、開状態のパルプ20から
は、空気からN雪が除去された高純度−が流路21に流
遇し、熱交換器13で入口空気に冷熱回収されて、流路
22から系外に運ばれる。
The air cooled through the heat exchanger 15 and the heat exchanger 14 at the rear of the flow path 9 is cooled to the lowest temperature by the refrigerator 15, and then reaches the adsorption tower 18 through the flow path 16 and the valve 17 in an open state. a in the adsorption tower 18, N used as an N3 adsorbent
From the pulp 20 in the open state, high-purity air with N snow removed from the air flows into the flow path 21, where the cold heat is recovered by the inlet air in the heat exchanger 13, and the flow is carried out. It is carried out of the system from route 22.

一方、吸着塔18′に関してはバルブ17′。On the other hand, for the adsorption tower 18', the valve 17'.

20′が閉じられて訃シ、パルプ23′が開いて流路2
4、熱交換器14、流路25、真空ポンプ26と通じて
いる。
20' is closed and the pulp 23' is opened and the flow path 2
4, communicates with the heat exchanger 14, flow path 25, and vacuum pump 26.

この為、N3吸着剤として使用されているNa−xに吸
着され九N、は減圧にすると熱交換器14で入口空気と
冷熱回収された後、真空ポンプ26で系外に排除される
For this reason, when the pressure is reduced, the 9N adsorbed by the Na-x used as the N3 adsorbent is recovered from the inlet air by the heat exchanger 14, and then removed from the system by the vacuum pump 26.

この操作を吸着塔18及び18′について交互に〈シ返
す事で空気から連続的に製品03をとシ出す事ができる
By repeating this operation alternately for the adsorption towers 18 and 18', the product 03 can be continuously extracted from the air.

なお、ここで破線で囲んだ部分は吸着塔を低温に保つ為
のコールドボックス27である。
Note that the part surrounded by a broken line here is a cold box 27 for keeping the adsorption tower at a low temperature.

この方法は、保守性が容易で操作が簡単な為かなシ普及
している。I MEll”の03を製造するに必要な電
気エネルギーはα4〜α6 k’qhであるがその内訳
は第1表のようKなり、真空ポンプ及び冷凍機の動力が
大きい。
This method is popular because it is easy to maintain and easy to operate. The electrical energy required to manufacture 03 of ``I MEll'' is α4 to α6 k'qh, and the breakdown is K as shown in Table 1, and the power of the vacuum pump and refrigerator is large.

第1表 (吸着圧力1.2 ata、再生圧力0.2 
ata、吸着温度−15℃) 他に、低温条件と真空再生を使用した圧力スイング式ガ
ス分離例を第2表に示す。
Table 1 (Adsorption pressure 1.2 ata, regeneration pressure 0.2
ata, adsorption temperature -15°C) Other examples of pressure swing type gas separation using low temperature conditions and vacuum regeneration are shown in Table 2.

第  2  表 又、圧縮機の消費電力を低減するために圧縮機の入口ガ
ス温度を低下させることも知られているが、0℃以下に
冷却すると氷結、ドライアイスの生成の問題があって一
般的には採用されていない。
Table 2 It is also known to lower the gas temperature at the inlet of the compressor in order to reduce the power consumption of the compressor. It has not been adopted.

(発明が解決しようとする問題点) 本発明は、低温吸着、真空再生を併用する圧力スイング
法における従来技術の真空ポンプの消費電力が高いとい
う欠点を解消しうる方法を提供せんとするものである。
(Problems to be Solved by the Invention) The present invention seeks to provide a method that can overcome the disadvantage of high power consumption of vacuum pumps of the prior art in the pressure swing method that uses both low-temperature adsorption and vacuum regeneration. be.

(問題点を解決するための手段) 本発明は圧力スイング式ガス分離法において、該分離系
と隣接する寒冷源からの冷熱を、凍結の心配のない露点
−70℃以下の超乾燥ガスの流れる真空ポンプの入口を
冷却して消費電力を大幅に低減するものである。すなわ
ち本発明は大気圧以上の加圧条件で吸着を行ない、大気
圧以下の減圧条件で再生を行なう、圧力スイング式のガ
スの吸着分離方法に於いて、冷熱を発生する隣接するプ
ラントの冷熱の1部を吸着塔の冷却に利用し、更に余剰
の冷熱があれば他を真空ポンプ入口の脱着ガスの冷却に
利用して分離に要する消費電力の低減を図る事を%lk
とする圧力スイング式ガス分離方法を要旨とするもので
ある。
(Means for Solving the Problems) The present invention utilizes a pressure swing gas separation method in which cold heat from a cold source adjacent to the separation system is transferred through a flow of ultra-dry gas with a dew point of -70°C or less that is free from freezing. This cools the inlet of the vacuum pump, significantly reducing power consumption. That is, the present invention is a pressure swing type gas adsorption separation method in which adsorption is performed under pressurized conditions above atmospheric pressure and regeneration is performed under reduced pressure conditions below atmospheric pressure. One part is used to cool the adsorption tower, and if there is excess cold energy, the other part is used to cool the desorption gas at the vacuum pump inlet to reduce the power consumption required for separation.
The gist of this paper is a pressure swing type gas separation method.

以下、本発明の実施例をあげ、更に詳述する。Hereinafter, examples of the present invention will be given and further detailed description will be given.

実施例1 本発明の一実施例として4吸着剤にHa−” 型ゼオラ
イトを使用し、吸着圧力として1.2 ata。
Example 1 As an example of the present invention, Ha-'' type zeolite was used as the 4 adsorbent, and the adsorption pressure was 1.2 ata.

脱着圧力α2ata、吸着温度−15℃で操作して空気
から0!を製造する時の隣接するLNGの蒸発時の寒冷
を利用して0sJll!造装置のN2除去用真空ポンプ
を冷却し7かつ入口空気を一15℃に冷却した実施態様
を第1図に示す。
0 from air by operating at desorption pressure α2ata and adsorption temperature -15℃! 0sJll by utilizing the cold during evaporation of adjacent LNG when manufacturing! FIG. 1 shows an embodiment in which the N2 removal vacuum pump of the production equipment is cooled and the inlet air is cooled to -15°C.

第1図に於ける符号の中筒1図と同一の符号のものは同
一・の部品名称に対応する。
In FIG. 1, the same reference numerals as those in the inner cylinder 1 correspond to the same part names.

第1図に於いて流路25にLNGN冷寒5oとの熱交換
器28を設置して真空ポンプの入口を従来の25℃から
一160℃に冷却し又流路16にもLNGN冷寒30と
の熱交換器29を設置して第2図に示した冷凍機15を
省略している。
In Fig. 1, a heat exchanger 28 with LNGN cold cold 5o is installed in the flow path 25 to cool the inlet of the vacuum pump from the conventional 25°C to -160°C. A heat exchanger 29 is installed, and the refrigerator 15 shown in FIG. 2 is omitted.

従来のI Nm”の08の製造時の消費電力(kwh 
)と各ユニット毎の電力内訳(チ)とLNG寒冷熱使用
彼の消費電力(kwh )と電力内訳(チ)を第5表に
示す。
Power consumption (kwh) during manufacturing of conventional I Nm”08
Table 5 shows the power consumption (kwh) and power breakdown (ch) for each unit, the power consumption (kwh) for each unit, and the power consumption (kwh) for each unit.

第  3  表 実施例2 Fe(ll)を14 含有するNa−A 型ゼオライト
を02吸着剤として使用し、吸着圧力2ata、再生圧
力α2 ata 、吸着塔−30℃で空気からの酸素富
化空気の分離を行なった。
Table 3 Example 2 Using Na-A type zeolite containing 14 Fe(ll) as the 02 adsorbent, oxygen-enriched air was removed from air at an adsorption pressure of 2 ata, a regeneration pressure of α2 ata, and an adsorption tower at -30°C. Separation was performed.

この場合0.吸着塔の後方からはN!又はN、富化空気
が高圧で流下し、真空ポンプ側から0冨富化空気が得ら
れる。
In this case 0. N from behind the adsorption tower! Or N, enriched air flows down at high pressure and zero enriched air is obtained from the vacuum pump side.

隣接するLNG冷熱源がない場合1N−の01富化空気
(0!濃度85%)を得るのに0.35 kWh必要と
した。
In the absence of an adjacent LNG cold source, 0.35 kWh was required to obtain 1N-01 enriched air (0! concentration 85%).

しかしLNG冷熱源を使用して真空ポンプの入口を冷却
しかつ、塔の冷却を行なう事により1Nm”の0意富化
空気(0!濃度85チ)を得るのにα24 kWhに低
減し得た。
However, by using an LNG cold heat source to cool the inlet of the vacuum pump and cooling the tower, it was possible to reduce the power consumption to α24 kWh to obtain 1Nm of zero-enriched air (0!concentration: 85chi). .

消費電力の内訳を第4表に記す。The breakdown of power consumption is shown in Table 4.

第  4  表 実施例5 ゼオライト系吸着剤としてよく用いられるNa−A型ゼ
オライトFi、C02N!2成分系からのCOの吸着に
於いて、吸着圧力1〜5ata、脱着圧力CL05〜α
5 ata 、吸着温度10−!50℃で高いCO選択
吸着性を示す。
Table 4 Example 5 Na-A type zeolite Fi, C02N, which is often used as a zeolite adsorbent! In the adsorption of CO from a two-component system, the adsorption pressure is 1 to 5 ata, and the desorption pressure is CL05 to α.
5 ata, adsorption temperature 10-! Shows high CO selective adsorption at 50°C.

こ\では吸着圧力2ata、脱着圧力0.2 ata吸
着温度5℃でCo  70%、Nm50%からなる混合
ガスよりのCOの回収を試みた。
Here, we attempted to recover CO from a mixed gas consisting of 70% Co and 50% Nm at an adsorption pressure of 2 ata, a desorption pressure of 0.2 ata, and an adsorption temperature of 5°C.

その結果99−以上の濃度に濃縮されたCOを真空ポン
プ側から回収できた。
As a result, CO concentrated to a concentration of 99 or more could be recovered from the vacuum pump side.

この時のI Nm”のCOの製造に必要な消費電力はα
15 kWhであった。
At this time, the power consumption required to produce CO of I Nm is α
It was 15 kWh.

しかし隣接するIJG冷熱源を利用して真空ポンプ入口
を冷却しかつ吸着塔の冷却にも使用する事によシ、IN
m”のCOの製造に必要な消費電力をα105 kWh
に低減し得た。
However, by using the adjacent IJG cold source to cool the vacuum pump inlet and also cooling the adsorption tower, the IN
The power consumption required to produce m” of CO is α105 kWh.
This could be reduced to

実施例4 実施例1で示したIJa−x  型ゼオライトをN2吸
着剤として使用し、吸着圧力1.2 ata 、脱着圧
力0.2 ata 、吸着温度−15℃で操作して、0
□濃度q s、 a % (残ガスAr )  の02
を1100ON”−0霊/h  で製造するプラントに
、隣接する液体0!ホールダから0!濃度q 9. b
 %の液体0!を本プラントに1. OQ ONm”−
o!/hの流量で導びき液酸の気化を本プラントの入口
空気1500lm’ / hとの熱交換により行ない下
記の良好な結果を得た。
Example 4 The IJa-x type zeolite shown in Example 1 was used as the N2 adsorbent, and the operation was performed at an adsorption pressure of 1.2 ata, a desorption pressure of 0.2 ata, and an adsorption temperature of -15°C.
□Concentration q s, a % (residual gas Ar) of 02
In a plant that produces 1100 ON"-0 spirits/h, an adjacent liquid 0!concentration q 9. b
% liquid 0! 1. to this plant. OQ ONm"-
o! The liquid acid was vaporized by heat exchange with the inlet air of this plant at a flow rate of 1500 lm/h, and the following good results were obtained.

■ 液体0!と本プラントの併用により98%程度の高
純度の02を得ると同時に液体0鵞の気化潜熱を入口空
気の冷却に使う為、冷却用の冷凍機が不用となった。
■ 0 liquids! By using this plant in combination, we can obtain 02 with a high purity of about 98%, and at the same time use the latent heat of vaporization of the liquid 02 to cool the inlet air, making a cooling refrigerator unnecessary.

■ 液体02で発生する寒冷が本プラントに必要とする
冷熱の10倍近くなる為、余剰の冷熱を利用し本プラン
トの熱交換の簡略化及び真空ポンプ入口の脱着N!の冷
却、入口空気の脱湿(水分凝縮)による前処理装置の小
型化を実現し得た。
■ The cold generated by Liquid 02 is nearly 10 times the cold heat required by this plant, so the excess cold heat can be used to simplify heat exchange in this plant and detach the vacuum pump inlet N! By cooling the air and dehumidifying the inlet air (moisture condensation), we were able to downsize the pretreatment equipment.

実施例5 実施例2で示したFe(l[)を含有するNa−A 型
ゼオライトを02吸着剤として使用し、吸着圧力2 a
ta、脱着圧力(L 2 ata 、吸着温度−30℃
で操作してN!濃度99チ(残ガス0冨)のN!を10
0 Nm” −0,/h  で製造する圧力スイング式
N1製造装置に隣接する液体N、ホールダからNtm度
99、9 %の液体N、を本プラントに、100 Nm
”−nt/hの流量で導びき液体N2の気化を本プラン
トの入口空気160 Nm3/ hとの熱交換により行
ない下記の良好な結果を得た。
Example 5 The Fe(l[)-containing Na-A zeolite shown in Example 2 was used as the 02 adsorbent, and the adsorption pressure was 2 a.
ta, desorption pressure (L 2 ata, adsorption temperature -30°C
Operate with N! N with a concentration of 99 t (residual gas 0 t)! 10
Liquid N adjacent to the pressure swing type N1 production equipment that produces at 0 Nm" -0,/h, liquid N with a Ntm degree of 99, 9% from the holder is transferred to this plant at a pressure of 100 Nm
The liquid N2 was vaporized by heat exchange with the inlet air of the plant at 160 Nm3/h, and the following good results were obtained.

■ 液体N、と本プラントの併用により?95q6程度
の高純度のN、を得ると同時に液体N、の気化潜熱を入
口空気の冷却に使う為、冷却用の冷凍機が不用となった
■ By using liquid N in combination with this plant? Since high-purity N of about 95q6 is obtained and at the same time the latent heat of vaporization of liquid N is used to cool the inlet air, a refrigerator for cooling is no longer required.

■ 液体N2で発生する寒冷が本プラントに必要とする
冷熱の2倍近くなる為、余剰の冷熱を利用し本プラント
の熱交換の簡略化及び真空ポンプ入口の脱着N!の冷却
、入口空気の脱湿(水分凝縮)による前処理装置の小型
化を実現し得た。
■ The cold generated by liquid N2 is nearly twice the cold heat required for this plant, so the excess cold heat can be used to simplify heat exchange in this plant and remove the vacuum pump inlet N! By cooling the air and dehumidifying the inlet air (moisture condensation), we were able to downsize the pretreatment equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様のフローを示し、第2図は
従来法の70−を示す。 復代理人  内 1)  明 復代理人  萩 原 光 −
FIG. 1 shows a flow of an embodiment of the present invention, and FIG. 2 shows a conventional method 70-. Sub-agents 1) Meifuku agent Hikaru Hagiwara -

Claims (2)

【特許請求の範囲】[Claims] (1)大気圧以上の加圧条件で吸着を行ない、大気圧以
下の減圧条件で再生を行なう、 圧力スイング式のガスの吸着分離方法に於 いて、冷熱を発生する隣接するプラントの冷熱の1部を
吸着塔の冷却に利用し、更に余剰の冷熱があれば他を真
空ポンプ入口の脱着ガスの冷却に利用して分離に要する
消費電力の低減を図る事を特徴とする圧力スイング式ガ
ス分離方法。
(1) In a pressure swing type gas adsorption separation method in which adsorption is performed under pressurized conditions above atmospheric pressure and regeneration is performed under reduced pressure conditions below atmospheric pressure, one of the cold energies of an adjacent plant that generates cold heat is This pressure swing type gas separation is characterized in that one part is used to cool the adsorption tower, and if there is excess cold energy, the other part is used to cool the desorbed gas at the inlet of the vacuum pump, reducing the power consumption required for separation. Method.
(2)冷熱を発生する隣接のプラントの冷熱が、圧力ス
イング式ガス分離装置で得られるガスと同一の製品ガス
の液化物の蒸発熱である特許請求の範囲第1項記載の方
法。
(2) The method according to claim 1, wherein the cold heat from an adjacent plant that generates cold heat is the heat of evaporation of a liquefied product gas that is the same as the gas obtained by the pressure swing type gas separation device.
JP14677084A 1984-07-17 1984-07-17 Pressure swing system gas separation utilizing cold heat Pending JPS6125619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14677084A JPS6125619A (en) 1984-07-17 1984-07-17 Pressure swing system gas separation utilizing cold heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14677084A JPS6125619A (en) 1984-07-17 1984-07-17 Pressure swing system gas separation utilizing cold heat

Publications (1)

Publication Number Publication Date
JPS6125619A true JPS6125619A (en) 1986-02-04

Family

ID=15415153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14677084A Pending JPS6125619A (en) 1984-07-17 1984-07-17 Pressure swing system gas separation utilizing cold heat

Country Status (1)

Country Link
JP (1) JPS6125619A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115431A (en) * 1987-10-30 1989-05-08 Mitsubishi Heavy Ind Ltd Gas production apparatus
US5453112A (en) * 1994-02-02 1995-09-26 Praxair Technology, Inc. Pressure swing adsorption heat recovery
EP0699466A1 (en) * 1994-03-16 1996-03-06 Sumitomo Seika Chemicals Co., Ltd. Method and apparatus for separating gas
CN107042051A (en) * 2017-01-10 2017-08-15 杨皓 Preliminary clearning prevents frozen block technique before a kind of methanation LNG liquefaction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115431A (en) * 1987-10-30 1989-05-08 Mitsubishi Heavy Ind Ltd Gas production apparatus
US5453112A (en) * 1994-02-02 1995-09-26 Praxair Technology, Inc. Pressure swing adsorption heat recovery
EP0699466A1 (en) * 1994-03-16 1996-03-06 Sumitomo Seika Chemicals Co., Ltd. Method and apparatus for separating gas
EP0699466A4 (en) * 1994-03-16 1996-09-25 Sumitomo Seika Chemicals Method and apparatus for separating gas
CN107042051A (en) * 2017-01-10 2017-08-15 杨皓 Preliminary clearning prevents frozen block technique before a kind of methanation LNG liquefaction

Similar Documents

Publication Publication Date Title
CN107364832A (en) A kind of low temperature hydrogen purification devices and control method
JPH0459926B2 (en)
JPH07280432A (en) Plant for distilling air and method thereof
WO2004085941A1 (en) Air separator
JP4276354B2 (en) Neon recovery method and apparatus
JPS6125619A (en) Pressure swing system gas separation utilizing cold heat
JP2003062419A (en) Method for separating gas mixture and apparatus for the same
JPH01266831A (en) Device for purifying light gas
JP2644823B2 (en) Regeneration method of helium gas purification adsorber
JPS60231402A (en) Production of oxygen with ca-na-a and na-x-alo3 in n2 adsorption tower
JPS60246205A (en) Method of dehumidification and cold heat recovery of o2 production unit
JPH0768042B2 (en) High-purity oxygen production method
JPH01138106A (en) Production of nitrogen
JPS59179127A (en) Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressure
CN221867911U (en) A system for removing neon from natural gas helium
JPH09122432A (en) Gas separator using pressure swing adsorption process
JPS60127202A (en) Production of oxygen with n2 adsorption column using ca-na-a and na-x
CN218392962U (en) Hydrogen purifier
JPH0531331A (en) Separation of hydrogen isotope
JPH07166B2 (en) CO adsorption separation method
JPH04310509A (en) Removal of impurity in nitrogen gas
JPS621434A (en) Dehumidification/heat recovery method of gas separation apparatus
JPS5982924A (en) Method for increasing production of gas
JPH0647541Y2 (en) High-purity nitrogen gas separation device by pressure fluctuation adsorption method
JPS60231401A (en) Production of oxygen with ca-na-a and na-x-nacl in n2 adsorption tower