JPS5982924A - Method for increasing production of gas - Google Patents

Method for increasing production of gas

Info

Publication number
JPS5982924A
JPS5982924A JP58071627A JP7162783A JPS5982924A JP S5982924 A JPS5982924 A JP S5982924A JP 58071627 A JP58071627 A JP 58071627A JP 7162783 A JP7162783 A JP 7162783A JP S5982924 A JPS5982924 A JP S5982924A
Authority
JP
Japan
Prior art keywords
nitrogen
oxygen
pipe
raw material
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58071627A
Other languages
Japanese (ja)
Other versions
JPS646121B2 (en
Inventor
Norio Yamazaki
山崎 紀男
Yoshihiro Koyama
小山 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Sanso Co Ltd
Original Assignee
Taiyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Sanso Co Ltd filed Critical Taiyo Sanso Co Ltd
Priority to JP58071627A priority Critical patent/JPS5982924A/en
Publication of JPS5982924A publication Critical patent/JPS5982924A/en
Publication of JPS646121B2 publication Critical patent/JPS646121B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To maintain the adsorbent bed in an adsorption column at an adsorption temp. in the stage of process shutdown by utilizing the heat of evaporation when liquefied oxygen or liquefied nitrogen evaporates as the cold energy for maintaining the molecular sieve adsorbent bed at a low temp. CONSTITUTION: The raw air supplied from a pipe 1 is compressed by a compressor 2, and after the air is removed of heat generated by compression by cooling water or the like in a cooler 3, the air flows in a pipe 4 a valve 5a a pipe 6a, and is cooled to about -145 deg.C by a heat exchanger 7a. Impurities such as moisture and carbon dioxide are condensed and removed by a heat exchange part 19a and the clean low-temp. air is derived from the heat exchanger. Such air is introduced through a valve 8a and a pipe 9 into a heat exchanger 10. Liquid nitrogen is supplied from a storage tank 25 through a pipe 26 and a valve 27 into the heat exchanging part 28 in the heat exchanger 10. The raw air introduced therein from a pipe 9 is subjected to a heat exchange with the liquid nitrogen and is cooled to about -170 deg.C. The cooled air is introduced through a pipe 11 and a valve 12a into an adsorption column 13a.

Description

【発明の詳細な説明】 この発明は、酸素または窒素の液化ガスの気化(こ対し
て従来廃棄されていたエネルギーの効率的な活用を目的
とする酸素ガスまたは窒素ガスの増産方法に関するもの
である。
[Detailed Description of the Invention] The present invention relates to a method for increasing the production of oxygen gas or nitrogen gas for the purpose of vaporizing liquefied oxygen or nitrogen gas (in contrast, efficiently utilizing energy that was conventionally wasted). .

酸素や窒素等のガスは、従来、空気を液化清潔して、そ
れぞれの成分に分u+l L−このようにして得られた
液化酸素および液化窒素は液状で貯蔵もしくは輸送され
一液状のまままたはこれを気化させてガス状で広く利用
されている。
Conventionally, gases such as oxygen and nitrogen are purified by liquefying the air and separating it into their respective components. It is widely used in gaseous form by vaporizing it.

近時−各種エネルギーは−特に石油16 機以来、コス
トの」二昇がきわめて激しく、一般産業の経営2人きく
圧迫する要因となっており一酸素や窒素等のカスについ
ても、それが広範な用途に利用されるものであるだけに
、生産性の回」−が社会の各方面から強く要請されてい
る。
Recently, the cost of various types of energy has been rising extremely sharply, especially since the 16th century of petroleum, and this is putting pressure on the management of general industries. Since it is used for various purposes, there is a strong demand for productivity improvement from all aspects of society.

この発明は、このような社会的要請に応じ、酸素や窒素
を安価で供給し、空気から分離される酸素、窒素もしく
はアルゴン等のいわゆる分離カス相互間の需要の変化に
対応して、製鋼−冶金一化学一発酵等の分野で発生する
酸素窒素含有ガスのl、う用11fi:i囲を広+する
とともに一液化カスを気化するときに従シ1(廃棄され
ていた寒冷エネルギーを活用すること(こよって−酸素
ガスおよび窒素カスを増産し一イ〕1わぜで、酸素窒素
混合ガスの分Hq(((条件に関するV[技術をも探求
しようとするものであって、第1原料である液化酸素ま
たは液化窒素を気化させて一酸素ガスまたは窒素ガスと
して利用するに際して一第2原料である別の原料源から
得られる酸素と窒素とを3有するガスを第1原料の気化
に′川する蒸発潜熱および顕熱の寒冷工オルギ−によっ
て一8C〜−−140℃の低温に保たれた分子篩吸着剤
床に送入1.て−第2原料中に営まれる酸素をこの吸着
剤床の吸着剤に吸着さぜ一第2原料中にζ−イまれる窒
素を非吸M 成分として流出させることにより第?原料
中に含まれる酸素と窒素とを分離し−この吸着剤に吸着
された酸素は脱着回収することによって、これらの第2
原料から分離される酸素カスおよび窒素ガスをそれぞれ
第1原料から気化する酸素ガスまたは窒素ガスと併わせ
で利用することを特徴とするガスの増産方法を提供する
ものである。
In response to such social demands, this invention supplies oxygen and nitrogen at low cost, and responds to changes in demand for so-called separated wastes such as oxygen, nitrogen, or argon separated from air. Expanding the range of oxygen and nitrogen-containing gases generated in fields such as metallurgy, chemistry, and fermentation, as well as utilizing discarded cold energy when vaporizing liquefied waste. (Thus - increase the production of oxygen gas and nitrogen scum) In one step, the amount of oxygen and nitrogen mixed gas Hq When liquefied oxygen or liquefied nitrogen is vaporized and used as oxygen gas or nitrogen gas, a gas containing oxygen and nitrogen obtained from another raw material source, which is the second raw material, is used to vaporize the first raw material. The flowing latent heat of vaporization and sensible heat are fed into a molecular sieve adsorbent bed kept at a low temperature of -18C to -140C by a cryogenic system. The nitrogen adsorbed in the second raw material is allowed to flow out as a non-absorbed component, thereby separating the oxygen and nitrogen contained in the second raw material. By desorbing and recovering the oxygen, these secondary
The present invention provides a method for increasing gas production, characterized in that oxygen scum and nitrogen gas separated from a raw material are used together with oxygen gas or nitrogen gas vaporized from a first raw material, respectively.

従来、空気等の酸素窒素含有ガスC以下原料ガスと称す
)をその成分に吸着分離する方法としては、常温で天然
または合成ゼオライト等の分子篩吸着剤を用いて窒素を
吸着し酸素から分1iillする方法か一般的であった
。しかし−この常温での分離方法では一単位吸着剤当り
の吸着ガス量が小さいうえ、一般に原料ガスである空気
中の酸素より量の多い窒素を選択的に吸着するので一吸
着分離効果が悪く一製品ガス単位当りの吸着剤所要量が
大きくなり一装置眞規模や原料ガス圧縮のための動力原
単位も太きく rjり一また一吸着剤に悪影響を及ぼす
原料ガス中の水分や炭酸ガスなどの不純物を除去するた
め(天然または合成ゼオライト吸着剤は一酸素、窒素よ
り水分、炭酸ガスの方か選択吸着特性があるため一水分
一炭酸ガスを除去しハければ一酸素、窒素は吸着出来な
い〕の吸着前処理装置を必要とするfxどの難点を有し
ていた。
Conventionally, a method for adsorbing and separating an oxygen-nitrogen-containing gas such as air (hereinafter referred to as raw material gas) into its components is to adsorb nitrogen using a molecular sieve adsorbent such as natural or synthetic zeolite at room temperature and separate it from oxygen. It was a common method. However, in this separation method at room temperature, the amount of gas adsorbed per unit of adsorbent is small, and generally nitrogen, which is larger in amount than oxygen in the air, which is the raw material gas, is selectively adsorbed, so the adsorption separation effect is poor. As the amount of adsorbent required per unit of product gas increases, the actual scale of the equipment and the power consumption for compressing the raw material gas also increase. To remove impurities (natural or synthetic zeolite adsorbents have selective adsorption properties for moisture and carbon dioxide over oxygen and nitrogen, so if they remove moisture and carbon dioxide, they cannot adsorb oxygen and nitrogen. ] had the disadvantage of requiring an adsorption pretreatment device.

そこで、この発明者らは原料ガスを空気とし一混合状態
にある酸素と窒素とを分離するとき一酸素の方が1戊分
量として少なく−この酸素を吸着させて酸素−窒Xを分
jJjtiする方が一必要吸着剤量として少な(てすむ
点に着目しこの方法について検、−・jした。しかし、
従来の常温下での圧力変動式吸着分′、1e+1法の場
合−天然または合成ゼオライト吸着剤は一前記のとおり
、窒素を選択吸着するため一酸素を吸着させて吸着剤量
を少tくすることは不yl(、昭和42年1り月]日発
行−第164頁、に示されているが、この明相1潜第3
図には4λのイI11・化径を持つ合成ゼオライトの0
℃以下の各温度(こおける酸素−窒素それぞれ単一の吸
着量が示されていて−この図を見れば0℃から一100
℃付近までは酸素の吸着量よりも窒素の吸着量の方が大
きいか一窒素の吸着@は一100℃付近をピーク番こし
て−さらに低温では急激番こ低下し、一方、酸素の吸着
1、:゛は低tAIXはど人きく 1.にり一特に−1
50℃以下の低温ドては、窒素をほとんど吸着しないが
酸素は吸着し、その吸着ガス量も常温に比べはるかに大
きいことが示されている。
Therefore, when the inventors use air as a raw material gas and separate oxygen and nitrogen in a mixed state, the amount of oxygen is smaller than the amount of nitrogen. We investigated this method, focusing on the fact that the required amount of adsorbent is smaller. However,
In the case of the conventional pressure-fluctuating adsorption method at room temperature, 1e+1 method - Natural or synthetic zeolite adsorbents are used to selectively adsorb nitrogen, so one oxygen is adsorbed to reduce the amount of adsorbent. This is shown in Fuyl (January 1964), published on page 164.
The figure shows a synthetic zeolite with a diameter of 4λ.
At each temperature below ℃ (the single adsorption amount of oxygen and nitrogen is shown in this figure), from 0℃ to -100℃
Up to around 100°C, the amount of nitrogen adsorbed is larger than the amount of oxygen adsorbed, or the amount of nitrogen adsorption peaks at around 100°C, and then decreases rapidly at lower temperatures; ,: ゛ is low tAIX. 1. Niriichi especially -1
It has been shown that at low temperatures below 50° C., nitrogen is hardly adsorbed, but oxygen is adsorbed, and the amount of adsorbed gas is much larger than at room temperature.

つぎに吸着剤111位当りの吸着ガス量を比較−1−2
゜と、従来の常温法で使用される代表的−1,; 5 
X合成ゼオライトは一窒素を選択吸着し−この窒素の吸
着量は約0.78重量%(吸着剤当りの重駈比〕である
。一方、4λ合成ゼオライトCマ、−196°C低温下
では、酸素を選択吸着し、この酸素は約24重量%以」
−の吸着能力を有す。この結果−′帛j+ITL !2
着と低温吸着の服務能力差は一低温吸着か約30倍以」
二と非常に大きくなる。低温];でおきるこの効果を利
用して一吸着操作を特に−1,50’C以下で行ない原
料ガス中の少ない方の成分である酸素を吸脱着させ、窒
素を非吸着成分として流出させれは一必要吸着剤量が非
常に少なくてすむと考えられる。
Next, compare the amount of adsorbed gas per adsorbent position 111-1-2
゜ and the typical one used in the conventional room temperature method -1,; 5
X-synthetic zeolite selectively adsorbs mononitrogen - the amount of nitrogen adsorbed is approximately 0.78% by weight (weight ratio per adsorbent).On the other hand, 4λ synthetic zeolite C-ma selectively adsorbs nitrogen at a low temperature of -196°C. , selectively adsorbs oxygen, and this oxygen is approximately 24% by weight or more.
- It has an adsorption capacity of -. This result −′帛j+ITL! 2
The difference in service ability between low-temperature adsorption and low-temperature adsorption is about 30 times that of low-temperature adsorption.''
Second, it becomes very large. Taking advantage of this effect, which occurs at low temperatures], an adsorption operation is carried out especially at -1,50'C or lower to adsorb and desorb oxygen, which is the smaller component in the raw material gas, and allow nitrogen to flow out as a non-adsorbed component. It is thought that the amount of adsorbent required is very small.

既に述べたように、第3図から判断すれば、低温になる
ほど酸素と窒素の分離効果Cま太き(−窒素はlヨとん
ど吸着せず酸素のみの吸着が可能と予想されたのである
が−この発明者らかこの低温下で混合状態にある酸素、
窒素について鋭意検討した結果は、意外にも前記公知文
献に示された図かう予想されるところと全く異なる結論
を得てこの発明を完成する足掛りを得るに至った。得ら
れた結果を図示すると第4図のようになる。この図には
一用力変動吸着法で温度を夏化さぜ一空気を原料ガスと
して酸素、窒素の吸着量と、製品窒素量の変化とを示し
たが一酸素吸着量は−110℃付近で最高となり、この
ピークより高い温度でも低い温度でも吸着量は減少する
。また−窒素の吸着量は−13(,1’C付近で最少と
ン了りこの温度より高くても低くても吸着量を増加する
。製品窒素量は一−IIO’C付近で最高と1よりこれ
以外の温度では減少する1xど一第3図から予想された
低温になるほど吸着効果が同上するという結論とは全く
異った結果を確認した。この結果、この発明においては
窒素と酸素の分離に有効な温度範囲として、−80〜−
140に制御するのがよいことを着想する(こ至った。
As already mentioned, judging from Figure 3, the lower the temperature, the thicker the separation effect C between oxygen and nitrogen (- since it was expected that only oxygen could be adsorbed without much adsorption of nitrogen). However, the inventors discovered that oxygen in a mixed state at this low temperature,
As a result of extensive research on nitrogen, we unexpectedly came to a conclusion completely different from what was expected from the figures shown in the above-mentioned known documents, which provided us with a foothold to complete the present invention. The obtained results are illustrated in FIG. 4. This figure shows the amount of oxygen and nitrogen adsorbed using air as a raw material gas and the change in the amount of nitrogen product when the temperature was summerized using the single-power fluctuation adsorption method. However, the amount of oxygen adsorbed was around -110°C. The amount of adsorption decreases at temperatures both higher and lower than this peak. In addition, the amount of nitrogen adsorbed reaches its minimum at around -13 (,1'C), and the amount of adsorption increases whether it is higher or lower than this temperature. Therefore, we confirmed a result that is completely different from the conclusion that the adsorption effect increases as the temperature decreases, which was predicted from Fig. 3. The effective temperature range for separation is -80 to -
I came up with the idea that it would be better to control it to 140 degrees.

この発明においては前記したとおり吸着操作温度を−8
0〜〜1.4 tJ ’Cとするため一原料ガスを分子
篩吸着剤床に入れる前当然この温度範囲に冷却しなけれ
ばならず、この温度では、水分、炭酸ガスは凍結凝固す
るため、自すと原料カス中の水分、炭酸ガスなどは凝結
除去されるから一水分や炭酸ガスを除去するための吸着
前処理は不要にIぶる。
In this invention, as mentioned above, the adsorption operation temperature is -8
In order to set the temperature to 0 to 1.4 tJ 'C, it is necessary to cool the raw material gas to this temperature range before introducing it into the molecular sieve adsorbent bed. At this temperature, water and carbon dioxide freeze and solidify, so Since moisture, carbon dioxide, etc. in the raw material waste are condensed and removed, there is no need for pre-adsorption treatment to remove moisture and carbon dioxide.

この発明は、以」二述べたような分子飾吸着剤床を−8
0〜−140℃の低温に保つための寒冷エネルギーとし
て一液化酸素または液化窒素が気化する際の気化熱(す
なわち−蒸発潜熱もしくは顕熱等の寒冷エネルギーは、
従来廃棄されて全く顧みられなかったものである〕を利
用しようとする着想に基ついてなされたものである。
This invention utilizes a molecular-decorated adsorbent bed as described below.
As cold energy to maintain the temperature at a low temperature of 0 to -140°C, the heat of vaporization when liquefied oxygen or liquefied nitrogen vaporizes (i.e. - cold energy such as latent heat of vaporization or sensible heat)
This idea was based on the idea of making use of materials that had previously been discarded and completely neglected.

この発明の方法においては、第2原料である酸素と窒素
とを含有するガスを−80〜−140℃に保たれた分子
篩吸着剤床に送入[7て、原料中の酸素をこの吸着剤床
の吸着剤に吸着させ、原料中の窒素を非吸着剤I成分と
して流出さぜることにより一第2原料中に含まれる酸素
と窒素とに分離するものであるから、第2原料としては
酸素と窒素とを含む混合ガスであれば、いかなる組成の
ものてあっても使用できるが、特に空気のように酸素含
量船こ比べて窒素含計の大きい原料ガスの場合には分離
効率がよいので、窒素ガスに富むガスを使用することは
好ましい。
In the method of this invention, a gas containing oxygen and nitrogen, which is a second raw material, is fed into a molecular sieve adsorbent bed maintained at -80 to -140°C [7] to remove oxygen in the raw material from the adsorbent. The second raw material is adsorbed by an adsorbent on the bed and the nitrogen in the raw material flows out as a non-adsorbent I component to separate the oxygen and nitrogen contained in the first and second raw materials. Any mixed gas containing oxygen and nitrogen can be used, but the separation efficiency is particularly high for raw material gases such as air, which have a higher nitrogen content than air. Therefore, it is preferable to use a gas rich in nitrogen gas.

一方、第1原料としては一液化酸素または液化窒素のい
ずれを使用し、でもよく、必要に応じて、同一の装置で
両者を切替えて使用することもできるが一切替え時には
両者の混合によって純度の低下したガスを生成するので
、用途もしくは需要家の要求する純度に対応できるよう
な配瞠は当然必要である。この発明の方法は一第1原料
である液化酸素または液化窒素の保有する寒冷エネルギ
ーを活用(2て、第2原料からも酸素や窒素を分離し−
これらを併わせで利用するものであり、第1原料から得
られる製品ガスと、第2原料から得られる製品ガスとは
−それぞれ単独で用いてもよく、または混合して用いて
もよいが、第1原料から得られる製品ガスと第2原料か
ら得られる製品ガスとは自ずと純度牟異るから、最終の
用途に応じて、半独便用するか、混合使用するか−もし
混合使用するとすればその混合比等は、当然のことなが
ら適宜使い分けることが必要である。この発明の方法は
一段で実施したり、製品の高純度の要求に応じて多段で
実施したりすることも任意になし得る。
On the other hand, as the first raw material, either liquefied oxygen or liquefied nitrogen can be used, and if necessary, both can be switched in the same equipment, but when switching at all, the purity can be improved by mixing the two. Since a reduced gas is generated, it is naturally necessary to have a control system that can meet the purity requirements of the application or the customer. The method of this invention utilizes the cold energy possessed by liquefied oxygen or liquefied nitrogen, which is the first raw material (2) separates oxygen and nitrogen from the second raw material as well.
These are used in combination, and the product gas obtained from the first raw material and the product gas obtained from the second raw material may be used alone or in combination, but The product gas obtained from the first raw material and the product gas obtained from the second raw material naturally differ in purity, so depending on the final use, they may be used semi-exclusively or as a mixture. Naturally, it is necessary to use the mixing ratio of the tobacco as appropriate. The method of the invention can optionally be carried out in one stage or in multiple stages depending on the requirements for high purity of the product.

この発明の方法を実施する装置は、前述したように、水
分および炭酸ガスを除去するための前処理装置は不要で
あり一窒素に富んだ第2原料を使用するときの分離効率
は高いので一装置は比較的小型で済み、圧縮機も小型で
よく、分子篩吸着剤床中にガスを通すという方法であり
、かつ−従来廃棄していた寒冷エネルギーを活用するも
のであるンク1ら、動力や冷却エネルギー等を多量に必
要とするということもす<、操作も簡単である。
As mentioned above, the apparatus for carrying out the method of this invention does not require a pretreatment apparatus for removing moisture and carbon dioxide gas, and the separation efficiency is high when using the second raw material rich in nitrogen. The device is relatively small, the compressor can be small, the gas is passed through a bed of molecular sieve adsorbent, and it uses cold energy that was previously discarded. Although it requires a large amount of cooling energy, it is easy to operate.

この発明の方法(こおいて、第1原料として用いる低温
液体酸素−窒素は、大気圧の貯蔵温度がそれぞれ一18
3℃、−196℃と非常に低温度で、この発明の原料ガ
スを冷却するに充分なる温度と寒冷エネルギーを保有し
ており−この低温吸着分離方法を実施することにより従
来の常温法の短所を改善するとともに、製品として得よ
うとするガスと同一の低温7fシ化ガスを冷媒として基
/fiを得ることを容易とし、この冷媒をブbセス停止
時に外1、%侵入熱(こより吸着剤床の2M度」二昇を
防止するため、吸石イ11床中もしくCマその周囲に設
けられた熱交換パイプ中に通して外部からの侵入熱によ
る吸着剤床の温度」二昇を抑制し、窒素による吸着妨害
を防ぎ一低温吸着法の欠点である装置起動時の吸着剤床
を低温にする操作を無くし、常に装置を正常γS低温状
態に保つよう(こすることもできろ。
The method of this invention (in which the low-temperature liquid oxygen and nitrogen used as the first raw materials each have a storage temperature of -18
At extremely low temperatures of 3°C and -196°C, it has enough temperature and cold energy to cool the raw material gas of this invention - by implementing this low-temperature adsorption separation method, the disadvantages of the conventional normal temperature method can be overcome. At the same time, it is easy to obtain base/fi by using low-temperature 7F silicide gas, which is the same as the gas to be obtained as a product, as a refrigerant. In order to prevent the temperature of the adsorbent bed from rising to 2M degrees, the temperature of the adsorbent bed is increased by passing heat through a heat exchange pipe installed in or around the adsorbent bed. This method eliminates the need to lower the adsorbent bed to a low temperature when starting the device, which is a disadvantage of low-temperature adsorption methods, and keeps the device at a normal γS low temperature (it is also possible to .

この製品と同一の低温液化ガス−すなわち、製品カース
か非吸着成分である窒素の場合は液体堅素−吸着成分で
ある酸素の場合は液体酸素−を冷媒とすることは、前記
のようにプロセス停止時にも寒冷源を有し吸着剤床の温
度上昇を抑制する効果の他に、吸着分離ガス単位ではそ
の純度により用途の限られたものが、冷媒である液化ガ
スの蒸発ガスと混合されることにより純度が上昇し用途
が広くなるという効果もある。すなわち、低温吸着によ
り一窒素を製品とする場合−吸着塔の製品窒素は一般1
こ99.0〜999.容量%の純度で一冷媒と。
Using the same low-temperature liquefied gas as this product, i.e., liquid nitrogen in the case of nitrogen, which is a non-adsorbed component, and liquid oxygen, in the case of oxygen, which is an adsorbed component, is used as a refrigerant in the process as described above. In addition to the effect of suppressing the temperature rise of the adsorbent bed by having a cold source even when it is stopped, the adsorbed and separated gas unit has limited uses due to its purity, but is mixed with the evaporated gas of the liquefied gas, which is a refrigerant. This has the effect of increasing purity and widening the range of uses. In other words, when mononitrogen is produced as a product by low-temperature adsorption, the product nitrogen from the adsorption tower is generally 1
This 99.0~999. with one refrigerant with a purity of % by volume.

flる低温液化窒素は99.999容量%である。また
、酸素を製品とする場合、吸着製品酸素は90〜97容
呈%で、冷媒の液化酸素は996容量%であり、これら
を混合すると吸着製品ガス純度は回」ニする。
The low temperature liquefied nitrogen contained in the fl is 99.999% by volume. Further, when oxygen is used as a product, the adsorption product oxygen is 90 to 97% by volume, and the refrigerant liquefied oxygen is 996% by volume, and when these are mixed, the adsorption product gas purity is doubled.

ます、この発明の第1の実施例として2基の吸着塔を父
互に用いて空気から窒素ガスを製造する装置の(既要を
第1図に基づいて説明する。
First, as a first embodiment of the present invention, the outline of an apparatus for producing nitrogen gas from air using two adsorption towers will be explained with reference to FIG.

図において−1は原料としての空気の導入管であって、
この管1に圧縮機2−冷却器3が順次連結され、冷却器
3の出口に連結された管4は2本に分岐して弁5 a 
、 51)−管5 a 、 51)を経て2基の熱交換
器7a 、7bに連結される。
In the figure, -1 is an introduction pipe for air as a raw material,
A compressor 2 - a cooler 3 are sequentially connected to this pipe 1, and a pipe 4 connected to the outlet of the cooler 3 is branched into two, and a valve 5a
, 51) - connected to two heat exchangers 7a, 7b via pipes 5a, 51).

この両熱父換器7a、7bの出口に連結された管は弁8
a・81〕を経て再ひ1木の管9となり熱交換器10に
連結される。この熱交換器10の出口に連結した管11
は、2木(こ分岐して弁12a。
The pipes connected to the outlets of the bithermal exchangers 7a and 7b are valve 8
a.81], it becomes a re-chilled pipe 9 and is connected to a heat exchanger 10. Pipe 11 connected to the outlet of this heat exchanger 10
is 2 trees (branched into valve 12a).

121〕を経て2基の吸着塔13a、131)に連結さ
れる。この吸着q i 3 a 、 l 3 bは合成
ゼオライトの如き分子篩吸着剤床を有するものて、その
」一部には弁141.141)を介して管15が連結さ
れ−この管15に連結した管16は2木に分岐して弁1
71.171)、管181.1813を経て前記熱ダ換
器7a 、7bの熱交換部19a、19bに連結される
が、この両熱交換部19a、1913の出[−1は管2
0により連結されている。
121] and then connected to two adsorption towers 13a, 131). This adsorption q i 3 a , l 3 b has a bed of molecular sieve adsorbent such as synthetic zeolite, and a pipe 15 is connected to the pipe 15 through a valve 141, 141). The pipe 16 is branched into two branches and has a valve 1.
71.171), and are connected to the heat exchange parts 19a and 19b of the heat exchangers 7a and 7b through pipes 181 and 1813, and the output [-1 of both heat exchange parts 19a and 1913 is the pipe 2
Connected by 0.

+iiJ記熱交換器7a 、7b内には別の熱交換部η
a1221)があり−この各熱交換部22a、22+)
の入1」はそれぞれ弁21 a 、21 bを有する管
(こより前記管18a、1B+)に連結され、出r]は
弁23a・231〕を介して1本の製品導出管24に連
結されている。
+iiJ There is another heat exchange section η in the heat exchangers 7a and 7b.
a1221) - each heat exchange section 22a, 22+)
The inlet 1' is connected to a pipe having valves 21a and 21b (the pipes 18a and 1B+), respectively, and the outlet r] is connected to one product outlet pipe 24 via valves 23a and 231]. There is.

25は液化ガス貯槽であって、この例では液体窒素が入
っている。この槽25に連結した管26は2木に分岐し
、一方の管は弁27を経て前記熱交換器10の熱交換部
28の入口(こ連結され、その出口は弁29を介して前
記管15.16に連結されている。また他方の管は弁4
3を経て分岐し一1iJ記各吸着塔13a、13b内の
熱交換パイプ44を経て再ひ1本の導出管45に接続さ
れている。
25 is a liquefied gas storage tank, which in this example contains liquid nitrogen. A pipe 26 connected to this tank 25 branches into two, one pipe is connected to the inlet of the heat exchange section 28 of the heat exchanger 10 through a valve 27, and the outlet is connected to the heat exchange section 28 of the heat exchanger 10 through a valve 29. 15 and 16. The other pipe is connected to valve 4.
3, and is connected to a single outlet pipe 45 via a heat exchange pipe 44 in each adsorption tower 13a, 13b.

31は前記各吸着塔13a、13b  に弁30a。31 is a valve 30a for each adsorption tower 13a, 13b.

301〕  を介して連結した管で−この管31は2木
に分岐して弁32a、32b  を介し一7YJ記各熱
交換器7 a 、 71)のもう−−) ノ熱交換部3
3a、33b  に連結され、この熱交換部331.3
31)の出口にそれぞれ連結した管34a、341)は
1木の管35に連結され、この管35に管36.42が
連結される。
301] - This pipe 31 is branched into two parts and connected to each heat exchanger 7a, 71) via valves 32a and 32b.
3a, 33b, and this heat exchange section 331.3
The pipes 34a, 341) respectively connected to the outlets of 31) are connected to a single pipe 35, to which pipes 36 and 42 are connected.

管36(こは大気に通じる放出弁37と真空ポンプ39
の入口に通じる弁38が設けられ一真空ポンブ39の排
気口には排気管40を連結する。また前記管42は2本
に分岐して弁41a、411)を介して前記管5a 、
5bに連結されている。
Pipe 36 (this includes a discharge valve 37 leading to the atmosphere and a vacuum pump 39)
A valve 38 communicating with the inlet of the vacuum pump 39 is provided, and an exhaust pipe 40 is connected to the exhaust port of the vacuum pump 39. Further, the pipe 42 is branched into two pipes 5a, 411) via valves 41a, 411).
5b.

つぎに」二記装置を用いた窒素ガスの分離方法の一例に
ついて説明する。
Next, an example of a method for separating nitrogen gas using the apparatus described in "2" will be explained.

弁5 b 、 813 、12b、14b、17b、2
1a、23L]、30a 、32b 、41 a 、 
38 、43を閉じ他の全ての弁を開いた状態で、圧縮
機2を運転すると、管1から供給された原料空気は圧縮
機2により約3kg/c/に圧縮されて冷却器3で冷却
水などにより圧縮熱を除去されたのち管4→弁5a→管
6aと流れ熱交換器7aにより約−145℃に冷却され
て水分−炭酸カスrjどの不純物が熱交換部19aによ
り凝結除去されて消浄な低/111F空気とγXり導出
されて、弁8a’i+i’ 9を経て熱交換器10番こ
導入される。熱交換器10内の熱交換部28(こは貯J
:Hjji 25から管26−弁27を経て液体窒素が
供給されており一管9よりM人された原料空気はこの液
体窒素と熱交換して約−170℃に冷却され一管11、
弁12aを経て吸着塔13a+?:、、M人される。一
方、熱交換部28ζこ供給された液体窒素は原料空気と
の熱交換で蒸発してガス化し、弁29を経て後述の吸着
分離窒素と混合される。
Valve 5b, 813, 12b, 14b, 17b, 2
1a, 23L], 30a, 32b, 41a,
When the compressor 2 is operated with the valves 38 and 43 closed and all other valves open, the raw air supplied from the pipe 1 is compressed to approximately 3 kg/c/cm and is cooled by the cooler 3. After the heat of compression is removed by water or the like, the pipe 4 → valve 5a → pipe 6a is cooled to about -145°C by the heat exchanger 7a, and impurities such as water and carbon dioxide are condensed and removed by the heat exchanger 19a. The purified low/111F air and γX are drawn out and introduced into heat exchanger No. 10 via valves 8a'i+i'9. The heat exchange section 28 in the heat exchanger 10 (here
Liquid nitrogen is supplied from Hjji 25 through pipe 26 and valve 27, and the raw material air from pipe 9 exchanges heat with this liquid nitrogen and is cooled to about -170°C.
Adsorption tower 13a+? via valve 12a? :,,M people are seen. On the other hand, the liquid nitrogen supplied to the heat exchange section 28ζ is evaporated and gasified by heat exchange with the raw material air, and mixed with adsorbed and separated nitrogen, which will be described later, through the valve 29.

吸着塔13a、131)は何れも低温下で酸素を選択的
Iこ吸着する合成ゼオライト等の分子篩吸着剤が充填さ
れており一所定の時間間隔で周期的に吸?“1と再生を
交互に繰り返す。いま、吸着塔13aが吸li、lI−
131)が再生器tこあるから一熱父換器10より導出
された原料空気Cま、前記のように管11、弁12aを
経て吸着塔13aに導入され一塔内に充填された吸着剤
に、より酸素が選択的ζこ吸着されて窒素が非吸着成分
として弁14aを経て導出される。
The adsorption towers 13a, 131) are each filled with a molecular sieve adsorbent such as synthetic zeolite that selectively adsorbs oxygen at low temperatures, and periodically adsorbs oxygen at predetermined time intervals. "1" and regeneration are repeated alternately. Now, the adsorption tower 13a absorbs li, lI-
131) is the regenerator t, so the feed air C is drawn out from the heat exchanger 10, and the adsorbent that is introduced into the adsorption tower 13a through the pipe 11 and valve 12a as described above and filled in the tower. Then, oxygen is selectively adsorbed and nitrogen is led out as a non-adsorbed component via the valve 14a.

吸着塔13aより導出された吸着分離窒素は、弁14a
−管15を経て前述の冷媒液体窒素の蒸発ガスと混合さ
れ一管16−弁17a−管18aを経て熱交換器/’a
内の熱交換部19Hに導入されて原料空気と熱交換して
ほぼ常温に昇温した後−管20を経てもう一方の再生中
の熱交換器71〕内の熱交換部191〕に導入された混
合窒素は−(1−コて前周期に耐結された水分、炭酸カ
ス等の不純物と熱交換して再び冷却され、管18I)、
弁211)を経て熱交換器7a内の熱交換部22aに入
り、再ひ原料空気と熱交換してほぼ常温にf、fす、弁
231−管24を通って製品窒素として所要部へ供給さ
れる。
The adsorbed and separated nitrogen derived from the adsorption tower 13a is passed through the valve 14a.
- through pipe 15, it is mixed with the evaporated gas of the refrigerant liquid nitrogen mentioned above;
After being introduced into the heat exchange section 19H in the heat exchanger 19H of the heat exchanger 71 which is being regenerated, the air is introduced into the heat exchange section 191 in the heat exchanger 71 which is being regenerated through the pipe 20 and heated to approximately room temperature by exchanging heat with the feed air. The mixed nitrogen is cooled again by exchanging heat with impurities such as moisture and carbonic acid scum that were frozen in the previous cycle (tube 18I),
It enters the heat exchange section 22a in the heat exchanger 7a through the valve 211), exchanges heat with the raw material air again, reaches almost room temperature, and then passes through the valve 231-pipe 24 and is supplied to the required section as product nitrogen. be done.

再生器にある吸着塔131〕からは、前周期(こ吸着さ
れた酸素が一弁30b−管31、弁32aを・経て熱交
換器7a内の熱交換部33a(こ入り、原料空気と熱交
換して昇温された後、管34a%35.36、弁37を
経て大気に放出され一吸着塔13b内の圧力が吸着圧力
から大気圧に減圧される。
From the adsorption tower 131 in the regenerator, the oxygen adsorbed in the previous cycle passes through the valve 30b, the pipe 31, and the valve 32a, and then enters the heat exchange section 33a in the heat exchanger 7a, where it enters the feed air and heat exchanger 7a. After being exchanged and heated, it is discharged to the atmosphere through the pipe 34a% 35.36 and the valve 37, and the pressure inside the adsorption tower 13b is reduced from the adsorption pressure to atmospheric pressure.

吸着塔131〕内の圧力が大気圧まで減圧された後−弁
37が閉し−かイっりに弁38が開かれて一上述の圧力
放出時と同じ過程を経て吸着塔13b内の酸素か真空ポ
ンプ39により吸引され、排気前句を通って系外に排出
される。同時に、前述の混合窒素により加熱解氷された
熱交換器7b内の水分、炭酸ガスなとの不純物が一管6
1)、弁41b−管42.36、弁38を経て真空ポン
プ39により吸引され、排気管40を通って同じく系外
(こ排出される。
After the pressure inside the adsorption tower 131 is reduced to atmospheric pressure, either the valve 37 is closed or the valve 38 is suddenly opened, and the oxygen inside the adsorption tower 13b is released through the same process as the pressure release described above. It is sucked in by the vacuum pump 39 and discharged to the outside of the system through the exhaust pipe. At the same time, impurities such as moisture and carbon dioxide in the heat exchanger 7b, which has been heated and thawed by the aforementioned mixed nitrogen, are removed from the tube 6.
1) It is sucked in by the vacuum pump 39 through the valve 41b, the pipe 42, 36, and the valve 38, and is also discharged outside the system through the exhaust pipe 40.

−1−述の操作を一定時間続けたのち、これまで閉して
いた弁を開き、開いていた弁を閉じて(弁27.29.
43はそのまま)吸着塔13bを吸着期とし一吸着塔1
3aを再生器として前述と同様の運転を行fよう。
-1- After continuing the above operation for a certain period of time, open the previously closed valves, close the open valves (valve 27.29.
43 remains the same) with adsorption tower 13b as the adsorption period.
Let's perform the same operation as described above using 3a as a regenerator.

また、プロセス停止時(こは弁27を閉とし、弁43を
開として貯4%M 25から液体窒素を管26、弁43
を経て一吸着塔13a、i3b内の熱交換パイプ441
こ供給し一外部からの侵入熱による熱着剤の温度上昇を
抑制し、蒸発−ガス化した窒素は管45を通って系外へ
出る。
In addition, when the process is stopped (in this case, the valve 27 is closed and the valve 43 is opened to supply liquid nitrogen from the stored 4% M25 to the pipe 26 and the valve 43.
The heat exchange pipes 441 in the adsorption towers 13a and i3b
This supply suppresses the rise in temperature of the thermal adhesive due to heat entering from the outside, and the evaporated and gasified nitrogen exits the system through the pipe 45.

本発明の最大の効果を発揮できるのは、前pこも記載し
たとおり、現在低温液体酸素−窒素を使用している工場
において、大気中(こ−183℃・−196℃(いずれ
も沸点〕という低温寒冷エネルギーを全く利用しないで
放出していたものを−この発明の内容に従って有効利用
することにある。
As mentioned above, the greatest effect of the present invention can be achieved in factories that currently use low-temperature liquid oxygen-nitrogen. The object of the present invention is to utilize low-temperature cold energy, which was previously emitted without any use at all, in accordance with the content of the present invention.

具体的にその効果を説明すると−」二記の第1の実施例
では図に示した2塔切換式の場合で、8ONm/時の吸
着分離窒素を製造するために必要な吸着剤は1塔当り約
9 o kgで従来方法よりも少なくなる。従来の常温
法(こよる窒素カス生産では、天然、合成ゼオライト、
または運転方法により差はあるが、大略同一窒素生産量
に対し一吸着剤は1200〜2000 kgとなり、こ
の発明の低温吸着においては、従来の常温吸着法に比べ
、吸着剤JiiJil/6〜1/11と大幅に減少され
、その効果は絶大なるものである。
To explain the effect in detail, the first example described in 2 is a case of the two-column switching type shown in the figure, and the adsorbent required to produce 8 ONm/hour of adsorbed and separated nitrogen is one column. Approximately 9 kg per serving, which is less than the conventional method. Conventional room temperature method (for nitrogen sludge production), natural, synthetic zeolite,
Although there are differences depending on the operating method, one adsorbent weighs 1,200 to 2,000 kg for roughly the same nitrogen production, and in the low temperature adsorption of this invention, the adsorbent JiiJil/6 to 1/ It has been significantly reduced to 11, and the effect is tremendous.

また、製品窒素純度99〜99.9%の範囲内で、冷媒
液体窒素1へm3に対し一吸着分離窒素が2〜4 N+
n1得られ、現在液体窒題を蒸発−ガス化して使用して
いるところでCま、その寒冷を利用して2〜4倍の窒素
の増量が可能である。
In addition, within the range of product nitrogen purity of 99 to 99.9%, 1 m3 of refrigerant liquid nitrogen to 1 adsorbed and separated nitrogen of 2 to 4 N+
Currently, liquid nitrogen is used by evaporating and gasifying it, but by utilizing the cold temperature, it is possible to increase the amount of nitrogen by 2 to 4 times.

第2図は空気から酸素カスを製造する第2の実施例を示
すもので一大部分は第1の実施例と同様であるから相違
点のみについて説明する。
FIG. 2 shows a second embodiment for producing oxygen scum from air, and most of the features are the same as the first embodiment, so only the differences will be explained.

第2図において一熱交換器10の熱交換器28の出[−
1には管46を連結してこの管を2木番こ分岐し一各熱
交換器7a・71〕にさらに設けた熱交換部48a、4
8bへ弁47a、471)を介して連結する。また、こ
の両熱交換部48a、4B+)の出口は管49a 、4
9b を介して弁50に連結し、この弁50を酸素取出
管51に連結し、真空ポンプ39の吐出[]および弁3
7を前記取出管51に連結する。
In FIG. 2, the output of the heat exchanger 28 of the heat exchanger 10 [-
A pipe 46 is connected to 1, and this pipe is branched into 2 wooden blocks, and heat exchange parts 48a, 4 are further provided in each heat exchanger 7a, 71].
8b via valves 47a, 471). Also, the outlets of both heat exchange parts 48a, 4B+) are pipes 49a, 4B+).
9b to the valve 50, and this valve 50 is connected to the oxygen extraction pipe 51, and the discharge [ ] of the vacuum pump 39 and the valve 3
7 is connected to the extraction pipe 51.

この実施例のプロセスでは貯槽25に液体酸素を充填す
る点が異なり、吸着塔13aを・吸着量、吸着塔13I
)を再生期とする場合は前記貯槽から弁27を経て熱交
換器10内の熱又換部2Bに供給された液体酸素は原料
空気との熱交換で蒸発してガス化し、管46−弁47a
を経て熱交換器7a内の熱交換器48aに導入され、さ
らに原料空気と熱交換して昇温され、管49a−弁50
を通って吸着分離酸素と混合され一管51より製品酸素
として供給されることになる。また、吸着塔13aを再
生期、吸着塔131〕を吸着量とする場合は管46から
の酸素は弁471)熱交換器481)から弁50に流れ
る。一方、窒素ガスは管24を経て排出される。
The process of this embodiment differs in that the storage tank 25 is filled with liquid oxygen, and the adsorption tower 13a is
) is the regeneration period, the liquid oxygen supplied from the storage tank to the heat exchanger section 2B in the heat exchanger 10 through the valve 27 is evaporated and gasified by heat exchange with the raw material air, and the pipe 46-valve 47a
It is introduced into the heat exchanger 48a in the heat exchanger 7a through the pipe 49a-valve 50, and is further heated by exchanging heat with the raw material air.
It is mixed with adsorbed and separated oxygen through the pipe 51 and supplied as product oxygen. When the adsorption tower 13a is used for the regeneration period and the adsorption tower 131 is used for the adsorption amount, oxygen from the pipe 46 flows from the valve 471) to the heat exchanger 481) to the valve 50. Meanwhile, nitrogen gas is exhausted via pipe 24.

この発明Lt上記の各実施例のように空気のような酸素
窒素含有ガス中の少ない方の成分である酸素を低温でよ
り多く吸着させることによって吸着性トIW効率の同上
が得られることは勿論であるが、低温を得るための冷媒
として製品とするガスと同一の低温液体ガス、すなわち
、窒素を製品とする場合は低温液体窒素、酸素を製品と
4−る場合は低温液体酸素を用い、熱交換によりガス化
L5たこれらの冷媒を製品ガスに混合することにより、
冷媒を有効に利用できる利点がある。またープロセス中
において必然的に要求される原料ガスを冷却する低温+
iを利用1−.て水分や炭酸カスなどの不純物の凝結除
去が行なえ、さらに、プロセス中に常備される液化ガス
を寒冷源としてプロセス停止時(こおいて、吸着塔内の
吸着剤床を吸M温度に保つことが可能なために一低温吸
着の問題点であった起動時の吸着剤床の冷却が不用と1
xり一起動時間力5大幅に短縮されるなどの効果もある
This invention Lt It goes without saying that, as in each of the above embodiments, the same adsorption efficiency and IW efficiency can be obtained by adsorbing more oxygen, which is the smaller component in an oxygen-nitrogen-containing gas such as air, at a low temperature. However, the same low-temperature liquid gas as the product gas is used as a refrigerant to obtain a low temperature, that is, low-temperature liquid nitrogen is used when nitrogen is the product, and low-temperature liquid oxygen is used when oxygen is the product. By mixing these refrigerants gasified by heat exchange with the product gas,
It has the advantage of being able to use refrigerant effectively. Also - low temperature to cool the raw material gas that is inevitably required during the process +
Use i1-. Impurities such as water and carbon dioxide can be condensed and removed by the process, and the liquefied gas that is always available during the process can be used as a cooling source to keep the adsorbent bed in the adsorption tower at the absorption temperature when the process is stopped. This eliminates the need to cool the adsorbent bed during startup, which was a problem with low-temperature adsorption.
It also has the effect of significantly shortening the startup time by 5.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はこの発明の各実施例を示す系統図、第
3図は窒素、酸素それぞれ単独の温度−吸着量の関係を
示す図、第4図は窒素−酸素共存峙の温度と吸着はおよ
び温度と製品窒素量を示す図である。 2・・圧縮機、3・・・冷却器、7a 、7b・・・熱
交換器−10・・・熱交換器、13a、13’)・・・
吸着塔−25・・・液化ガス貯槽、39・・・真空ポン
プ。 特d′1出願人  犬賜酸素株式会社 II7+   i−e 通入   jillF   )
1−1   ケ  −第3図 第11図 u8<+  140− +c+o  6(1−2(1一
温度°C
Figures 1 and 2 are system diagrams showing each embodiment of the present invention, Figure 3 is a diagram showing the relationship between temperature and adsorption amount for nitrogen and oxygen, respectively, and Figure 4 is the temperature for the coexistence of nitrogen and oxygen. and adsorption are diagrams showing temperature and product nitrogen amount. 2...Compressor, 3...Cooler, 7a, 7b...Heat exchanger-10...Heat exchanger, 13a, 13')...
Adsorption tower-25...Liquefied gas storage tank, 39...Vacuum pump. Special d'1 applicant Inutama Sanso Co., Ltd. II7+ ie pass jillF)
1-1 Ke -Figure 3Figure 11 u8<+ 140- +c+o 6(1-2(1-Temperature °C

Claims (1)

【特許請求の範囲】[Claims] 第1原料である液体酸素または液化窒素を気化させて一
酸素ノJスまたは窒素ガスとして利用するに際して、第
2原料である別の原料源から得られる酸素と窒素とを含
有するガスを第1原料の気化(こ安する蒸発温熱および
顕熱の寒冷エネルギーによって−80〜−14tJ ”
Cの低温に保たれた分子篩吸着剤床に送入して一第2原
料中に含まれる酸素をこの吸着剤床の吸着剤に吸着させ
、第2原料中に含まれる窒素を非吸着成分として流出さ
せることIこより第2原料中に含まれる酸素と窒素とを
分離(−一この吸着剤に吸着された酸素は脱着回収する
こと(こよって−これらの第2原料から分離される酸素
カスおよび窒素ガスをそれぞれ第1原料から気化する酸
素ガスまたは窒素ガスと併わせで利用することを特徴さ
するガスの増産方法。
When the first raw material, liquid oxygen or liquid nitrogen, is vaporized and used as monooxygen or nitrogen gas, the second raw material, a gas containing oxygen and nitrogen obtained from another raw material source, is used as the first raw material. Vaporization of raw materials (-80 to -14 tJ due to the cooling energy of evaporation heat and sensible heat)
The first raw material is fed into a molecular sieve adsorbent bed kept at a low temperature, and the oxygen contained in the second raw material is adsorbed by the adsorbent of this adsorbent bed, and the nitrogen contained in the second raw material is used as a non-adsorbed component. From this, the oxygen and nitrogen contained in the second raw material are separated (-1) The oxygen adsorbed by this adsorbent is desorbed and recovered (thereby, the oxygen scum and nitrogen separated from these second raw materials are A method for increasing gas production characterized by using nitrogen gas together with oxygen gas or nitrogen gas, respectively, which are vaporized from a first raw material.
JP58071627A 1983-04-20 1983-04-20 Method for increasing production of gas Granted JPS5982924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58071627A JPS5982924A (en) 1983-04-20 1983-04-20 Method for increasing production of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58071627A JPS5982924A (en) 1983-04-20 1983-04-20 Method for increasing production of gas

Publications (2)

Publication Number Publication Date
JPS5982924A true JPS5982924A (en) 1984-05-14
JPS646121B2 JPS646121B2 (en) 1989-02-02

Family

ID=13466074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58071627A Granted JPS5982924A (en) 1983-04-20 1983-04-20 Method for increasing production of gas

Country Status (1)

Country Link
JP (1) JPS5982924A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272504A (en) * 1985-09-27 1987-04-03 Hitachi Ltd Production of nitrogen having high purity
JPH01115431A (en) * 1987-10-30 1989-05-08 Mitsubishi Heavy Ind Ltd Gas production apparatus
JP2008075697A (en) * 2006-09-19 2008-04-03 Nippon Oil Corp Hydrogen storing apparatus, and supplying hydrogen method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272504A (en) * 1985-09-27 1987-04-03 Hitachi Ltd Production of nitrogen having high purity
JPH0459926B2 (en) * 1985-09-27 1992-09-24 Hitachi Ltd
JPH01115431A (en) * 1987-10-30 1989-05-08 Mitsubishi Heavy Ind Ltd Gas production apparatus
JP2008075697A (en) * 2006-09-19 2008-04-03 Nippon Oil Corp Hydrogen storing apparatus, and supplying hydrogen method

Also Published As

Publication number Publication date
JPS646121B2 (en) 1989-02-02

Similar Documents

Publication Publication Date Title
US3894856A (en) Liquefaction of natural gas with product used as adsorber
US3967464A (en) Air separation process and system utilizing pressure-swing driers
KR101370783B1 (en) Carbon dioxide purification method
CN104807286B (en) Recycle the nitrogen gas liquefaction system of LNG cold energy
US3312073A (en) Process for liquefying natural gas
US3996028A (en) Process for purification of argon from oxygen
US6631626B1 (en) Natural gas liquefaction with improved nitrogen removal
US5220797A (en) Argon recovery from argon-oxygen-decarburization process waste gases
US8042357B2 (en) Hydrogen liquefaction method and liquefier
US4283212A (en) Treatment of gas streams
US20240019205A1 (en) Facility for producing gaseous methane by purifying biogas from landfill, combining membranes and cryogenic distillation for landfill biogas upgrading
CN106979664A (en) Atmospheric carbon dioxide liquifying method
EP1612496B1 (en) Air separator
RU2501593C2 (en) Gas flow cleaning
KR100902911B1 (en) Apparatus for Enriching and Purifying Waste Helium Gases
JPH07280432A (en) Plant for distilling air and method thereof
JPH08254389A (en) Separating method of gas mixture by low-temperature distribution
CA3171542A1 (en) Facility and method for hydrogen refrigeration
KR100869518B1 (en) Method and apparatus for Cryogenic Helium Purification
US8857212B2 (en) Process for the separation of contaminant or mixture of contaminants from a CH4-comprising gaseous feed stream
JPS5982924A (en) Method for increasing production of gas
JP2003062419A (en) Method for separating gas mixture and apparatus for the same
CN114849262B (en) NG purifying low-abundance carbon 13 stable isotope co-production device and use method
JP3195986B2 (en) Helium gas supply method and device
PL243099B1 (en) Set of devices for cryogenic separation and method for cryogenic separation of carbon dioxide from waste gases