JP2008075697A - Hydrogen storing apparatus, and supplying hydrogen method - Google Patents

Hydrogen storing apparatus, and supplying hydrogen method Download PDF

Info

Publication number
JP2008075697A
JP2008075697A JP2006253198A JP2006253198A JP2008075697A JP 2008075697 A JP2008075697 A JP 2008075697A JP 2006253198 A JP2006253198 A JP 2006253198A JP 2006253198 A JP2006253198 A JP 2006253198A JP 2008075697 A JP2008075697 A JP 2008075697A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
cooling pipe
refrigerant
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006253198A
Other languages
Japanese (ja)
Other versions
JP5019829B2 (en
Inventor
Emi Kato
惠美 加藤
Shinji Oshima
伸司 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2006253198A priority Critical patent/JP5019829B2/en
Priority to PCT/JP2007/068135 priority patent/WO2008035696A1/en
Publication of JP2008075697A publication Critical patent/JP2008075697A/en
Application granted granted Critical
Publication of JP5019829B2 publication Critical patent/JP5019829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storing apparatus, which can store a sufficient quantity of hydrogen, and also is suitable for carrying and supplying hydrogen. <P>SOLUTION: The hydrogen storing apparatus comprises a hydrogen storing vessel 10 filled with hydrogen adsorptive porous material 12, a heat insulating vacuum vessel 20 surrounding the hydrogen storing vessel 10 so as to form a heat insulating vacuum layer 22 around the hydrogen storing vessel 10, and a cooling pipe 30 which is arranged so as to pass through the inside of the hydrogen storing vessel 10, and makes a refrigerant of 120K or less flow in the case of adsorbing hydrogen into the hydrogen adsorptive porous material 12. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水素貯蔵装置及び水素供給方法に関する。   The present invention relates to a hydrogen storage device and a hydrogen supply method.

水素は石油精製、化学産業などをはじめとしてあらゆる産業分野において広く用いられている。特に、水素は燃焼後に発生する物質が水のみであるため、環境を汚染しないクリーンな燃料として注目されてきており、水素を燃料とする燃料電池等の研究が盛んに行われている。   Hydrogen is widely used in various industrial fields including the oil refining and chemical industries. In particular, since hydrogen is the only substance that is generated after combustion, water has attracted attention as a clean fuel that does not pollute the environment, and research on fuel cells using hydrogen as a fuel has been actively conducted.

しかし、水素ガスは熱量あたりの体積が大きく、また液化に必要なエネルギーも大きいため、そのまま貯蔵、輸送することは難しいという問題がある(非特許文献1参照)。従って、燃料電池自動車のような移動体や、分散電源に燃料電池を用いる場合等において、水素を効率的に輸送し貯蔵する技術が求められている。現在、水素を輸送、貯蔵する技術としては、高圧ガスや液体水素の状態で輸送、貯蔵する方法、水素貯蔵合金や水素吸蔵材料を用いて輸送、貯蔵する方法などが提案されている。   However, hydrogen gas has a problem that it is difficult to store and transport the hydrogen gas as it is because of its large volume per calorie and large energy required for liquefaction (see Non-Patent Document 1). Accordingly, there is a need for a technique for efficiently transporting and storing hydrogen in a mobile object such as a fuel cell vehicle or when a fuel cell is used as a distributed power source. Currently, as a technique for transporting and storing hydrogen, a method of transporting and storing in the state of high-pressure gas or liquid hydrogen, a method of transporting and storing using a hydrogen storage alloy or a hydrogen storage material, and the like have been proposed.

水素を貯蔵する方法及び装置として、例えば、下記特許文献1には、水素を吸着及び脱離する炭素系吸着材を用いた水素貯蔵容器が記載されている。また、下記特許文献2には、水素ガスを冷却して液化水素ガスを生じさせる水素ガスの貯蔵方法が記載されている。また、下記特許文献3には、水素ガス等のガスを液化させ、毛細管現象によってカーボンナノチューブ等に吸蔵させるガス吸蔵方法が記載されている。更に、下記特許文献4には、水素を液化水素として貯蔵し、ボイルオフ水素ガスを水素吸蔵合金に吸収させる水素貯蔵装置が記載されている。   As a method and apparatus for storing hydrogen, for example, Patent Document 1 below describes a hydrogen storage container using a carbon-based adsorbent that adsorbs and desorbs hydrogen. Patent Document 2 listed below describes a hydrogen gas storage method for cooling hydrogen gas to generate liquefied hydrogen gas. Patent Document 3 listed below describes a gas storage method in which a gas such as hydrogen gas is liquefied and stored in carbon nanotubes or the like by a capillary phenomenon. Furthermore, Patent Document 4 below describes a hydrogen storage device that stores hydrogen as liquefied hydrogen and absorbs boil-off hydrogen gas into a hydrogen storage alloy.

特開2003−65497号公報JP 2003-65497 A 特開2001−12693号公報JP 2001-12663 A 特開2002−128501号公報JP 2002-128501 A 特開09−264498号公報JP 09-264498 A 小林、「季報エネルギー総合工学」、第25巻、第4号、2003年、p.73〜87Kobayashi, “Quarterly Energy Comprehensive Engineering”, Vol. 25, No. 4, 2003, p. 73-87

しかしながら、上記特許文献2〜4に記載された方法及び装置では、水素を液化水素として貯蔵するため、水素の貯蔵量には優れるものの、水素の気化熱が小さいことに起因する気化(ボイルオフ)の問題や、超低温に耐える容器を要する問題等がある。また、水素の液化温度が−253℃という極低温であるため取り扱いにくく、液化に必要なエネルギーが膨大であり、トータルとしてエネルギー効率が低いという問題がある。   However, in the methods and apparatuses described in Patent Documents 2 to 4, since hydrogen is stored as liquefied hydrogen, although the amount of hydrogen stored is excellent, the vaporization (boil-off) caused by the low heat of vaporization of hydrogen occurs. There are problems and problems that require containers that can withstand ultra-low temperatures. Moreover, since the liquefaction temperature of hydrogen is an extremely low temperature of −253 ° C., it is difficult to handle, the energy required for liquefaction is enormous, and there is a problem that energy efficiency is low as a whole.

また、水素吸蔵合金を用いて水素を化学的に吸蔵する方法も有力な方法として知られている。しかし、水素吸蔵合金の水素吸蔵量は通常3%程度であり、移動体などに用いるためには水素貯蔵量が未だ不十分であるとともに、重量が増大し過ぎるという問題がある。更に、水素吸蔵合金からの水素放出時には多くの熱が必要であるため、エネルギー効率が低くなる、システムが複雑になるといった欠点を有している。   A method of chemically storing hydrogen using a hydrogen storage alloy is also known as an effective method. However, the hydrogen storage amount of the hydrogen storage alloy is usually about 3%, and there is a problem that the hydrogen storage amount is still insufficient for use in a moving body and the weight increases excessively. Furthermore, since a large amount of heat is required when releasing hydrogen from the hydrogen storage alloy, it has disadvantages such as low energy efficiency and complicated system.

これに対し、上記特許文献1に記載されているような、水素吸蔵材料を用いて水素を物理的に吸蔵する方法は、取り扱いが容易でありエネルギー効率が高いといった特徴から注目が高まりつつある。しかし、上記特許文献1に記載された水素貯蔵容器は、一定の場所で貯蔵する際には適しているものの、容器の輸送及び水素の供給には必ずしも適していないという問題がある。   On the other hand, a method of physically storing hydrogen using a hydrogen storage material as described in Patent Document 1 has been attracting attention because of its easy handling and high energy efficiency. However, although the hydrogen storage container described in Patent Document 1 is suitable for storage in a certain place, there is a problem that it is not necessarily suitable for transporting the container and supplying hydrogen.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、水素を液化することなく、十分な水素貯蔵量が得られるとともに、水素の輸送及び供給にも適した水素貯蔵装置及びそれを用いた水素供給方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and provides a hydrogen storage device capable of obtaining a sufficient amount of hydrogen storage without liquefying hydrogen and also suitable for transporting and supplying hydrogen. An object of the present invention is to provide a method of supplying hydrogen using

上記目的を達成するために、本発明は、多孔質系水素吸蔵材料が充填された水素貯蔵容器と、上記水素貯蔵容器の周囲に真空断熱層が形成されるように上記水素貯蔵容器を囲む真空断熱容器と、上記水素貯蔵容器の内部を通って設けられており、上記多孔質系水素吸蔵材料に水素を吸蔵させる際に120K以下の温度の冷媒を流通させる冷却管と、を備えることを特徴とする水素貯蔵装置を提供する。   In order to achieve the above object, the present invention provides a hydrogen storage container filled with a porous hydrogen storage material and a vacuum surrounding the hydrogen storage container so that a vacuum heat insulating layer is formed around the hydrogen storage container. A heat insulating container; and a cooling pipe that is provided through the inside of the hydrogen storage container and that allows a refrigerant having a temperature of 120 K or less to flow when the porous hydrogen storage material stores hydrogen. A hydrogen storage device is provided.

多孔質系水素吸蔵材料は、水素を物理的に吸着するものであり、水素の貯蔵・放出条件によって、水素を化学的に吸着する水素貯蔵合金よりも高い水素吸蔵能を示すことができる。また、多孔質系水素吸蔵材料は、低温であるほど水素吸蔵量が増加する性質を有しており、水素貯蔵容器内を通る上記冷却管内に120K以下の温度の冷媒を流通させながら水素を吸蔵させることにより、十分な水素吸蔵量を得ることができる。   The porous hydrogen storage material physically adsorbs hydrogen, and can exhibit a higher hydrogen storage capacity than a hydrogen storage alloy that chemically adsorbs hydrogen depending on the storage and release conditions of hydrogen. In addition, the porous hydrogen storage material has a property that the hydrogen storage amount increases as the temperature is low, and the hydrogen storage material is stored while circulating a coolant having a temperature of 120 K or less in the cooling pipe passing through the hydrogen storage container. By doing so, a sufficient hydrogen storage amount can be obtained.

また、本発明の水素貯蔵装置においては、真空断熱容器により水素貯蔵容器を囲んでいるため、水素貯蔵容器の周囲の真空断熱層により、水素貯蔵容器内の温度は一定に保たれることとなる。更に、冷却管が水素貯蔵容器内を通して設けられていることにより、冷却効果が高まり良好な水素貯蔵量を得ることが可能となる。こうした冷却管の構造及び真空断熱構造により、水素貯蔵装置の輸送も容易となり、一定の温度で大量の水素を効率的に輸送することが可能となる。   In the hydrogen storage device of the present invention, since the hydrogen storage container is surrounded by the vacuum heat insulating container, the temperature in the hydrogen storage container is kept constant by the vacuum heat insulating layer around the hydrogen storage container. . Further, since the cooling pipe is provided through the hydrogen storage container, the cooling effect is enhanced and a good hydrogen storage amount can be obtained. Such a structure of the cooling pipe and the vacuum heat insulating structure facilitate the transportation of the hydrogen storage device, and enables a large amount of hydrogen to be efficiently transported at a constant temperature.

更に、本発明の水素貯蔵装置においては、上記冷却管を備えることにより、そこに通す流体を容易に変えることができる。そのため、水素を燃料電池車等の供給先に供給する際、冷却管内に、水素を吸蔵させる際に用いた冷媒よりも高い温度の熱媒を流通させることで、水素供給を容易に行うことが可能となる。また、多孔質系水素吸蔵材料を用いて水素を吸蔵し、そこから供給先に水素を高圧で充填する場合、水素の圧縮に伴い発熱することとなる。そのため、例えば常温で水素を供給先に供給する場合には、水素の冷却(プレクール)が必要であり、また冷却のために時間を要するため、短時間での水素の供給が困難であるといった欠点を有していた。これに対し、本発明の水素貯蔵装置によれば、水素供給時に冷却管に通す熱媒の温度を十分に低い温度に調節することにより、コンプレッサー等の充填装置に低温の水素を供給でき、プレクールを行うことなく、短時間で効率的に水素の供給を行うことが可能となる。   Furthermore, in the hydrogen storage device of the present invention, the fluid passing therethrough can be easily changed by providing the cooling pipe. Therefore, when supplying hydrogen to a supply destination such as a fuel cell vehicle, it is possible to easily supply hydrogen by circulating a heat medium having a temperature higher than that of the refrigerant used for storing hydrogen in the cooling pipe. It becomes possible. Moreover, when hydrogen is occluded using a porous hydrogen occlusion material, and the supply destination is filled with hydrogen at a high pressure, heat is generated as the hydrogen is compressed. Therefore, for example, when supplying hydrogen to a supplier at room temperature, it is necessary to cool the hydrogen (precool), and it takes time for cooling, so that it is difficult to supply hydrogen in a short time. Had. On the other hand, according to the hydrogen storage device of the present invention, by adjusting the temperature of the heat medium passed through the cooling pipe at the time of hydrogen supply to a sufficiently low temperature, low-temperature hydrogen can be supplied to a filling device such as a compressor, It is possible to efficiently supply hydrogen in a short time without performing the above.

また、本発明の水素貯蔵装置において、上記多孔質系水素吸蔵材料は、繊維状炭素材料に、該繊維状炭素材料1g当たり0.02〜0.3モルのKOH、LiOH及びNaOHからなる群より選択される少なくとも1種の塩基を加え、不活性ガス雰囲気下、400〜1100℃で賦活処理してなるものであることが好ましい。かかる多孔質系水素吸蔵材料を用いることにより、水素貯蔵量を大幅に向上させることができ、より大量の水素を効率的に輸送することが可能となる。   Further, in the hydrogen storage device of the present invention, the porous hydrogen storage material may be a fibrous carbon material comprising 0.02-0.3 moles of KOH, LiOH and NaOH per gram of the fibrous carbon material. It is preferable that at least one selected base is added and activated at 400 to 1100 ° C. in an inert gas atmosphere. By using such a porous hydrogen storage material, the amount of hydrogen stored can be significantly improved, and a larger amount of hydrogen can be efficiently transported.

更に、本発明の水素貯蔵装置において、上記冷媒は、液化天然ガス又は液体窒素であることが好ましい。ここで、液化天然ガスの温度は約110Kであり、液体窒素の温度はは約77Kである。これらの冷媒は容易に入手可能であるとともに、水素吸蔵材料の十分な冷却効果が得られ、十分な水素貯蔵量を得ることができる。   Furthermore, in the hydrogen storage device of the present invention, the refrigerant is preferably liquefied natural gas or liquid nitrogen. Here, the temperature of liquefied natural gas is about 110K, and the temperature of liquid nitrogen is about 77K. These refrigerants are easily available, and a sufficient cooling effect of the hydrogen storage material can be obtained, so that a sufficient hydrogen storage amount can be obtained.

本発明はまた、上記本発明の水素貯蔵装置を用い、上記冷却管内に120K以下の上記冷媒を流通させて上記多孔質系水素吸蔵材料に水素を吸蔵させる吸蔵ステップと、上記冷却管内に173〜373Kの温度の熱媒を流通させて上記多孔質系水素吸蔵材料から水素を放出させ、該水素を供給先に供給する供給ステップと、を有することを特徴とする水素供給方法を提供する。   The present invention also uses the hydrogen storage device of the present invention to store the refrigerant of 120K or less in the cooling pipe to store hydrogen in the porous hydrogen storage material, and 173 to 173 in the cooling pipe. There is provided a hydrogen supply method characterized by comprising a supply step of supplying a hydrogen to a supply destination by allowing a heat medium having a temperature of 373 K to flow and releasing hydrogen from the porous hydrogen storage material.

かかる水素供給方法によれば、上記本発明の水素貯蔵装置を用い、上記冷却管内に上記温度の熱媒を流通させて水素の供給を行うことで、水素のプレクールを行うことなく燃料電池車等の供給先に水素を短時間で効率的に供給することが可能となる。   According to this hydrogen supply method, by using the hydrogen storage device of the present invention and supplying hydrogen by circulating a heating medium having the above temperature in the cooling pipe, a fuel cell vehicle or the like without performing precooling of hydrogen, etc. It is possible to efficiently supply hydrogen to the supply destination of the battery in a short time.

また、本発明の水素供給方法は、上記吸蔵ステップの後に、上記冷却管内から上記冷媒を抜いた状態で上記水素貯蔵装置を輸送する輸送ステップを更に有することが好ましい。このように、冷却管内から冷媒を抜いた状態で水素貯蔵装置の輸送を行うことで、冷却管内に流し続ける冷媒が不要となり、より軽量な状態で大量の水素を効率的に需要地に輸送し、供給先へ供給することが可能となる。また、冷却管内に冷媒を流通させない状態であっても、真空断熱層により水素貯蔵容器内の温度上昇は十分に抑制されることとなる。   Moreover, it is preferable that the hydrogen supply method of this invention further has the transport step which transports the said hydrogen storage apparatus in the state which extracted the said refrigerant | coolant from the inside of the said cooling pipe after the said occlusion step. In this way, by transporting the hydrogen storage device with the refrigerant removed from the cooling pipe, there is no need for a refrigerant that continues to flow into the cooling pipe, and a large amount of hydrogen can be efficiently transported to demand areas in a lighter state. It becomes possible to supply to the supplier. Even in a state where the refrigerant is not circulated in the cooling pipe, the temperature increase in the hydrogen storage container is sufficiently suppressed by the vacuum heat insulating layer.

本発明によれば、水素を液化することなく、十分な水素貯蔵量が得られるとともに、水素の輸送及び供給にも適した水素貯蔵装置及びそれを用いた水素供給方法を提供することができる。   According to the present invention, it is possible to provide a hydrogen storage device suitable for transporting and supplying hydrogen and a hydrogen supply method using the same, while a sufficient hydrogen storage amount can be obtained without liquefying hydrogen.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

図1は、本発明の水素貯蔵装置の好適な一実施形態を示す模式断面図である。図1に示すように、水素貯蔵装置1は、多孔質系水素吸蔵材料12が充填された、水素を貯蔵するための水素貯蔵容器10と、水素貯蔵容器10の周囲に真空断熱層22が形成されるように水素貯蔵容器10を囲む真空断熱容器20と、水素貯蔵容器10の内部を通って設けられており、多孔質系水素吸蔵材料12に水素を吸蔵させる際に120K以下の温度の冷媒32を流通させる冷却管30と、を備えている。また、水素貯蔵装置1には、水素貯蔵容器10に対する水素の出入口となる水素流路14が設けられている。なお、水素流路14には水素の流通を制御するための開閉弁が、冷却管30には冷媒の流通を制御するための開閉弁が、それぞれ設けられている。   FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the hydrogen storage device of the present invention. As shown in FIG. 1, the hydrogen storage device 1 includes a hydrogen storage container 10 filled with a porous hydrogen storage material 12 for storing hydrogen, and a vacuum heat insulating layer 22 formed around the hydrogen storage container 10. As shown, the vacuum heat insulating container 20 surrounding the hydrogen storage container 10 and the inside of the hydrogen storage container 10 are provided, and a refrigerant having a temperature of 120K or less is used when the porous hydrogen storage material 12 stores hydrogen. And a cooling pipe 30 through which 32 is circulated. Further, the hydrogen storage device 1 is provided with a hydrogen flow path 14 serving as a hydrogen inlet / outlet with respect to the hydrogen storage container 10. The hydrogen flow path 14 is provided with an open / close valve for controlling the flow of hydrogen, and the cooling pipe 30 is provided with an open / close valve for controlling the flow of refrigerant.

水素貯蔵装置1に貯蔵される水素としては、特に限定されないが、例えば、天然ガスや液化石油ガス(LPG)等の炭化水素気体燃料、灯油やナフサ等の炭化水素液体燃料、石炭等のガス化燃料などを原料として用い、水蒸気改質や部分酸化反応のみあるいはそれに続くCOシフト反応等を行うことで得られる水素含有ガスを用いることができる。また、水の電気分解、バイオマスや太陽光等の再生エネルギーを利用した方法などにより得られる水素ガスを用いることもできる。なお、貯蔵する水素としては、好ましくは99.9%以上、より好ましくは99.99%以上、更に好ましくは99.999%以上、特に好ましくは99.9999%以上の純度の精製水素が望ましい。   Although it does not specifically limit as hydrogen stored in the hydrogen storage apparatus 1, For example, hydrocarbon gas fuels, such as natural gas and liquefied petroleum gas (LPG), hydrocarbon liquid fuels, such as kerosene and naphtha, and gasification of coal etc. A hydrogen-containing gas obtained by using a fuel or the like as a raw material and performing only steam reforming, partial oxidation reaction, or subsequent CO shift reaction can be used. Further, hydrogen gas obtained by electrolysis of water, a method using renewable energy such as biomass or sunlight, or the like can also be used. The hydrogen to be stored is preferably purified hydrogen having a purity of preferably 99.9% or more, more preferably 99.99% or more, still more preferably 99.999% or more, and particularly preferably 99.9999% or more.

得られた水素は、水素貯蔵容器10内に導入する前に、予め冷却しておくことが好ましい。その場合、得られた水素は、液化天然ガス(LNG)や液体窒素等を用いて、好ましくは150K以下、より好ましくは110K以下まで冷却する。また、このとき、鉄やクロム等の触媒を用いて段階的にオルソ型水素から低温で安定なパラ型水素に変換することが望ましい。   The obtained hydrogen is preferably cooled in advance before being introduced into the hydrogen storage container 10. In that case, the obtained hydrogen is cooled to 150 K or less, more preferably 110 K or less, using liquefied natural gas (LNG), liquid nitrogen, or the like. At this time, it is desirable to convert from ortho-type hydrogen to para-type hydrogen that is stable at low temperature stepwise using a catalyst such as iron or chromium.

多孔質系水素吸蔵材料12としては、水素を物理的に吸着することが可能なものであれば特に限定されないが、例えば、活性炭、カーボンナノチューブ、カーボンナノファイバー、炭素繊維、竹炭、及びそれらを賦活したもの等が挙げられる。これらの炭素系材料は、Pt、Pd、Ni、Al、Mg、Ti、Ta、Ag、Au、Ru、Rh等の金属を担持したものであってもよい。また、炭素系以外の多孔質系水素吸蔵材料12としては、例えば、ゼオライト、モレキュラーシーブ、多孔質金属錯体などが挙げられる。これらの多孔質系水素吸蔵材料12の中でも、炭素系材料からなる多孔質系水素吸蔵材料が好ましい。   The porous hydrogen storage material 12 is not particularly limited as long as it can physically adsorb hydrogen. For example, activated carbon, carbon nanotube, carbon nanofiber, carbon fiber, bamboo charcoal, and activation thereof And the like. These carbon-based materials may support metals such as Pt, Pd, Ni, Al, Mg, Ti, Ta, Ag, Au, Ru, and Rh. Examples of the porous hydrogen storage material 12 other than carbon-based materials include zeolite, molecular sieve, and porous metal complex. Among these porous hydrogen storage materials 12, a porous hydrogen storage material made of a carbon-based material is preferable.

また、多孔質系水素吸蔵材料12としては特に、繊維状炭素材料に、該繊維状炭素材料1g当たり0.02〜0.3モルのKOH、LiOH及びNaOHからなる群より選択される少なくとも1種の塩基を加え、不活性ガス雰囲気下、400〜1100℃で賦活処理してなるものが好ましい。   Further, as the porous hydrogen storage material 12, in particular, the fibrous carbon material is at least one selected from the group consisting of 0.02-0.3 moles of KOH, LiOH and NaOH per gram of the fibrous carbon material. It is preferable to add the base and activate at 400 to 1100 ° C. in an inert gas atmosphere.

ここで、賦活処理に用いる塩基としては、KOHが好ましい。また、不活性ガスとしては特に限定されないが、例えば、窒素、アルゴン等を用いることができる。   Here, the base used for the activation treatment is preferably KOH. Moreover, it does not specifically limit as an inert gas, For example, nitrogen, argon, etc. can be used.

賦活処理前の繊維状炭素材料1gに対し、加える塩基の量は0.02〜0.3モルであることが必要であり、好ましくは0.03〜0.2モルである。なお、二種以上の塩基を用いる場合においても、賦活処理前の繊維状炭素材料1gに対し、塩基の合計量が0.02〜0.3モルであることが必要である。この塩基の量が0.02モル未満であると賦活が十分に進まず、水素吸蔵量が低下する傾向がある。一方、塩基の量が0.3モルを超えると賦活収率が低下する傾向があり、実用的ではない。   The amount of the base to be added needs to be 0.02 to 0.3 mol, preferably 0.03 to 0.2 mol, with respect to 1 g of the fibrous carbon material before the activation treatment. In addition, also when using 2 or more types of bases, it is necessary for the total amount of a base to be 0.02-0.3 mol with respect to 1 g of fibrous carbon materials before an activation process. When the amount of this base is less than 0.02 mol, activation does not proceed sufficiently and the hydrogen storage amount tends to decrease. On the other hand, if the amount of the base exceeds 0.3 mol, the activation yield tends to decrease, which is not practical.

賦活処理の温度は400〜1100℃であることが好ましい。この温度が400℃未満であると反応が十分に進行せず、水素吸蔵量が低下する傾向がある。一方、温度が1100℃を超えると賦活後の得られる繊維状炭素材料の収率が著しく低下する傾向があり、実用的ではない。なお、賦活処理の温度は、500〜1000℃であることが好ましく、650〜900℃であることがより好ましい。   It is preferable that the temperature of an activation process is 400-1100 degreeC. When this temperature is less than 400 ° C., the reaction does not proceed sufficiently and the hydrogen storage amount tends to decrease. On the other hand, when the temperature exceeds 1100 ° C., the yield of the fibrous carbon material obtained after activation tends to be remarkably lowered, which is not practical. In addition, it is preferable that the temperature of an activation process is 500-1000 degreeC, and it is more preferable that it is 650-900 degreeC.

上述したような多孔質系水素吸蔵材料12は、BET法による比表面積が500〜4000m/gであることが好ましく、1000〜3800m/gであることがより好ましい。比表面積が500m/g未満であると有効な水素吸蔵量を十分に確保しにくくなる傾向がある。また、比表面積が4000m/gを超えると、賦活処理等を経て得られる多孔質系水素吸蔵材料12の収率が著しく低下する傾向があり、実用的ではない。 The porous hydrogen storage material 12 as described above preferably has a specific surface area by the BET method of 500 to 4000 m 2 / g, more preferably 1000 to 3800 m 2 / g. When the specific surface area is less than 500 m 2 / g, it tends to be difficult to sufficiently secure an effective hydrogen storage amount. On the other hand, if the specific surface area exceeds 4000 m 2 / g, the yield of the porous hydrogen storage material 12 obtained through the activation treatment or the like tends to be remarkably lowered, which is not practical.

また、多孔質系水素吸蔵材料12は、水素を吸蔵させる前に、真空又はアルゴン等の不活性ガス雰囲気中で、150℃以上、且つ炭素化温度よりも低い温度で加熱処理することが望ましい。加熱処理を行わない場合や、加熱処理の温度が150℃未満の場合には、多孔質系水素吸蔵材料12に吸着している水などの分子が水素の吸蔵を阻害する傾向があるため好ましくない。一方、加熱処理の温度が炭素化時の温度以上となると、炭素の結晶構造が変化してしまい、水素吸蔵能が低下してしまうおそれがある。より望ましい熱処理温度は、150〜1500℃である。   The porous hydrogen storage material 12 is preferably heat-treated at 150 ° C. or higher and lower than the carbonization temperature in an inert gas atmosphere such as vacuum or argon before storing hydrogen. When heat treatment is not performed or when the temperature of the heat treatment is less than 150 ° C., molecules such as water adsorbed on the porous hydrogen storage material 12 tend to inhibit hydrogen storage, which is not preferable. . On the other hand, when the temperature of the heat treatment is equal to or higher than the temperature at the time of carbonization, the crystal structure of carbon may change, and the hydrogen storage capacity may be reduced. A more desirable heat treatment temperature is 150 to 1500 ° C.

水素貯蔵容器10及び真空断熱容器20は、耐圧性の容器により構成されている。これらの容器の材質としては、例えば、鋼鉄、アルミニウム、炭素繊維強化プラスチック(CFRP)等が挙げられ、中でもCFRPが好ましい。また、CFRP容器のライナーの材質としては、例えば、アルミニウム、鋼鉄等が挙げられる。   The hydrogen storage container 10 and the vacuum heat insulation container 20 are constituted by pressure-resistant containers. Examples of the material of these containers include steel, aluminum, and carbon fiber reinforced plastic (CFRP). Among them, CFRP is preferable. Moreover, as a material of the liner of a CFRP container, aluminum, steel, etc. are mentioned, for example.

真空断熱層22は、水素貯蔵容器10と真空断熱容器20との間に画成される空間を真空状態とすることにより形成される。なお、この真空断熱層22は、断熱効果の高い真空断熱シートを挟み込んだ構造であることがより好ましい。   The vacuum heat insulating layer 22 is formed by bringing the space defined between the hydrogen storage container 10 and the vacuum heat insulating container 20 into a vacuum state. In addition, it is more preferable that the vacuum heat insulating layer 22 has a structure in which a vacuum heat insulating sheet having a high heat insulating effect is sandwiched.

冷媒32は、少なくとも多孔質系水素吸蔵材料12に水素を吸蔵させる際に、冷却管30内を流通させる流体である。かかる冷媒32としては、120K以下の温度の流体であれば特に制限されないが、例えば、液化天然ガス(LNG)、液体窒素等が挙げられる。これらの中でも、気化するときに排熱として捨てられている冷熱を有効利用できるという観点から、液化天然ガス(LNG)が好ましい。また、冷媒32の温度は、120K以下であることが必要であるが、70〜120Kであることがより好ましい。   The refrigerant 32 is a fluid that circulates in the cooling pipe 30 when at least hydrogen is stored in the porous hydrogen storage material 12. The refrigerant 32 is not particularly limited as long as it is a fluid having a temperature of 120 K or less, and examples thereof include liquefied natural gas (LNG) and liquid nitrogen. Among these, liquefied natural gas (LNG) is preferable from the viewpoint that the cold energy discarded as exhaust heat when vaporizing can be effectively used. Moreover, although the temperature of the refrigerant | coolant 32 needs to be 120K or less, it is more preferable that it is 70-120K.

冷媒32は、例えば、冷媒32を貯蔵した冷媒貯蔵容器から水素貯蔵装置1に供給することができる。   The refrigerant 32 can be supplied to the hydrogen storage device 1 from, for example, a refrigerant storage container that stores the refrigerant 32.

冷却管30は、水素貯蔵容器10の内部を通って設けられており、少なくとも多孔質系水素吸蔵材料12に水素を吸蔵させる際に、管内に上記冷媒32を流通させて多孔質系水素吸蔵材料12を冷却するためのものである。また、多孔質系水素吸蔵材料12に貯蔵した水素を放出する際には、冷媒32に代えて該冷媒32よりも温度の高い所望の熱媒を冷却管30内に流通させる。   The cooling pipe 30 is provided through the inside of the hydrogen storage container 10, and at least when the hydrogen is stored in the porous hydrogen storage material 12, the refrigerant 32 is circulated in the pipe to cause the porous hydrogen storage material. 12 is for cooling. When releasing the hydrogen stored in the porous hydrogen storage material 12, a desired heat medium having a temperature higher than that of the refrigerant 32 is circulated in the cooling pipe 30 instead of the refrigerant 32.

冷却管30の材質としては特に制限されないが、鋼鉄、アルミニウム合金等が挙げられる。また、冷却管30の形状は特に制限されず、多孔質系水素吸蔵材料12と十分に熱交換を行える形状であればよい。冷却管30の形状としては、例えば、断面が円筒状の配管を螺旋状に張り巡らせた形状等が挙げられる。また、熱交換の効率を高めるために、配管の周囲にフィンを付けたものであってもよい。   The material of the cooling pipe 30 is not particularly limited, and examples thereof include steel and aluminum alloy. In addition, the shape of the cooling pipe 30 is not particularly limited as long as it can sufficiently exchange heat with the porous hydrogen storage material 12. Examples of the shape of the cooling pipe 30 include a shape in which a pipe having a cylindrical cross section is spirally stretched. Moreover, in order to improve the efficiency of heat exchange, you may attach a fin around piping.

水素流路14は、水素貯蔵容器10に水素を導入する場合、及び水素貯蔵容器10から水素を放出する場合の水素の流路である。水素流路14の材質としては特に制限されないが、鋼鉄、アルミニウム合金等が挙げられる。   The hydrogen flow path 14 is a hydrogen flow path when hydrogen is introduced into the hydrogen storage container 10 and when hydrogen is released from the hydrogen storage container 10. The material of the hydrogen channel 14 is not particularly limited, and examples thereof include steel and aluminum alloy.

水素貯蔵装置1において、水素貯蔵容器10は、冷却管30及び水素流路14を介して真空断熱容器20に固定される。なお、水素貯蔵容器10をより安定に固定するために、断熱性を有する固定部材を用いて水素貯蔵容器10を真空断熱容器20に固定してもよい。   In the hydrogen storage device 1, the hydrogen storage container 10 is fixed to the vacuum heat insulating container 20 via the cooling pipe 30 and the hydrogen flow path 14. In addition, in order to fix the hydrogen storage container 10 more stably, you may fix the hydrogen storage container 10 to the vacuum heat insulation container 20 using the fixing member which has heat insulation.

上記本発明の水素貯蔵装置1への水素の貯蔵は、上記冷却管30内に120K以下の上記冷媒32を流通させながら、水素を水素流路14より水素貯蔵容器10内に導入して多孔質系水素吸蔵材料12に吸蔵させることにより行うことができる。   Hydrogen is stored in the hydrogen storage device 1 of the present invention by introducing hydrogen into the hydrogen storage container 10 from the hydrogen flow path 14 while allowing the refrigerant 32 of 120 K or less to flow through the cooling pipe 30. It can be performed by causing the system hydrogen storage material 12 to store.

ここで、水素貯蔵容器内の水素貯蔵時の水素圧は、0.3〜5.0MPaであることが好ましく、0.5〜3.0MPaであることがより好ましく、0.7〜1.0MPaであることが特に好ましい。この水素圧が0.3MPa未満であると、水素吸蔵量が低下する傾向があり、5.0MPaを超えると、耐圧性に問題を生じる傾向がある。水素吸蔵容器の耐久性の面から考えると、上記水素圧は1.0MPa以下であることが望ましい。   Here, the hydrogen pressure during hydrogen storage in the hydrogen storage container is preferably 0.3 to 5.0 MPa, more preferably 0.5 to 3.0 MPa, and 0.7 to 1.0 MPa. It is particularly preferred that If the hydrogen pressure is less than 0.3 MPa, the hydrogen storage amount tends to decrease, and if it exceeds 5.0 MPa, there is a tendency to cause a problem in pressure resistance. Considering the durability of the hydrogen storage container, the hydrogen pressure is desirably 1.0 MPa or less.

次に、本発明の水素供給方法について説明する。本発明の水素供給方法は、上記本発明の水素貯蔵装置1を用い、上記冷却管30内に120K以下の上記冷媒32を流通させて上記多孔質系水素吸蔵材料12に水素を吸蔵させる吸蔵ステップと、上記冷却管30内に173〜373Kの温度の熱媒を流通させて上記多孔質系水素吸蔵材料12から水素を放出させ、該水素を供給先に供給する供給ステップと、を有することを特徴とする方法である。また、上記吸蔵ステップの後に、水素貯蔵装置1を所望の需要地に輸送する輸送ステップを更に有していてもよい。   Next, the hydrogen supply method of the present invention will be described. The hydrogen supply method of the present invention uses the hydrogen storage device 1 of the present invention to store the hydrogen in the porous hydrogen storage material 12 by allowing the refrigerant 32 of 120 K or less to flow through the cooling pipe 30 to store the hydrogen. And a supply step of supplying a hydrogen to the supply destination by allowing a heat medium having a temperature of 173 to 373 K to flow through the cooling pipe 30 to release hydrogen from the porous hydrogen storage material 12. It is a characteristic method. Moreover, you may have further the transport step which transports the hydrogen storage apparatus 1 to a desired demand place after the said occlusion step.

上記吸蔵ステップにおいては、上述した本発明の水素貯蔵装置1を用い、先に説明したようにして多孔質系水素吸蔵材料12に水素を吸蔵させる。これにより、水素は水素貯蔵容器10内に貯蔵される。   In the storage step, hydrogen is stored in the porous hydrogen storage material 12 as described above using the hydrogen storage device 1 of the present invention described above. Thereby, hydrogen is stored in the hydrogen storage container 10.

上記輸送ステップにおいては、水素貯蔵装置1をキャリアーにより水素ステーション等の需要地に輸送する。   In the transport step, the hydrogen storage device 1 is transported to a demand place such as a hydrogen station by a carrier.

キャリアーとしては特に限定されないが、トレーラーや鉄道、船などを用いることができる。その際、例えば、水素貯蔵装置1の数本(4〜16本程度)を束にして1セット(ボンベユニット)とし、トレーラーの場合には数セット(1〜4セット程度)を一台で運ぶ。そして、需要地においては、トレーラーごと又はボンベユニットのみを需要地に置き、水素を貯蔵する。なお、需要地にある貯蔵タンクに水素貯蔵装置1から水素を供給してもよい。   Although it does not specifically limit as a carrier, A trailer, a railroad, a ship, etc. can be used. At that time, for example, several hydrogen storage devices 1 (about 4 to 16) are bundled into one set (cylinder unit), and in the case of a trailer, several sets (about 1 to 4 sets) are carried by one unit. . In the demand area, only the trailer or the cylinder unit is placed in the demand area to store hydrogen. In addition, you may supply hydrogen from the hydrogen storage apparatus 1 to the storage tank in a demand place.

また、上記輸送ステップにおいては、軽量化のために上記冷却管30内から上記冷媒32を抜いた状態で水素貯蔵装置1を輸送することが好ましい。冷媒32を冷却管30内から抜く際には、例えば、冷却管30の一端側の開閉弁を閉めた状態で他端側の開閉弁を開けて冷媒32を除去する。冷媒32を除去することで、冷却管30内は減圧状態又は真空状態となることが好ましい。冷媒32を除去した後の冷却管30内には、外気等の熱媒が入り込まないようにすることが好ましいが、こうした熱媒が入り込んだとしても、熱媒は直ぐに冷やされるため、水素貯蔵容器10内の温度上昇は十分に抑制されることとなる。なお、上記輸送ステップにおいては、冷却管30内に冷媒32を充填した状態で水素貯蔵装置1を輸送してもよい。この場合でも、冷却管30内に流し続ける冷媒32は不要となるため、輸送時の軽量化を図ることができる。   Moreover, in the said transport step, it is preferable to transport the hydrogen storage apparatus 1 in the state which extracted the said refrigerant | coolant 32 from the said cooling pipe 30 for weight reduction. When removing the refrigerant 32 from the cooling pipe 30, for example, the opening / closing valve on the other end side is opened while the opening / closing valve on the one end side of the cooling pipe 30 is closed, and the refrigerant 32 is removed. It is preferable that the inside of the cooling pipe 30 is in a reduced pressure state or a vacuum state by removing the refrigerant 32. Although it is preferable that a heat medium such as outside air does not enter the cooling pipe 30 after the refrigerant 32 is removed, even if such a heat medium enters, the heat medium is immediately cooled. The temperature rise within 10 is sufficiently suppressed. In the transport step, the hydrogen storage device 1 may be transported in a state where the cooling pipe 30 is filled with the refrigerant 32. Even in this case, the refrigerant 32 that continues to flow into the cooling pipe 30 is not necessary, so that weight reduction during transportation can be achieved.

水素を供給する際には、水素貯蔵装置1における水素流路の開閉弁を開けることで脱圧により水素が放出されるが、上記供給ステップにおいては更に、上記熱媒を冷却管30内に流通させることで水素を効率良く放出させる。   When supplying hydrogen, the hydrogen is released by depressurization by opening the open / close valve of the hydrogen flow path in the hydrogen storage device 1. In the supply step, the heat medium is further circulated in the cooling pipe 30. To release hydrogen efficiently.

上記供給ステップにおいて使用される熱媒としては、173〜373Kの温度の流体であれば特に制限されないが、例えば、乾燥空気、窒素や二酸化炭素等のドライガスなどが挙げられる。また、熱媒の温度は、173〜373Kであることが必要であるが、200〜323Kであることがより好ましい。上記温度範囲の熱媒を用いることで、水素は十分に低い温度のままで放出され、水素供給時のプレクールを省略することが可能となる。なお、より安定して低温の水素を供給する観点からは、熱媒の温度の上限値は283Kであることが好ましい。また、導入した熱媒を循環利用し、熱媒の温度を調節して利用してもよい。   The heating medium used in the supplying step is not particularly limited as long as it is a fluid having a temperature of 173 to 373 K. Examples thereof include dry air and dry gas such as nitrogen and carbon dioxide. Moreover, although the temperature of a heat medium needs to be 173-373K, it is more preferable that it is 200-323K. By using the heat medium in the above temperature range, hydrogen is released at a sufficiently low temperature, and it is possible to omit precooling during hydrogen supply. In addition, from the viewpoint of supplying low-temperature hydrogen more stably, the upper limit value of the temperature of the heat medium is preferably 283K. Further, the introduced heat medium may be circulated and used by adjusting the temperature of the heat medium.

水素を燃料電池車等の供給先に供給する場合、例えばコンプレッサーで昇圧して高圧で水素を供給する場合に断熱圧縮による温度上昇が起こる。これを抑制するためには、従来、コンプレッサーの冷却、水素の予備冷却を行うプレクールシステムが有効とされている。これに対し、本発明の水素供給方法によれば、上述したような低温の熱媒を用いて水素の放出を行っており、冷却された水素をそのまま圧縮機に供給し、供給先に供給することができるため、プレクールを省略することができる。   When supplying hydrogen to a supply destination such as a fuel cell vehicle, for example, when the pressure is increased by a compressor and hydrogen is supplied at a high pressure, the temperature rises due to adiabatic compression. In order to suppress this, a precool system that cools the compressor and precools hydrogen is conventionally effective. In contrast, according to the hydrogen supply method of the present invention, hydrogen is released using the low-temperature heating medium as described above, and the cooled hydrogen is supplied to the compressor as it is and supplied to the supply destination. Because pre-cooling can be omitted.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
図1に示すものと同様の構造を有する水素貯蔵装置の水素貯蔵容器(内容積:100L、SUS316L製)内に、水素吸蔵材料として、繊維状炭素材料(東邦テナックス社製、PYROMEX)に、該繊維状炭素材料1g当たり0.07モルのKOHを加え、アルゴンガス雰囲気下、500℃で3時間賦活処理してなる多孔質炭素材料(比表面積2892m/g)を40kg充填した。次に、冷却管内に冷媒として液体窒素(温度:77K)を流通させながら、水素ガスを水素流路から水素貯蔵容器内に、該水素貯蔵容器内の水素圧が1.0MPaになるまで導入した。これにより水素を水素吸蔵材料に吸蔵させ、水素貯蔵装置に水素を貯蔵した。このとき、水素貯蔵量は2.42kgであった。
(Example 1)
In a hydrogen storage container (internal volume: 100 L, manufactured by SUS316L) of a hydrogen storage device having a structure similar to that shown in FIG. 1, as a hydrogen storage material, a fibrous carbon material (manufactured by Toho Tenax Co., Ltd., PYROMEX), 0.07 mol of KOH was added per 1 g of fibrous carbon material, and 40 kg of a porous carbon material (specific surface area 2892 m 2 / g) obtained by activation at 500 ° C. for 3 hours in an argon gas atmosphere was filled. Next, while flowing liquid nitrogen (temperature: 77 K) as a refrigerant in the cooling pipe, hydrogen gas was introduced from the hydrogen flow path into the hydrogen storage container until the hydrogen pressure in the hydrogen storage container reached 1.0 MPa. . Thereby, hydrogen was stored in the hydrogen storage material, and hydrogen was stored in the hydrogen storage device. At this time, the hydrogen storage amount was 2.42 kg.

(実施例2)
冷媒として液体窒素(温度:77K)に代えて液化天然ガス(温度:110K)を用いたこと以外は実施例1と同様にして水素貯蔵装置に水素を貯蔵した。このとき、水素貯蔵量は2.06kgであった。
(Example 2)
Hydrogen was stored in the hydrogen storage device in the same manner as in Example 1 except that liquefied natural gas (temperature: 110 K) was used instead of liquid nitrogen (temperature: 77 K) as the refrigerant. At this time, the hydrogen storage amount was 2.06 kg.

(実施例3)
水素ガスを水素貯蔵容器内に、該水素貯蔵容器内の水素圧が3.0MPaになるまで導入したこと以外は実施例1と同様にして水素貯蔵装置に水素を貯蔵した。このとき、水素貯蔵量は3.41kgであった。
(Example 3)
Hydrogen was stored in the hydrogen storage device in the same manner as in Example 1 except that hydrogen gas was introduced into the hydrogen storage container until the hydrogen pressure in the hydrogen storage container reached 3.0 MPa. At this time, the hydrogen storage amount was 3.41 kg.

(実施例4)
水素ガスを水素貯蔵容器内に、該水素貯蔵容器内の水素圧が3.0MPaになるまで導入したこと以外は実施例2と同様にして水素貯蔵装置に水素を貯蔵した。このとき、水素貯蔵量は2.65kgであった。
Example 4
Hydrogen was stored in the hydrogen storage apparatus in the same manner as in Example 2 except that hydrogen gas was introduced into the hydrogen storage container until the hydrogen pressure in the hydrogen storage container reached 3.0 MPa. At this time, the hydrogen storage amount was 2.65 kg.

(実施例5)
水素吸蔵材料を活性炭(関西熱化学社製、マックスソーブ(MAXSORB)、比表面積2800m/g)とし、これを水素貯蔵容器内に35kg充填したこと以外は実施例1と同様にして水素貯蔵装置に水素を貯蔵した。このとき、水素貯蔵量は1.85kgであった。
(Example 5)
The hydrogen storage device was the same as in Example 1 except that the hydrogen storage material was activated carbon (manufactured by Kansai Thermal Chemical Co., Ltd., MAXSORB, specific surface area 2800 m 2 / g), and this was filled with 35 kg in a hydrogen storage container. Hydrogen was stored. At this time, the hydrogen storage amount was 1.85 kg.

(実施例6)
冷媒として液体窒素(温度:77K)に代えて液化天然ガス(温度:110K)を用いたこと以外は実施例5と同様にして水素貯蔵装置に水素を貯蔵した。このとき、水素貯蔵量は1.41kgであった。
(Example 6)
Hydrogen was stored in the hydrogen storage device in the same manner as in Example 5 except that liquefied natural gas (temperature: 110K) was used instead of liquid nitrogen (temperature: 77K) as the refrigerant. At this time, the hydrogen storage amount was 1.41 kg.

(比較例1)
水素貯蔵容器内に水素吸蔵材料を充填しなかった以外は実施例1と同様にして水素貯蔵装置に水素を貯蔵した。このとき、水素貯蔵量は0.32kgであった。
(Comparative Example 1)
Hydrogen was stored in the hydrogen storage device in the same manner as in Example 1 except that the hydrogen storage material was not filled in the hydrogen storage container. At this time, the hydrogen storage amount was 0.32 kg.

(比較例2)
冷却管を有しない以外は図1に示すものと同様の構造を有する水素貯蔵装置の水素貯蔵容器(内容積:100L)内に、水素吸蔵材料として実施例1で用いた水素吸蔵材料を45kg充填した。次に、室温(温度:300K)にて、水素ガスを水素流路から水素貯蔵容器内に、該水素貯蔵容器内の水素圧が1.0MPaになるまで導入した。これにより水素を水素吸蔵材料に吸蔵させ、水素貯蔵装置に水素を貯蔵した。このときの水素貯蔵量は、0.12kgであった。
(Comparative Example 2)
A hydrogen storage container (internal volume: 100 L) of a hydrogen storage device having the same structure as that shown in FIG. 1 except that it does not have a cooling pipe is filled with 45 kg of the hydrogen storage material used in Example 1 as a hydrogen storage material. did. Next, at room temperature (temperature: 300 K), hydrogen gas was introduced into the hydrogen storage container from the hydrogen flow path until the hydrogen pressure in the hydrogen storage container reached 1.0 MPa. Thereby, hydrogen was stored in the hydrogen storage material, and hydrogen was stored in the hydrogen storage device. The hydrogen storage amount at this time was 0.12 kg.

(比較例3)
水素ガスを水素貯蔵容器内に、該水素貯蔵容器内の水素圧が3.0MPaになるまで導入したこと以外は比較例1と同様にして水素貯蔵装置に水素を貯蔵した。このとき、水素貯蔵量は0.99kgであった。
(Comparative Example 3)
Hydrogen was stored in the hydrogen storage device in the same manner as in Comparative Example 1 except that hydrogen gas was introduced into the hydrogen storage container until the hydrogen pressure in the hydrogen storage container reached 3.0 MPa. At this time, the hydrogen storage amount was 0.99 kg.

(比較例4)
水素ガスを水素貯蔵容器内に、該水素貯蔵容器内の水素圧が3.0MPaになるまで導入したこと以外は比較例2と同様にして水素貯蔵装置に水素を貯蔵した。このとき、水素貯蔵量は0.38kgであった。
(Comparative Example 4)
Hydrogen was stored in the hydrogen storage device in the same manner as in Comparative Example 2 except that hydrogen gas was introduced into the hydrogen storage container until the hydrogen pressure in the hydrogen storage container reached 3.0 MPa. At this time, the hydrogen storage amount was 0.38 kg.

(比較例5)
冷却管を有しない以外は図1に示すものと同様の構造を有する水素貯蔵装置を用意した。次に、室温(温度:300K)にて、水素ガスを水素流路から水素貯蔵容器(内容積:100L)内に、該水素貯蔵容器内の水素圧が30.0MPaになるまで導入した。これにより水素を水素吸蔵材料に吸蔵させ、水素貯蔵装置に水素を貯蔵した。このときの水素貯蔵量は、2.37kgであった。
(Comparative Example 5)
A hydrogen storage device having the same structure as that shown in FIG. 1 was prepared except that the cooling pipe was not provided. Next, hydrogen gas was introduced into the hydrogen storage container (internal volume: 100 L) from the hydrogen flow path at room temperature (temperature: 300 K) until the hydrogen pressure in the hydrogen storage container reached 30.0 MPa. Thereby, hydrogen was stored in the hydrogen storage material, and hydrogen was stored in the hydrogen storage device. The amount of hydrogen stored at this time was 2.37 kg.

Figure 2008075697
Figure 2008075697

上述したように、実施例1〜6の水素貯蔵装置によれば、比較例1〜5の水素貯蔵装置と比較して、より低圧で十分な水素貯蔵量が得られることが確認された。また、実施例1〜6の水素貯蔵装置は、輸送時に冷却管内から冷媒を抜いた状態で効率的に輸送することができ、更に、燃料電池車等の供給先に水素を供給する際に、冷却管内に173〜373Kの熱媒を流通させることで、プレクールを行うことなく効率的に水素を供給することが可能であるため、水素の輸送及び供給に非常に適している。一方、比較例1〜2の水素貯蔵装置においては、水素吸蔵材料を用いていないため、十分な水素貯蔵量が得られなかった。また、比較例3〜4の水素貯蔵装置においては、室温にて水素を貯蔵しているため、燃料電池車等の供給先に水素を供給する際にプレクールが必要となる。更に、比較例5の水素貯蔵装置においては、水素圧が30.0MPaと高圧であるため、水素貯蔵時の昇圧に多くのエネルギーを要した。   As described above, according to the hydrogen storage devices of Examples 1 to 6, it was confirmed that a sufficient hydrogen storage amount was obtained at a lower pressure than the hydrogen storage devices of Comparative Examples 1 to 5. In addition, the hydrogen storage devices of Examples 1 to 6 can be efficiently transported in a state in which the refrigerant is removed from the inside of the cooling pipe at the time of transportation. Further, when supplying hydrogen to a supply destination such as a fuel cell vehicle, By circulating a heat medium of 173 to 373 K in the cooling pipe, it is possible to efficiently supply hydrogen without performing precooling, and therefore, it is very suitable for transporting and supplying hydrogen. On the other hand, in the hydrogen storage devices of Comparative Examples 1 and 2, since no hydrogen storage material was used, a sufficient amount of hydrogen storage could not be obtained. Further, in the hydrogen storage devices of Comparative Examples 3 to 4, since hydrogen is stored at room temperature, precooling is required when supplying hydrogen to a supply destination such as a fuel cell vehicle. Furthermore, in the hydrogen storage device of Comparative Example 5, since the hydrogen pressure was as high as 30.0 MPa, much energy was required for the pressure increase during hydrogen storage.

本発明の水素貯蔵装置の好適な一実施形態を示す模式断面図である。It is a schematic cross section which shows suitable one Embodiment of the hydrogen storage apparatus of this invention.

符号の説明Explanation of symbols

1…水素貯蔵装置、10…水素貯蔵容器、12…多孔質系水素吸蔵材料、20…真空断熱容器、22…真空断熱層、30…冷却管、32…冷媒。
DESCRIPTION OF SYMBOLS 1 ... Hydrogen storage apparatus, 10 ... Hydrogen storage container, 12 ... Porous type hydrogen storage material, 20 ... Vacuum heat insulation container, 22 ... Vacuum heat insulation layer, 30 ... Cooling pipe, 32 ... Refrigerant.

Claims (5)

多孔質系水素吸蔵材料が充填された水素貯蔵容器と、
前記水素貯蔵容器の周囲に真空断熱層が形成されるように前記水素貯蔵容器を囲む真空断熱容器と、
前記水素貯蔵容器の内部を通って設けられており、前記多孔質系水素吸蔵材料に水素を吸蔵させる際に120K以下の温度の冷媒を流通させる冷却管と、
を備えることを特徴とする水素貯蔵装置。
A hydrogen storage container filled with a porous hydrogen storage material;
A vacuum insulation container surrounding the hydrogen storage container such that a vacuum insulation layer is formed around the hydrogen storage container;
A cooling pipe which is provided through the inside of the hydrogen storage container and allows a refrigerant having a temperature of 120 K or less to flow when storing hydrogen in the porous hydrogen storage material;
A hydrogen storage device comprising:
前記多孔質系水素吸蔵材料が、繊維状炭素材料に、該繊維状炭素材料1g当たり0.02〜0.3モルのKOH、LiOH及びNaOHからなる群より選択される少なくとも1種の塩基を加え、不活性ガス雰囲気下、400〜1100℃で賦活処理してなるものであることを特徴とする請求項1記載の水素貯蔵装置。   The porous hydrogen storage material adds at least one base selected from the group consisting of 0.02 to 0.3 mol of KOH, LiOH and NaOH to 1 g of the fibrous carbon material. The hydrogen storage device according to claim 1, wherein the hydrogen storage device is activated at 400 to 1100 ° C. in an inert gas atmosphere. 前記冷媒が、液化天然ガス又は液体窒素であることを特徴とする請求項1又は2記載の水素貯蔵装置。   The hydrogen storage device according to claim 1 or 2, wherein the refrigerant is liquefied natural gas or liquid nitrogen. 請求項1〜3のうちのいずれか一項に記載の水素貯蔵装置を用い、前記冷却管内に120K以下の前記冷媒を流通させて前記多孔質系水素吸蔵材料に水素を吸蔵させる吸蔵ステップと、
前記冷却管内に173〜373Kの温度の熱媒を流通させて前記多孔質系水素吸蔵材料から水素を放出させ、該水素を供給先に供給する供給ステップと、
を有することを特徴とする水素供給方法。
Occlusion step of storing hydrogen in the porous hydrogen storage material by using the hydrogen storage device according to any one of claims 1 to 3 and circulating the refrigerant of 120K or less in the cooling pipe;
A supply step of causing a heating medium at a temperature of 173 to 373 K to flow through the cooling pipe to release hydrogen from the porous hydrogen storage material and supplying the hydrogen to a supply destination;
The hydrogen supply method characterized by having.
前記吸蔵ステップの後に、前記冷却管内から前記冷媒を抜いた状態で前記水素貯蔵装置を輸送する輸送ステップを更に有することを特徴とする請求項4記載の水素供給方法。
5. The hydrogen supply method according to claim 4, further comprising a transporting step of transporting the hydrogen storage device in a state where the refrigerant is removed from the inside of the cooling pipe after the storage step.
JP2006253198A 2006-09-19 2006-09-19 Hydrogen storage device and hydrogen supply method Active JP5019829B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006253198A JP5019829B2 (en) 2006-09-19 2006-09-19 Hydrogen storage device and hydrogen supply method
PCT/JP2007/068135 WO2008035696A1 (en) 2006-09-19 2007-09-19 Hydrogen storage device and hydrogen supplying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006253198A JP5019829B2 (en) 2006-09-19 2006-09-19 Hydrogen storage device and hydrogen supply method

Publications (2)

Publication Number Publication Date
JP2008075697A true JP2008075697A (en) 2008-04-03
JP5019829B2 JP5019829B2 (en) 2012-09-05

Family

ID=39200521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006253198A Active JP5019829B2 (en) 2006-09-19 2006-09-19 Hydrogen storage device and hydrogen supply method

Country Status (2)

Country Link
JP (1) JP5019829B2 (en)
WO (1) WO2008035696A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105915A2 (en) 2008-03-24 2009-09-30 Sony Corporation Liquid crystal display device, liquid crystal display method, display control device, and display control method
US20120138849A1 (en) * 2009-06-16 2012-06-07 Abengoa Solar New Technologies, S.A. Composite material for storing heat energy at high temperatures
WO2015031455A1 (en) * 2013-08-28 2015-03-05 Hyde Roderick A Systems and methods for hydrogen fuel storage and hydrogen powered vehicles
JP2015078944A (en) * 2013-10-18 2015-04-23 株式会社日立製作所 Pressure transmission device
JP2015197114A (en) * 2014-03-31 2015-11-09 Jx日鉱日石エネルギー株式会社 hydrogen station
KR20230048264A (en) * 2021-08-24 2023-04-11 주식회사 안머터리얼즈 Hydrogen storage tank using absorption material as storage media

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481648B2 (en) * 2009-09-04 2014-04-23 国立大学法人長岡技術科学大学 Hydrogen storage method, hydrogen storage device, and carbon material for hydrogen storage
CN104373813A (en) * 2014-11-13 2015-02-25 西安轨道交通装备有限责任公司 Low-temperature container tank interlayer adsorbent device
CN106287215A (en) * 2016-09-27 2017-01-04 北京市燃气集团有限责任公司 The ANG of a kind of double-layer metal structure adsorbs storage tank

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982924A (en) * 1983-04-20 1984-05-14 Taiyo Sanso Kk Method for increasing production of gas
JPS60247073A (en) * 1984-02-03 1985-12-06 エア・プロダクツ・アンド・ケミカルズ・インコ−ポレイテツド Hydrogen adsorbing and storage apparatus
JPS62241801A (en) * 1986-04-10 1987-10-22 Daido Steel Co Ltd Occlusion and release of hydrogen and apparatus therefor
JP2000103612A (en) * 1998-09-30 2000-04-11 Toshiba Corp Hydrogen absorbing carbon
JP2001241600A (en) * 2000-02-28 2001-09-07 Honda Motor Co Ltd Hydrogen storage device
JP2002274811A (en) * 2001-03-16 2002-09-25 Air Water Inc Hydrogen preparation process and device used for the same
JP2003002601A (en) * 2001-06-15 2003-01-08 Air Liquide Japan Ltd Method and apparatus for manufacturing hydrogen gas
JP2003065497A (en) * 2001-08-28 2003-03-05 Honda Motor Co Ltd Hydrogen storage vessel
JP2004332787A (en) * 2003-05-02 2004-11-25 Nippon Oil Corp Manufacturing method of gas cylinder, gas cylinder, and gas occluding/discharging method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982924A (en) * 1983-04-20 1984-05-14 Taiyo Sanso Kk Method for increasing production of gas
JPS60247073A (en) * 1984-02-03 1985-12-06 エア・プロダクツ・アンド・ケミカルズ・インコ−ポレイテツド Hydrogen adsorbing and storage apparatus
JPS62241801A (en) * 1986-04-10 1987-10-22 Daido Steel Co Ltd Occlusion and release of hydrogen and apparatus therefor
JP2000103612A (en) * 1998-09-30 2000-04-11 Toshiba Corp Hydrogen absorbing carbon
JP2001241600A (en) * 2000-02-28 2001-09-07 Honda Motor Co Ltd Hydrogen storage device
JP2002274811A (en) * 2001-03-16 2002-09-25 Air Water Inc Hydrogen preparation process and device used for the same
JP2003002601A (en) * 2001-06-15 2003-01-08 Air Liquide Japan Ltd Method and apparatus for manufacturing hydrogen gas
JP2003065497A (en) * 2001-08-28 2003-03-05 Honda Motor Co Ltd Hydrogen storage vessel
JP2004332787A (en) * 2003-05-02 2004-11-25 Nippon Oil Corp Manufacturing method of gas cylinder, gas cylinder, and gas occluding/discharging method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105915A2 (en) 2008-03-24 2009-09-30 Sony Corporation Liquid crystal display device, liquid crystal display method, display control device, and display control method
EP2385516A1 (en) 2008-03-24 2011-11-09 Sony Corporation Liquid crystal display device, liquid crystal display method, display control device, and display control method
US20120138849A1 (en) * 2009-06-16 2012-06-07 Abengoa Solar New Technologies, S.A. Composite material for storing heat energy at high temperatures
WO2015031455A1 (en) * 2013-08-28 2015-03-05 Hyde Roderick A Systems and methods for hydrogen fuel storage and hydrogen powered vehicles
US9548507B2 (en) 2013-08-28 2017-01-17 Elwha Llc Systems and methods for hydrogen fuel storage and hydrogen powered vehicles
JP2015078944A (en) * 2013-10-18 2015-04-23 株式会社日立製作所 Pressure transmission device
JP2015197114A (en) * 2014-03-31 2015-11-09 Jx日鉱日石エネルギー株式会社 hydrogen station
KR20230048264A (en) * 2021-08-24 2023-04-11 주식회사 안머터리얼즈 Hydrogen storage tank using absorption material as storage media
KR102537523B1 (en) 2021-08-24 2023-05-30 주식회사 안머터리얼즈 Hydrogen storage tank using absorption material as storage media

Also Published As

Publication number Publication date
WO2008035696A1 (en) 2008-03-27
JP5019829B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5019829B2 (en) Hydrogen storage device and hydrogen supply method
US7431756B2 (en) Modular metal hydride hydrogen storage system
US6834508B2 (en) Hydrogen storage and supply system
Ahluwalia et al. Automotive hydrogen storage system using cryo-adsorption on activated carbon
US7976620B2 (en) Methods for hydrogen storage and refrigeration
JP2007533935A (en) Absorbable gas fuel storage system and method of forming the same
US20060266219A1 (en) Metal hydride hydrogen storage system
US6748748B2 (en) Hydrogen storage and supply system
EP2187108A2 (en) Thermal management apparatus for gas storage
JP4634231B2 (en) Low temperature liquefied gas storage device, power generation device having the same, and moving body
JP4619575B2 (en) Hydrogen gas production method and hydrogen gas production facility
US20070261552A1 (en) Direct gas recirculation heater for optimal desorption of gases in cryogenic gas storage containers
KR101169748B1 (en) Hydrogen storage system of ultra low temperature and press type using lng cold energy
WO2011159259A1 (en) Method and system for storing natural gas
JP2006224885A (en) Hydrogen manufacturing equipment and manufacturing method
US7191602B2 (en) Storage of H2 by absorption and/or mixture within a fluid medium
Demirbas Storage and transportation opportunities of hydrogen
WO2009057127A1 (en) A system for effective storing and fuelling of hydrogen
JP2007218317A (en) Cryogenic liquid/gas hydrogen storage tank
JP2001289397A (en) Hydrogen storage alloy storing container
Klell et al. Storage and Transport
JP2007146872A (en) Low temperature hydrogen storage system
JP4348781B2 (en) Hydrogen gas storage method and storage device
Jafari et al. Hydrogen storage: A multidisciplinary review on technical challenges and opportunities towards a greener society
Christodoulou et al. A review on hydrogen storage technologies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5019829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250