JP2003002601A - Method and apparatus for manufacturing hydrogen gas - Google Patents

Method and apparatus for manufacturing hydrogen gas

Info

Publication number
JP2003002601A
JP2003002601A JP2001181443A JP2001181443A JP2003002601A JP 2003002601 A JP2003002601 A JP 2003002601A JP 2001181443 A JP2001181443 A JP 2001181443A JP 2001181443 A JP2001181443 A JP 2001181443A JP 2003002601 A JP2003002601 A JP 2003002601A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
hydrogen gas
heat exchanger
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001181443A
Other languages
Japanese (ja)
Other versions
JP4619575B2 (en
Inventor
Naohiko Yamashita
直彦 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Japan GK
Original Assignee
Air Liquide Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Japan GK filed Critical Air Liquide Japan GK
Priority to JP2001181443A priority Critical patent/JP4619575B2/en
Publication of JP2003002601A publication Critical patent/JP2003002601A/en
Application granted granted Critical
Publication of JP4619575B2 publication Critical patent/JP4619575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/34Hydrogen distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pipeline Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing hydrogen gas which can reduce cooling power for storage by utilizing coldness of a raw material when the hydrogen gas is manufactured from a liquefied natural gas and it is stored under a low temperature. SOLUTION: To use the apparatus for manufacturing hydrogen gas comprising a device 1 for boosting the pressure of the liquefied natural gas, a device 10 for generating hydrogen gas by using the liquefied natural gas as the reaction raw material, a device 20 for storing hydrogen gas under the low temperature, a heat exchanger 2, into which the above boosted liquefied natural gas and the above generate hydrogen gas are introduced and both gases are subjected to a heat exchange and from which the pre-cooled hydrogen gas is furnished to the device 20 for storing hydrogen gas, and an evaporator 4, in which the liquefied natural gas heated in the heat exchanger 2 is evaporated and from which at least a part of the evaporated gas is furnished to the device 10 for generating hydrogen gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液化天然ガスを原
料として水素ガスを生成させた後に、水素貯蔵装置に低
温下で貯蔵する水素ガスの製造方法およびその製造設備
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen gas production method for producing hydrogen gas from liquefied natural gas as a raw material and then storing the hydrogen gas in a hydrogen storage device at a low temperature, and a production facility therefor.

【0002】[0002]

【従来の技術】近年、エネルギー消費に伴う環境破壊が
顕在化し、再生・持続可能な社会の構築の必要性が認識
されるようになってきた。この観点からクリーンなエネ
ルギーである水素エネルギーの利用に関心が集まってお
り、自動車燃料、未来航空機燃料等への利用が期待され
ている。
2. Description of the Related Art In recent years, the environmental destruction caused by energy consumption has become apparent, and the necessity of building a sustainable and sustainable society has come to be recognized. From this viewpoint, the use of hydrogen energy, which is a clean energy, is attracting attention, and it is expected to be used for automobile fuel, future aviation fuel and the like.

【0003】しかし、水素エネルギーを各種用途に利用
する場合、水素ガス等をどのような手段で貯蔵するか
が、体積効率等の点から問題となる。水素ガスの貯蔵手
段としては、従来より水素吸蔵合金が知られているが、
重量がネックとなって、自動車等の輸送手段などへの利
用には難点があり、実用化の弊害となっていた。
However, when hydrogen energy is used for various purposes, how to store hydrogen gas or the like becomes a problem from the viewpoint of volumetric efficiency. Hydrogen storage alloys have been conventionally known as a means for storing hydrogen gas.
Since the weight becomes a bottleneck, there is a difficulty in using it for transportation means such as an automobile, which has been an obstacle to practical use.

【0004】このため、貯蔵手段の軽量化を図るべく、
炭素系水素吸蔵材に注目が集まっている。その一つとし
ては、活性炭を水酸化カリウムなどの特殊な薬品賦活法
によって水素吸着能力を増強したものが挙げられる。こ
れを液化天然ガス温度又は液化窒素温度まで冷却する
と、単なる高圧ガス貯蔵方法に比較し、低い圧力かつ軽
量化ができるとの結果が出ている。また、最近ではカー
ボンナノチューブなどの新しい材料による水素吸蔵材で
の高い吸着能などにも関心が集まっている。
Therefore, in order to reduce the weight of the storage means,
Attention is focused on carbon-based hydrogen storage materials. One of them is activated carbon whose hydrogen adsorption capacity is enhanced by a special chemical activation method such as potassium hydroxide. When this is cooled to the temperature of liquefied natural gas or the temperature of liquefied nitrogen, it is possible to reduce the pressure and weight as compared with the mere high-pressure gas storage method. In addition, recently, attention has also been focused on the high adsorption capacity of hydrogen storage materials made of new materials such as carbon nanotubes.

【0005】一方、最終的には、自然エネルギーを利用
した水素の生成が究極の姿と考えられているが、当面、
自動車等の燃料として水素を利用するインフラ整備の観
点から、比較的に環境に優しい天然ガスからの水素生成
にも関心が集まっている。当該水素生成は、例えば、特
開平8−92577号公報等に記載のように、天然ガス
の主成分であるメタンと水との反応により水素と一酸化
炭素を生成させ、更に一酸化炭素と水との反応により水
素と二酸化炭素を生成させた後、水素ガスを分離膜又は
PSA(圧力スイング吸着)装置等により精製する方法
が知られている。
On the other hand, finally, the production of hydrogen using natural energy is considered to be the ultimate form, but for the time being,
From the viewpoint of infrastructure development that uses hydrogen as a fuel for automobiles and the like, there is also interest in producing hydrogen from natural gas, which is relatively environmentally friendly. For example, as described in JP-A-8-92577 and the like, the hydrogen generation is performed by reacting methane, which is a main component of natural gas, with water to generate hydrogen and carbon monoxide, and further, carbon monoxide and water. A method is known in which hydrogen and carbon dioxide are generated by the reaction with and then hydrogen gas is purified by a separation membrane or a PSA (pressure swing adsorption) device.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな方法で製造した水素ガスを、上述した水素吸蔵材で
貯蔵しようとすると、水素ガスの冷却のために多大な動
力が必要となり、その低減が望まれていた。
However, if the hydrogen gas produced by such a method is to be stored in the above-mentioned hydrogen storage material, a large amount of power is required for cooling the hydrogen gas, and the reduction thereof is required. Was wanted.

【0007】一方、天然ガスは海外からの輸送のために
液化され、液化天然ガス(LNG)の形で輸入される。
その寒冷の利用例は幾つかあるが、大部分は単に海水な
どとの熱交換で気化され、寒冷は有効利用されず捨てら
れている。
On the other hand, natural gas is liquefied for transportation from overseas and imported in the form of liquefied natural gas (LNG).
Although there are several examples of utilizing cold, most of them are simply vaporized by heat exchange with seawater and the like, and cold is not effectively used and is discarded.

【0008】そこで、本発明の目的は、液化天然ガスか
ら水素ガスを製造して低温下で貯蔵する際に、原料の寒
冷を利用して貯蔵のための冷却動力を軽減することがで
きる水素ガスの製造方法および水素ガスの製造設備を提
供することにある。
Therefore, an object of the present invention is to produce a hydrogen gas from liquefied natural gas and store it at a low temperature by utilizing the cold of the raw material to reduce the cooling power for the storage. To provide a method for manufacturing hydrogen gas and a facility for manufacturing hydrogen gas.

【0009】[0009]

【課題を解決するための手段】上記目的は、下記の如き
本発明により達成できる。即ち、液化天然ガスを昇圧す
る工程と、昇圧した液化天然ガスを熱交換器に導入して
熱交換により自己を加温する工程と、加温した液化天然
ガスを気化させる工程と、気化した天然ガスの少なくと
も一部を反応原料として水素ガス生成装置に供給して水
素ガスを生成させる工程と、生成した水素ガスを前記熱
交換器に導入して前記液化天然ガスとの熱交換により自
己を−50℃以下に予冷する工程と、予冷した水素ガス
を水素貯蔵装置に供給して低温下で貯蔵する工程とを含
むことを特徴とする。
The above object can be achieved by the present invention as described below. That is, the step of boosting the liquefied natural gas, the step of introducing the boosted liquefied natural gas into a heat exchanger to heat itself by heat exchange, the step of vaporizing the heated liquefied natural gas, and the vaporized natural gas. Supplying at least a part of the gas as a reaction raw material to a hydrogen gas generator to generate hydrogen gas; and introducing the generated hydrogen gas into the heat exchanger to exchange heat with the liquefied natural gas to generate self gas. The method is characterized by including a step of pre-cooling to 50 ° C. or lower and a step of supplying pre-cooled hydrogen gas to a hydrogen storage device and storing it at a low temperature.

【0010】上記において、前記生成した水素ガスを補
助昇圧手段により昇圧してから前記熱交換器に導入する
ことが好ましい。
In the above, it is preferable that the generated hydrogen gas is pressurized by the auxiliary pressure boosting means and then introduced into the heat exchanger.

【0011】一方、本発明の水素ガスの製造設備は、液
化天然ガスを昇圧させる昇圧装置と、天然ガスを反応原
料として水素ガスを生成させる水素ガス生成装置と、水
素ガスを低温下で貯蔵する水素貯蔵装置と、前記昇圧さ
れた液化天然ガスおよび前記生成した水素ガスを導入し
て両者を熱交換させ、予冷された水素ガスを前記水素貯
蔵装置に供給する熱交換器と、その熱交換器で加温・気
化された液化天然ガスの少なくとも一部を前記水素ガス
生成装置に供給する手段とを備えることを特徴とする。
On the other hand, the hydrogen gas production equipment of the present invention stores a hydrogen gas at a low temperature, a booster for boosting liquefied natural gas, a hydrogen gas generator for producing hydrogen gas using natural gas as a reaction raw material. A hydrogen storage device, a heat exchanger that introduces the pressurized liquefied natural gas and the generated hydrogen gas to exchange heat between them, and supplies precooled hydrogen gas to the hydrogen storage device, and a heat exchanger therefor. And a means for supplying at least a part of the liquefied natural gas that has been heated and vaporized in step 1 to the hydrogen gas generator.

【0012】上記において、前記水素ガス生成装置で生
成した水素ガスを昇圧してから前記熱交換器に導入する
補助昇圧手段を備えてもよい。
In the above, an auxiliary pressurizing means for pressurizing the hydrogen gas produced by the hydrogen gas producing device and then introducing it into the heat exchanger may be provided.

【0013】また、前記水素貯蔵装置は、内設した水素
貯蔵部を冷却する液化冷媒を貯留する保冷槽と、その保
冷槽で気化した冷媒蒸発ガスを熱交換器で加温した後、
圧縮機で圧縮して再びその熱交換器に導入して冷却した
後、膨張により一部液化させ、気体分を再び前記熱交換
器に導入して寒冷を回収し、液化した液化冷媒を再び前
記保冷槽に供給するリサイクル経路とを備えることが好
ましい。
In the hydrogen storage device, a cold storage tank for storing a liquefied refrigerant for cooling the internal hydrogen storage unit and a refrigerant evaporative gas vaporized in the cold storage tank are heated by a heat exchanger,
After being compressed by a compressor and again introduced into the heat exchanger to be cooled, it is partially liquefied by expansion, and the gas is again introduced into the heat exchanger to recover refrigeration, and the liquefied liquefied refrigerant is again described above. It is preferable to provide a recycling route for supplying the cold storage tank.

【0014】あるいは、前記水素貯蔵装置は、内設した
水素貯蔵部を冷却する液化冷媒を貯留する保冷槽と、そ
の保冷槽で気化した冷媒蒸発ガスを熱交換器で加温した
後、圧縮機で圧縮して再びその熱交換器に導入して冷却
した後、膨張により一部液化させ、気体分を再び前記熱
交換器に導入して寒冷源とし、液化した液化冷媒を再び
前記保冷槽に供給するリサイクル経路とを備えると共
に、そのリサイクル経路の熱交換器には、別の寒冷源と
して液化天然ガスを導入する経路を備えることが好まし
い。
Alternatively, in the hydrogen storage device, a cold storage tank for storing a liquefied refrigerant for cooling an internal hydrogen storage section, and a refrigerant evaporative gas vaporized in the cold storage tank are heated by a heat exchanger, and then a compressor is provided. After being compressed with and re-introduced into the heat exchanger to be cooled, it is partially liquefied by expansion, and the gas content is re-introduced into the heat exchanger to serve as a cold source, and the liquefied liquefied refrigerant is reintroduced into the cold storage tank. It is preferable to provide a recycle path for supplying and a path for introducing liquefied natural gas as another cold source in the heat exchanger of the recycle path.

【0015】[作用効果]本発明の製造方法によると、
原料である液化天然ガスにより、生成した水素ガスの予
冷を行うため、有効利用されず捨てられていた寒冷を利
用することにより水素貯蔵の際の冷却動力を軽減するこ
とができる。また、液化天然ガスを液体状態で昇圧する
ため、別途ガス原料を圧縮する場合と比べて動力を軽減
することができる。その結果、液化天然ガスから水素ガ
スを製造して低温下で貯蔵する際に、原料の寒冷を利用
して貯蔵のための冷却動力を軽減することができる水素
ガスの製造方法が提供できる。
[Operation and Effect] According to the manufacturing method of the present invention,
Since the liquefied natural gas as a raw material precools the produced hydrogen gas, the cooling power for hydrogen storage can be reduced by utilizing the refrigeration that has not been effectively used and has been discarded. Further, since the pressure of the liquefied natural gas is increased in the liquid state, the power can be reduced as compared with the case of separately compressing the gas raw material. As a result, when producing hydrogen gas from liquefied natural gas and storing it at a low temperature, it is possible to provide a method for producing hydrogen gas that can reduce the cooling power for storage by utilizing the cold of the raw material.

【0016】また、前記生成した水素ガスを補助昇圧手
段により昇圧してから前記熱交換器に導入する場合、水
素貯蔵装置が高圧を要する場合にも対応できる。
Further, when the generated hydrogen gas is pressurized by the auxiliary pressure boosting means and then introduced into the heat exchanger, it is possible to cope with the case where the hydrogen storage device requires high pressure.

【0017】一方、本発明の製造設備によると、上記の
如き作用効果により、液化天然ガスから水素ガスを製造
して低温下で貯蔵する際に、原料の寒冷を利用して貯蔵
のための冷却動力を軽減することができる。
On the other hand, according to the production facility of the present invention, due to the above-described effects, when hydrogen gas is produced from liquefied natural gas and stored at low temperature, the cold of the raw material is used for cooling for storage. Power can be reduced.

【0018】また、前記水素ガス生成装置で生成した水
素ガスを昇圧してから前記熱交換器に導入する補助昇圧
手段を備える場合、水素貯蔵装置が高圧を要する場合に
も対応できる。
Further, when the auxiliary pressure increasing means for increasing the pressure of the hydrogen gas generated by the hydrogen gas generating device and then introducing the hydrogen gas into the heat exchanger is provided, it is possible to cope with the case where the hydrogen storage device requires high pressure.

【0019】前記水素貯蔵装置は、前記保冷槽と前記リ
サイクル経路とを備える場合、リサイクル経路により水
素貯蔵装置の水素貯蔵部を冷却する液化冷媒を発生させ
ることができ、保冷槽の液化冷媒の気化潜熱を利用して
効率良く冷却をおこなうことができる。
When the hydrogen storage device includes the cold storage tank and the recycle path, the recycle path can generate a liquefied refrigerant that cools the hydrogen storage portion of the hydrogen storage device, and vaporizes the liquefied refrigerant in the cold storage tank. The latent heat can be used for efficient cooling.

【0020】前記水素貯蔵装置は、前記保冷槽と前記リ
サイクル経路とを備えると共に、そのリサイクル経路の
熱交換器には、別の寒冷源として液化天然ガスを導入す
る経路を備える場合、水素貯蔵装置の水素貯蔵部を冷却
する液化冷媒を発生させる際の寒冷源としても液化天然
ガスを利用するため、冷却動力をより軽減することがで
きる。
When the hydrogen storage device is provided with the cold storage tank and the recycle path, and the heat exchanger of the recycle path is provided with a path for introducing liquefied natural gas as another cold source, the hydrogen storage apparatus is provided. Since the liquefied natural gas is also used as a cold source when generating the liquefied refrigerant that cools the hydrogen storage part, the cooling power can be further reduced.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0022】本発明の水素ガスの製造方法は、図1に示
すような本発明の水素ガスの製造設備によって好適に実
施することができる。本発明の製造設備は、液化天然ガ
スを昇圧させる昇圧装置1と、天然ガスを反応原料とし
て水素ガスを生成させる水素ガス生成装置10と、水素
ガスを低温下で貯蔵する水素貯蔵装置20と、前記昇圧
された液化天然ガスおよび前記生成した水素ガスを導入
して両者を熱交換させ、予冷された水素ガスを前記水素
貯蔵装置に供給する熱交換器2と、その熱交換器2で加
温・気化された液化天然ガスの少なくとも一部を水素ガ
ス生成装置10に供給する手段とを備える。
The hydrogen gas production method of the present invention can be suitably carried out by the hydrogen gas production equipment of the present invention as shown in FIG. The production facility of the present invention comprises a booster 1 for boosting liquefied natural gas, a hydrogen gas generator 10 for producing hydrogen gas using natural gas as a reaction raw material, and a hydrogen storage device 20 for storing hydrogen gas at a low temperature. A heat exchanger 2 for introducing the pressurized liquefied natural gas and the generated hydrogen gas to exchange heat between them and supplying precooled hydrogen gas to the hydrogen storage device, and heating by the heat exchanger 2. A means for supplying at least a part of the vaporized liquefied natural gas to the hydrogen gas generator 10.

【0023】本実施形態では、熱交換器を2基設けて、
低温用の熱交換器2には液化天然ガスを導入し、加温に
よりその大部分を気化させた後、気液分離器5で気液分
離し、分離後の天然ガスを高温用の熱交換器3に導入す
ると共に、気液分離器5から導出した液化天然ガスを気
化して水素ガス生成装置10に供給する蒸発器4を備え
る例を示す。
In this embodiment, two heat exchangers are provided,
Liquefied natural gas is introduced into the heat exchanger 2 for low temperature, most of it is vaporized by heating, and then the gas-liquid separator 5 separates gas and liquid, and the separated natural gas is heat-exchanged for high temperature. An example including an evaporator 4 that is introduced into the reactor 3 and that vaporizes the liquefied natural gas that is drawn out from the gas-liquid separator 5 and that supplies the hydrogen gas to the hydrogen gas generator 10 is shown.

【0024】本発明では、まず、液化天然ガスを昇圧す
る工程を行うが、昇圧は後の工程で昇圧の必要がない圧
力まで行うのが好ましい。具体的には、水素ガス生成装
置の精製手段又は水素貯蔵装置等の要求圧に応じて設定
され、例えば水素ガス生成装置がPSA精製手段を備え
る場合は、昇圧を10〜40barGまで行うのが好ま
しく、20〜30barGまで行うのがより好ましい。
なお、原料となる液化天然ガスは、ほぼ大気圧、約−1
55℃で供給されるのが一般的である。
In the present invention, the step of boosting the pressure of the liquefied natural gas is first performed, but it is preferable that the boosting is performed up to a pressure at which the boosting is not necessary in the subsequent step. Specifically, it is set according to the required pressure of the refining means of the hydrogen gas generator or the hydrogen storage device, and for example, when the hydrogen gas generator is equipped with the PSA purifying means, it is preferable to raise the pressure up to 10 to 40 barG. It is more preferred to carry out from 20 to 30 barG.
The liquefied natural gas used as the raw material is at about atmospheric pressure, about -1.
It is generally supplied at 55 ° C.

【0025】次いで、昇圧した液化天然ガスを熱交換器
に導入して熱交換により自己を加温する工程を行うが、
本実施形態では、低温用の熱交換器2に液化天然ガスが
導入される。大部分が気化した液化天然ガスは、気液分
離器5で気液分離され、気相分は高温用の熱交換器3に
導入される。つまり、低温用の熱交換器2によって、液
化天然ガスを加温する工程と気化させる工程を行ってい
る。
Then, the step of introducing the pressurized liquefied natural gas into the heat exchanger to heat itself by heat exchange is carried out.
In this embodiment, liquefied natural gas is introduced into the low temperature heat exchanger 2. Most of the vaporized liquefied natural gas is gas-liquid separated in the gas-liquid separator 5, and the gas phase component is introduced into the heat exchanger 3 for high temperature. That is, the heat exchanger 2 for low temperature performs the step of heating the liquefied natural gas and the step of vaporizing the liquefied natural gas.

【0026】その一方で、本実施形態では、気液分離器
5の液相部から導出した液化天然ガスを蒸発器4で気化
させる。蒸発器4の熱媒としては、海水やフレオンなど
を用いることができるが、熱交換により生じた冷熱(寒
冷)を圧縮機等の冷却水として使用することもできる。
On the other hand, in this embodiment, the liquefied natural gas derived from the liquid phase portion of the gas-liquid separator 5 is vaporized by the evaporator 4. Seawater, freon, or the like can be used as the heat medium of the evaporator 4, but cold heat (cold) generated by heat exchange can also be used as cooling water for the compressor or the like.

【0027】熱交換器3へ供給された天然ガスは、生成
した水素ガスと熱交換して加温される。加温器6は、熱
交換器3から排出される水素ガスの温度が、水素ガス生
成装置10の原料温度として不十分である場合に設けら
れる。熱媒としては、蒸発器4の場合と同様である。
The natural gas supplied to the heat exchanger 3 is heated by exchanging heat with the produced hydrogen gas. The warmer 6 is provided when the temperature of the hydrogen gas discharged from the heat exchanger 3 is insufficient as the raw material temperature of the hydrogen gas generator 10. The heat medium is the same as that of the evaporator 4.

【0028】次いで、加温器6と蒸発器4からの天然ガ
スを反応原料として水素ガス生成装置10に供給して水
素ガスを生成させる工程を行う。なお、過剰な天然ガス
は弁7を介して、他の系に供給される。水素ガス生成装
置10としては、天然ガスを反応原料として水素ガスが
生成可能な装置であれば何れでもよいが、例えば下記の
装置が挙げられる。通常、このような水素ガス生成装置
10では、原料圧縮機が必要であるが、本発明ではこれ
を不要にすることが出来る。
Next, the step of supplying the natural gas from the warmer 6 and the evaporator 4 as a reaction raw material to the hydrogen gas generator 10 to generate hydrogen gas is performed. The excess natural gas is supplied to another system via the valve 7. The hydrogen gas generator 10 may be any device as long as it can generate hydrogen gas using natural gas as a reaction raw material, and examples thereof include the following devices. Normally, such a hydrogen gas generator 10 requires a raw material compressor, but in the present invention, this can be omitted.

【0029】水素ガス生成装置は、図2に示すように、
天然ガスを脱硫する脱硫部12と、脱硫された天然ガス
に水を添加後、この混合流体を改質触媒と接触させて水
蒸気改質することで、高濃度水素含有ガスを製造する水
蒸気改質部13と、脱硫部12へ供給される原料を予熱
する原料予熱部11と、水蒸気改質部13へ供給される
混合流体を予熱する予熱部17と、高濃度水素含有ガス
を変成触媒と接触させて水素濃度を高めた高濃度水素含
有ガスを製造するガス変成部18と、水素以外の改質ガ
ス含有成分を吸着除去する吸着剤を有して、高純度水素
ガスを精製するPSA部19とで主に構成されている。
本発明ではPSAの代わりにTSAを利用してもよい。
The hydrogen gas generator, as shown in FIG.
Desulfurization section 12 for desulfurizing natural gas, and steam reforming for producing high-concentration hydrogen-containing gas by adding water to desulfurized natural gas and then contacting this mixed fluid with a reforming catalyst for steam reforming. Section 13, raw material preheating section 11 for preheating the raw material supplied to the desulfurization section 12, preheating section 17 for preheating the mixed fluid supplied to the steam reforming section 13, and contacting the high-concentration hydrogen-containing gas with the shift conversion catalyst. A gas shift section 18 for producing a high-concentration hydrogen-containing gas having an increased hydrogen concentration, and a PSA section 19 for purifying a high-purity hydrogen gas by having an adsorbent for adsorbing and removing a reformed gas-containing component other than hydrogen. It is mainly composed of and.
In the present invention, TSA may be used instead of PSA.

【0030】脱硫部12は、水素化触媒が内部充填され
た上流側の水素化触媒層と、脱硫剤が充填された下流側
の脱硫剤層とから構成されている。水素化触媒層は、硫
黄分を含んだ原料天然ガスを水素化触媒に接触させるこ
とで、この硫黄分を水素化処理して硫化水素に改質す
る。これらの反応は、通常200〜400℃で行われる
ため、原料予熱部11での排ガスによる予熱が行われ
る。
The desulfurization section 12 is composed of an upstream hydrogenation catalyst layer which is internally filled with a hydrogenation catalyst and a downstream desulfurization agent layer which is filled with a desulfurization agent. In the hydrogenation catalyst layer, the raw material natural gas containing sulfur is brought into contact with the hydrogenation catalyst so that the sulfur content is hydrotreated to be reformed into hydrogen sulfide. Since these reactions are normally performed at 200 to 400 ° C., the raw material preheating unit 11 preheats the exhaust gas.

【0031】水蒸気改質部13は、脱硫された天然ガス
に水蒸気を添加したガスを、改質触媒と接触させて水蒸
気改質することで、高濃度水素含有ガスを製造する。こ
の水蒸気改質部13には、反応管内に、白金,ルテニウ
ムまたはニッケルなどの元素を、アルミナ,シリカなど
の担体に担持した改質触媒が充填されている。
The steam reforming section 13 produces a high-concentration hydrogen-containing gas by bringing a gas obtained by adding steam to desulfurized natural gas into contact with a reforming catalyst to carry out steam reforming. The steam reforming section 13 is filled with a reforming catalyst in which an element such as platinum, ruthenium or nickel is carried on a carrier such as alumina or silica in a reaction tube.

【0032】原料天然ガスから水素含有量の多いガスを
製造する水蒸気改質(スチームリフォーミング)反応
は、メタンと水との反応により水素と一酸化炭素を生成
させる改質反応と、一酸化炭素と水との反応により水素
と二酸化炭素を生成させる一酸化炭素変成反応を含んで
いる。
The steam reforming (steam reforming) reaction for producing a gas having a high hydrogen content from a raw material natural gas includes a reforming reaction for producing hydrogen and carbon monoxide by a reaction between methane and water, and a carbon monoxide. It includes a carbon monoxide shift reaction that produces hydrogen and carbon dioxide by the reaction of water with water.

【0033】水蒸気改質部13は、水蒸気改質炉のバー
ナ13a側に収納されている。このバーナ13aの熱に
より、水蒸気改質部13は650〜850℃に加熱さ
れ、上記の改質反応が行われる。なお、バーナ13aの
主な燃料はPSAオフガスであり、空気圧送ポンプを介
して、燃焼用の外部空気が供給される。
The steam reforming section 13 is housed on the burner 13a side of the steam reforming furnace. The steam reforming section 13 is heated to 650 to 850 ° C. by the heat of the burner 13a, and the above reforming reaction is performed. The main fuel of the burner 13a is PSA off-gas, and external air for combustion is supplied via an air pressure pump.

【0034】ガス変成部18は、水蒸気改質部13から
排出された高濃度水素含有ガスを、このガス変成部18
より上流の改質ガスクーラ14を通過させることで20
0〜450℃に低下させたのち、変成触媒と接触させ
て、高濃度水素含有ガスに含まれる一酸化炭素と水蒸気
とを反応させて二酸化炭素および水素に転換し、これに
より一酸化炭素を除去する一方、さらに水素濃度を高め
た高濃度水素含有ガスを製造する。変成触媒としては、
鉄−クロムや銅−亜鉛などの酸化物が用いられる。
The gas shift section 18 converts the high-concentration hydrogen-containing gas discharged from the steam reforming section 13 into this gas shift section 18
By passing through the reformed gas cooler 14 on the upstream side, 20
After the temperature is lowered to 0 to 450 ° C., it is brought into contact with a shift catalyst to cause the carbon monoxide contained in the high-concentration hydrogen-containing gas to react with steam to convert into carbon dioxide and hydrogen, thereby removing carbon monoxide. Meanwhile, a high-concentration hydrogen-containing gas with a further increased hydrogen concentration is produced. As a shift catalyst,
Oxides such as iron-chromium and copper-zinc are used.

【0035】PSA部19は、ガス変成部18から排出
された水素濃度がさらに高められた高濃度水素含有ガス
を、このPSA部19より上流の変成ガスクーラ15、
及び気液分離器16を通過させることで10〜50℃、
好ましくは20〜40℃に低下させたのち、吸着剤によ
り水素以外の改質ガス含有成分(一酸化炭素、二酸化炭
素、水など)を吸着除去して高純度水素ガスを精製する
装置である。なお、このPSA部19で精製された高純
度水素ガスは、水素ホルダ19aにいったん貯留され
る。一方、水素以外の改質ガス含有成分は、オフガスホ
ルダ(図示省略)にいったん貯留され、その後、燃料と
してバーナ13aに供給される。この吸着剤としては、
アルミナ、活性炭、ゼオライトなどを採用することがで
きる。
The PSA section 19 supplies the high-concentration hydrogen-containing gas discharged from the gas shift section 18 with a higher hydrogen concentration, to the shift gas cooler 15 upstream of the PSA section 19,
And 10 to 50 ° C. by passing through the gas-liquid separator 16,
A device for purifying high-purity hydrogen gas by adsorbing and removing reformed gas-containing components other than hydrogen (carbon monoxide, carbon dioxide, water, etc.) with an adsorbent after the temperature is lowered to 20 to 40 ° C. is preferable. The high-purity hydrogen gas purified by the PSA unit 19 is temporarily stored in the hydrogen holder 19a. On the other hand, the reformed gas-containing components other than hydrogen are once stored in an off-gas holder (not shown) and then supplied to the burner 13a as fuel. As this adsorbent,
Alumina, activated carbon, zeolite, etc. can be adopted.

【0036】次いで、生成した水素ガスを熱交換器2に
導入して液化天然ガスとの熱交換により自己を−50℃
以下に予冷する工程を行う。但し、本実施形態では、そ
れに先立って、水素ガスを高温側の熱交換器3に導入し
て、天然ガスとの熱交換により自己が冷却される。
Next, the produced hydrogen gas is introduced into the heat exchanger 2 to exchange heat with the liquefied natural gas to -50 ° C.
The step of precooling is performed below. However, in the present embodiment, prior to that, hydrogen gas is introduced into the heat exchanger 3 on the high temperature side to cool itself by heat exchange with the natural gas.

【0037】なお、水素貯蔵装置20の運転圧との関係
で、水素貯蔵装置20への水素ガスの導入圧力が低すぎ
る場合には、仮想線で示したような補助昇圧手段8を高
温側の熱交換器3の入口側に設けてもよい。
When the introduction pressure of hydrogen gas into the hydrogen storage device 20 is too low in relation to the operating pressure of the hydrogen storage device 20, the auxiliary boosting means 8 shown by the phantom line is set to the high temperature side. It may be provided on the inlet side of the heat exchanger 3.

【0038】次いで、予冷した水素ガスを水素貯蔵装置
20に供給して低温下で貯蔵する工程を行う。水素貯蔵
装置20としては、例えば−150℃以下の温度にて水
素ガスの吸着を行い、減圧下又は加温下で水素ガスを脱
着させる装置が好ましい。このような装置としては、例
えば図3に示すような水素ガスの導入と排出とを同時に
行うことが可能な切換型の水素貯蔵装置20が挙げられ
る。この水素貯蔵装置20は、図3に示すように、水素
貯蔵部22a,22bを内設する保冷槽21a,21b
と熱交換器23から主に構成される。熱交換器23は冷
媒蒸発ガスの寒冷を回収するために設けてあるが、省略
することも可能である。
Next, the step of supplying the precooled hydrogen gas to the hydrogen storage device 20 and storing it at a low temperature is performed. As the hydrogen storage device 20, for example, a device that adsorbs hydrogen gas at a temperature of −150 ° C. or lower and desorbs hydrogen gas under reduced pressure or under heating is preferable. As such a device, for example, there is a switching type hydrogen storage device 20 capable of simultaneously introducing and discharging hydrogen gas as shown in FIG. As shown in FIG. 3, the hydrogen storage device 20 includes cold storage tanks 21a and 21b having hydrogen storage units 22a and 22b therein.
And the heat exchanger 23. The heat exchanger 23 is provided to recover the cold of the refrigerant evaporative gas, but it may be omitted.

【0039】保冷槽21a,21bの内部空間には、外
部から供給される液体窒素、液化天然ガスなどの液化冷
媒が貯留されており、気化により生じた冷媒蒸発ガス
は、外部に排出され熱交換器23で冷熱回収される。液
化冷媒は弁27a,27bを介して保冷槽21a,21
bに供給され、弁25a,25bを介して保冷槽21
a,21bから排出される。排出され冷媒蒸発ガスは、
独立した冷凍サイクル(図示省略)によって冷却、液化
されて再び液化冷媒として利用される。
Liquefied refrigerants such as liquid nitrogen and liquefied natural gas supplied from the outside are stored in the internal spaces of the cold storage tanks 21a and 21b, and the refrigerant evaporative gas generated by the vaporization is discharged to the outside and exchanged with heat. Cold heat is recovered in the vessel 23. The liquefied refrigerant is passed through valves 27a and 27b to cool the tanks 21a and 21a.
b to the cold storage tank 21 via the valves 25a and 25b.
It is discharged from a and 21b. The discharged refrigerant evaporative gas is
It is cooled and liquefied by an independent refrigeration cycle (not shown) and is reused as a liquefied refrigerant.

【0040】水素貯蔵部22a,22bには、水酸化カ
リウムなどの特殊な薬品賦活法によって水素吸着能力を
増強した活性炭などの水素吸蔵材が充填されており、水
素ガスの吸着と脱着が均一に行われるような充填構造と
なっている。また、保冷槽21a,21bは外部と断熱
するための真空断熱層などを備える。
The hydrogen storage parts 22a and 22b are filled with a hydrogen storage material such as activated carbon whose hydrogen adsorption capacity is enhanced by a special chemical activation method such as potassium hydroxide, so that the adsorption and desorption of hydrogen gas are uniform. It has a filling structure as is done. Further, the cold storage tanks 21a and 21b are provided with a vacuum heat insulating layer for insulating the outside.

【0041】両者の水素貯蔵部22a,22bでは、水
素ガスの導入と排出とを切り換えながら行うことができ
る。例えば水素貯蔵部22aに水素ガスの導入しつつ、
水素貯蔵部22bから水素ガスを排出する場合、水素ガ
スは熱交換器23で冷媒蒸発ガスと熱交換して予冷さ
れ、弁24aを介して水素貯蔵部22aに導入される一
方、水素貯蔵部22bからは、弁26bと排出ポート2
8bとを介して、水素ガスが排出される。
In both of the hydrogen storage parts 22a and 22b, it is possible to carry out while switching the introduction and discharge of hydrogen gas. For example, while introducing hydrogen gas into the hydrogen storage unit 22a,
When the hydrogen gas is discharged from the hydrogen storage part 22b, the hydrogen gas is heat-exchanged with the refrigerant evaporative gas in the heat exchanger 23 to be pre-cooled and introduced into the hydrogen storage part 22a through the valve 24a, while the hydrogen storage part 22b is discharged. From valve 26b and exhaust port 2
Hydrogen gas is discharged via 8b.

【0042】次に、水素貯蔵部22a,22bでの水素
ガスの導入・排出の条件等について説明する。例えば水
素貯蔵部22a,22bの水素吸蔵材として活性炭を使
用する場合を例にとると次のようになる。以降の吸着水
素ガス量等の数値は、R.Chahine and
P.Benard「ADSORPTION STORA
GE OF GASEOUS HYDROGEN AT
CRYOGENICTEMPERATURES」Ad
vances in Cryogenic Engin
eering.Vol.43(1998)に記載のグラ
フ等から読み取った数値を使用している。
Next, the conditions for introducing and discharging hydrogen gas in the hydrogen storage units 22a and 22b will be described. For example, the case where activated carbon is used as the hydrogen storage material of the hydrogen storage units 22a and 22b is as follows. The numerical values of the amount of adsorbed hydrogen gas and the like thereafter are R. Chahine and
P. Benard "ADSORPTION STORA
GE OF GASEOUS HYDROGEN AT
CRYOGENIC TEMPERATURES "Ad
vances in Cryogenic Engin
eering. Vol. 43 (1998), the numerical values read from the graph and the like are used.

【0043】活性炭で吸着可能な水素ガスの量は、低温
ほど多くなり、また吸脱着の圧力差が大きいほど多くな
る。脱着圧力を1.4バールとする場合、活性炭の単位
体積当たりの吸蔵水素ガス量(総吸着量−脱着後残量)
は、20バールの吸着圧力の場合で温度77Kでは15
0Kの1.7倍、273Kの約10倍となる。このた
め、保冷槽21a,21bの液体冷媒として、液体窒素
等を用いて、−193〜−196℃で吸着を行うのが好
ましい。
The amount of hydrogen gas that can be adsorbed by activated carbon increases as the temperature decreases, and as the pressure difference between adsorption and desorption increases. When the desorption pressure is 1.4 bar, the amount of absorbed hydrogen gas per unit volume of activated carbon (total adsorption amount-remaining amount after desorption)
Is 15 at an adsorption pressure of 20 bar and a temperature of 77K.
It is 1.7 times that of 0K and about 10 times that of 273K. Therefore, it is preferable to use liquid nitrogen or the like as the liquid refrigerant in the cold storage tanks 21a and 21b to perform adsorption at -193 to -196 ° C.

【0044】また、吸着圧力については、脱着圧力を
1.4バールとする場合、活性炭の単位体積当たりの吸
蔵水素ガス量は、吸着温度77Kの場合の各々の吸着圧
力において、表1のような値となる。水素ガスを圧縮貯
蔵する場合と比較して、特に吸着方式が有効になるの
は、吸着圧力5〜60バールの場合であり、本発明で
は、水素ガス生成装置10の排出圧力などを考慮すると
20〜60バールが好ましい。必要な昇圧は、昇圧装置
1と補助昇圧手段8とで達成される。なお、脱着圧力が
低いほど吸蔵効率が良くなる。
Regarding the adsorption pressure, when the desorption pressure is 1.4 bar, the amount of stored hydrogen gas per unit volume of activated carbon is as shown in Table 1 at each adsorption pressure when the adsorption temperature is 77K. It becomes a value. Compared with the case of compressing and storing hydrogen gas, the adsorption method is particularly effective when the adsorption pressure is 5 to 60 bar. In the present invention, considering the discharge pressure of the hydrogen gas generator 10, etc., 20 -60 bar is preferred. The necessary boosting is achieved by the boosting device 1 and the auxiliary boosting means 8. The lower the desorption pressure, the better the occlusion efficiency.

【0045】[0045]

【表1】 [他の実施形態]以下、本発明の他の実施の形態につい
て説明する。
[Table 1] [Other Embodiments] Other embodiments of the present invention will be described below.

【0046】(1)前述の実施形態では、水素貯蔵装置
からの冷媒蒸発ガスを独立した冷凍サイクルによって冷
却、液化されて再び液化冷媒として利用する例を示した
が、このような冷凍サイクルを構成するリサイクル経路
としては、水素貯蔵装置の保冷槽で気化した冷媒蒸発ガ
スを熱交換器で加温した後、圧縮機で圧縮して再びその
熱交換器に導入して冷却した後、膨張により一部液化さ
せ、気体分を再び前記熱交換器に導入して寒冷を回収
し、液化した液化冷媒を再び前記保冷槽に供給するリサ
イクル経路が例示される。その際、膨張により一部液化
した冷媒は、気液分離器で気液分離してもよく、混相状
態の冷媒を直接保冷槽に供給して保冷槽に気液分離の機
能をもたせてもよい。本発明では、かかる冷媒として、
液化天然ガスや液体窒素を使用することができる。
(1) In the above-described embodiment, an example is shown in which the refrigerant evaporative gas from the hydrogen storage device is cooled and liquefied by an independent refrigeration cycle to be reused as a liquefied refrigerant. As a recycling route, the refrigerant evaporative gas vaporized in the cold storage tank of the hydrogen storage device is heated by the heat exchanger, compressed by the compressor, introduced into the heat exchanger again, cooled, and then expanded by expansion. An example is a recycling route in which the partial liquefaction, the gas content is again introduced into the heat exchanger to recover cold, and the liquefied liquefied refrigerant is supplied again to the cold storage tank. At that time, the refrigerant partially liquefied due to expansion may be gas-liquid separated by a gas-liquid separator, or the refrigerant in a mixed phase state may be directly supplied to the cold insulation tank so that the cold insulation tank may have the function of gas-liquid separation. . In the present invention, as such a refrigerant,
Liquefied natural gas or liquid nitrogen can be used.

【0047】(2)一方、原料である液化天然ガスの寒
冷をより有効に利用する観点より、前記水素貯蔵装置
が、内設した水素貯蔵部を冷却する液化冷媒を貯留する
保冷槽と、その保冷槽で気化した冷媒蒸発ガスを液化し
た後、再び保冷槽に供給するリサイクル経路とを備え、
そのリサイクル経路の熱交換器には、別の寒冷源として
液化天然ガスを導入する経路を備えることが好ましい。
即ち、水素貯蔵装置の低温保持に使用する冷媒の再液化
のため、液化天然ガスの寒冷を利用することが好適であ
る。その際のリサイクル経路としては、保冷槽で気化し
た冷媒蒸発ガスを熱交換器で加温した後、圧縮機で圧縮
して再びその熱交換器に導入して冷却した後、膨張によ
り一部液化させ、気体分を再び前記熱交換器に導入して
寒冷源とし、液化した液化冷媒を再び前記保冷槽に供給
するリサイクル経路であることが好ましい。
(2) On the other hand, from the viewpoint of more effectively utilizing the cooling of the liquefied natural gas as the raw material, the hydrogen storage device stores a liquefied refrigerant for cooling the internal hydrogen storage part, and a cold storage tank for storing the liquefied refrigerant. After liquefying the refrigerant evaporative gas vaporized in the cold storage tank, it is equipped with a recycle path for supplying again to the cold storage tank,
It is preferable that the heat exchanger in the recycling route is provided with a route for introducing liquefied natural gas as another cold source.
That is, it is preferable to use the cold of liquefied natural gas for reliquefaction of the refrigerant used for keeping the hydrogen storage device at a low temperature. As a recycling route at that time, the refrigerant evaporative gas vaporized in the cold storage tank is heated in the heat exchanger, compressed by the compressor, introduced into the heat exchanger again to be cooled, and then partially liquefied by expansion. Then, it is preferable that the gas is re-introduced into the heat exchanger to serve as a cold source, and the liquefied liquefied refrigerant is supplied again to the cold storage tank.

【0048】具体的なリサイクル経路としては、熱交換
器2,3を兼用して液化天然ガスの冷熱を利用可能とし
た図4又は図5に示す装置や、液化天然ガスの導入経路
を別に設けたものが挙げられる。なお、図3に示す水素
貯蔵装置20では、冷媒蒸発ガスの寒冷を回収するため
の熱交換器23を設けているが、図4又は図5に示す装
置に適用する場合、熱交換器23を省略することも可能
である。
As a concrete recycling path, the apparatus shown in FIG. 4 or FIG. 5 in which the heat of the liquefied natural gas can be used also as the heat exchangers 2 and 3 and the introduction path of the liquefied natural gas are separately provided. There are some. The hydrogen storage device 20 shown in FIG. 3 is provided with the heat exchanger 23 for recovering the cold of the refrigerant evaporative gas, but when applied to the device shown in FIG. 4 or FIG. It can be omitted.

【0049】図4に示すリサイクル経路では、水素貯蔵
装置20からの冷媒蒸発ガスを、熱交換器34,33,
2,3に順次経由させて、熱交換により冷却し、圧縮機
31と圧縮機32とで圧縮した後、熱交換器3,2,3
3を順次経由させて冷却する。その後、膨張弁(J−T
弁)38によりフラッシュして一部液化させ、一部液化
した冷媒(例えば窒素)は気液分離器35で気液分離さ
れる。気体の冷媒は再び熱交換器33,2,3に順次経
由させて、熱交換により加熱され、圧縮機31と圧縮機
32との間の経路に供給される。液化した冷媒は、熱交
換器34を経由して液体冷媒として水素吸蔵装置20に
供給される。
In the recycling path shown in FIG. 4, the refrigerant evaporative gas from the hydrogen storage device 20 is transferred to the heat exchangers 34, 33 ,.
2 and 3 are sequentially passed through to be cooled by heat exchange and compressed by the compressor 31 and the compressor 32, and then the heat exchangers 3, 2, 3
Cool through 3 sequentially. After that, the expansion valve (J-T
(Valve) 38 to flush and partially liquefy, and the partially liquefied refrigerant (for example, nitrogen) is gas-liquid separated by the gas-liquid separator 35. The gaseous refrigerant is again passed through the heat exchangers 33, 2 and 3 in sequence, heated by heat exchange, and supplied to the path between the compressor 31 and the compressor 32. The liquefied refrigerant is supplied to the hydrogen storage device 20 as a liquid refrigerant via the heat exchanger 34.

【0050】(3)また、図5に示すようなリサイクル
経路では、圧縮機36と圧縮機37とが、図4の圧縮機
31と圧縮機32とに相当するが、少なくともその一部
を低温圧縮機とすることにより、冷媒の再液化のための
能力を低減するという効果を得ることができる。
(3) Further, in the recycling path as shown in FIG. 5, the compressor 36 and the compressor 37 correspond to the compressor 31 and the compressor 32 in FIG. By using a compressor, it is possible to obtain the effect of reducing the capacity for reliquefaction of the refrigerant.

【0051】(4)前述の実施形態では、低温用の熱交
換器に液化天然ガスが導入され加温によりその大部分が
気化される例を示したが、気化しない温度まで加温され
るようにしたり、或いは超臨界の領域まで加温・昇温が
なされてもよい。超臨界状態の場合、低温側の熱交換器
から導出された天然ガスは、流量制御しつつその一部を
高温側の熱交換器に導入することで、熱交換の熱的バラ
ンスを維持することができる。
(4) In the above-described embodiment, an example is shown in which liquefied natural gas is introduced into a heat exchanger for low temperature and most of it is vaporized by heating, but it is heated to a temperature that does not vaporize. Alternatively, it may be heated or heated to a supercritical region. In the supercritical state, the natural gas derived from the heat exchanger on the low temperature side is introduced into the heat exchanger on the high temperature side while controlling the flow rate to maintain the thermal balance of heat exchange. You can

【0052】(5)前述の実施形態では、オルソ−パラ
変換を行わない例を示したが、例えば熱交換器2にオル
ソ−パラ変換の機能をもたせてもよい。オルソ−パラ変
換は、触媒を用いた公知の方法により行うことができ
る。
(5) In the above-described embodiment, an example in which the ortho-para conversion is not performed has been shown, but the heat exchanger 2 may have the function of the ortho-para conversion, for example. The ortho-para conversion can be performed by a known method using a catalyst.

【0053】(6)前述の実施形態では、1台の昇圧装
置を用いて液化天然ガスを昇圧する例を示したが、昇圧
装置を2台以上として、以降の経路を2系統以上とし、
1系統以外の系統を系外の他の装置等や動力系統に供給
するように構成してもよい。その場合、各系統を異なる
圧力で操作でき、1つの系統を前述と同様の圧力とし、
他の系統は、供給先の要求圧力に応じて設定してもよ
い。
(6) In the above-described embodiment, an example in which one booster is used to boost the pressure of liquefied natural gas has been described. However, there are two or more boosters and two or more routes thereafter,
The system other than the one system may be configured to be supplied to other devices outside the system or the power system. In that case, each system can be operated at different pressure, and one system can be operated at the same pressure as above,
Other systems may be set according to the required pressure of the supply destination.

【0054】動力系統への供給としては、例えば圧縮
機、昇圧装置、膨張タービンなどの駆動用の天然ガスエ
ンジンあるいは天然ガスタービンに供給する方法が挙げ
られ、系外の他の装置等への供給としては、工場内の天
然ガス配給ラインへの供給が挙げられる。
Examples of the power supply to the power system include a method of supplying to a natural gas engine or a natural gas turbine for driving a compressor, a booster, an expansion turbine, etc., and to other devices outside the system. One example is the supply to the natural gas distribution line in the factory.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水素ガスの製造設備の一例を示す概略
構成図
FIG. 1 is a schematic configuration diagram showing an example of a hydrogen gas production facility of the present invention.

【図2】本発明における水素ガス生成装置の一例を示す
概略構成図
FIG. 2 is a schematic configuration diagram showing an example of a hydrogen gas generator according to the present invention.

【図3】本発明における水素貯蔵装置の一例を示す概略
構成図
FIG. 3 is a schematic configuration diagram showing an example of a hydrogen storage device according to the present invention.

【図4】本発明における水素貯蔵装置の冷凍リサイクル
経路の例を示す概略構成図
FIG. 4 is a schematic configuration diagram showing an example of a refrigerating / recycling path of a hydrogen storage device according to the present invention.

【図5】本発明における水素貯蔵装置の冷凍リサイクル
経路の他の例を示す概略構成図
FIG. 5 is a schematic configuration diagram showing another example of the refrigerating / recycling path of the hydrogen storage device according to the present invention.

【符号の説明】[Explanation of symbols]

1 昇圧装置 2 熱交換器 4 蒸発器 10 水素ガス生成装置 19 PSA部 20 水素貯蔵装置 21a 保冷槽 21b 保冷槽 22a 水素貯蔵部 22b 水素貯蔵部 1 Booster 2 heat exchanger 4 evaporator 10 Hydrogen gas generator 19 PSA section 20 Hydrogen storage device 21a Cold storage tank 21b Cold storage tank 22a Hydrogen storage unit 22b Hydrogen storage unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 液化天然ガスを昇圧する工程と、昇圧し
た液化天然ガスを熱交換器に導入して熱交換により自己
を加温する工程と、加温した液化天然ガスを気化させる
工程と、気化した天然ガスの少なくとも一部を反応原料
として水素ガス生成装置に供給して水素ガスを生成させ
る工程と、生成した水素ガスを前記熱交換器に導入して
前記液化天然ガスとの熱交換により自己を−50℃以下
に予冷する工程と、予冷した水素ガスを水素貯蔵装置に
供給して低温下で貯蔵する工程とを含む水素ガスの製造
方法。
1. A step of increasing the pressure of liquefied natural gas, a step of introducing the increased pressure of liquefied natural gas into a heat exchanger to heat itself by heat exchange, and a step of vaporizing the heated liquefied natural gas. By supplying at least a part of vaporized natural gas as a reaction raw material to a hydrogen gas generator to generate hydrogen gas, and introducing the generated hydrogen gas into the heat exchanger to exchange heat with the liquefied natural gas. A method for producing hydrogen gas, comprising: a step of precooling itself to −50 ° C. or lower; and a step of supplying precooled hydrogen gas to a hydrogen storage device and storing the hydrogen gas at a low temperature.
【請求項2】 前記生成した水素ガスを補助昇圧手段に
より昇圧してから前記熱交換器に導入する請求項1記載
の水素ガスの製造方法。
2. The method for producing hydrogen gas according to claim 1, wherein the generated hydrogen gas is boosted by an auxiliary booster before being introduced into the heat exchanger.
【請求項3】 液化天然ガスを昇圧させる昇圧装置と、
天然ガスを反応原料として水素ガスを生成させる水素ガ
ス生成装置と、水素ガスを低温下で貯蔵する水素貯蔵装
置と、前記昇圧された液化天然ガスおよび前記生成した
水素ガスを導入して両者を熱交換させ、予冷された水素
ガスを前記水素貯蔵装置に供給する熱交換器と、その熱
交換器で加温・気化された液化天然ガスの少なくとも一
部を前記水素ガス生成装置に供給する手段とを備える水
素ガスの製造設備。
3. A pressure increasing device for increasing the pressure of liquefied natural gas,
A hydrogen gas generator for generating hydrogen gas using natural gas as a reaction raw material, a hydrogen storage device for storing hydrogen gas at a low temperature, a pressurized liquefied natural gas and the generated hydrogen gas are introduced to heat them. A heat exchanger for supplying hydrogen gas that has been exchanged and precooled to the hydrogen storage device; and a means for supplying at least a part of the liquefied natural gas heated and vaporized by the heat exchanger to the hydrogen gas generation device. Hydrogen gas production facility equipped with.
【請求項4】 前記水素ガス生成装置で生成した水素ガ
スを昇圧してから前記熱交換器に導入する補助昇圧手段
を備える請求項3記載の水素ガスの製造設備。
4. The facility for producing hydrogen gas according to claim 3, further comprising auxiliary boosting means for boosting the hydrogen gas generated by the hydrogen gas generator and introducing the boosted hydrogen gas into the heat exchanger.
【請求項5】 前記水素貯蔵装置は、内設した水素貯蔵
部を冷却する液化冷媒を貯留する保冷槽と、その保冷槽
で気化した冷媒蒸発ガスを熱交換器で加温した後、圧縮
機で圧縮して再びその熱交換器に導入して冷却した後、
膨張により一部液化させ、気体分を再び前記熱交換器に
導入して寒冷を回収し、液化した液化冷媒を再び前記保
冷槽に供給するリサイクル経路とを備える請求項3又は
4に記載の水素ガスの製造設備。
5. The hydrogen storage device comprises a cold storage tank for storing a liquefied refrigerant for cooling an internal hydrogen storage unit, a refrigerant evaporative gas vaporized in the cold storage tank, heated by a heat exchanger, and then a compressor. After compressing with and introducing again into the heat exchanger to cool,
5. The hydrogen according to claim 3 or 4, further comprising a recycle path for partially liquefying by expansion, introducing a gas content into the heat exchanger again to recover refrigeration, and supplying the liquefied liquefied refrigerant to the cold storage tank again. Gas production equipment.
【請求項6】 前記水素貯蔵装置は、内設した水素貯蔵
部を冷却する液化冷媒を貯留する保冷槽と、その保冷槽
で気化した冷媒蒸発ガスを熱交換器で加温した後、圧縮
機で圧縮して再びその熱交換器に導入して冷却した後、
膨張により一部液化させ、気体分を再び前記熱交換器に
導入して寒冷源とし、液化した液化冷媒を再び前記保冷
槽に供給するリサイクル経路とを備えると共に、そのリ
サイクル経路の熱交換器には、別の寒冷源として液化天
然ガスを導入する経路を備える請求項3又は4に記載の
水素ガスの製造設備。
6. The hydrogen storage device comprises a cold storage tank for storing a liquefied refrigerant for cooling an internal hydrogen storage portion, and a refrigerant evaporative gas vaporized in the cold storage tank, heated by a heat exchanger, and then a compressor. After compressing with and introducing again into the heat exchanger to cool,
Partly liquefied by expansion, a gas component is again introduced into the heat exchanger as a cold source, and a liquefied liquefied refrigerant is provided again with a recycle path for supplying to the cold storage tank, and a heat exchanger for the recycle path is provided. The hydrogen gas production facility according to claim 3 or 4, further comprising a path for introducing liquefied natural gas as another cold source.
JP2001181443A 2001-06-15 2001-06-15 Hydrogen gas production method and hydrogen gas production facility Expired - Fee Related JP4619575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001181443A JP4619575B2 (en) 2001-06-15 2001-06-15 Hydrogen gas production method and hydrogen gas production facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001181443A JP4619575B2 (en) 2001-06-15 2001-06-15 Hydrogen gas production method and hydrogen gas production facility

Publications (2)

Publication Number Publication Date
JP2003002601A true JP2003002601A (en) 2003-01-08
JP4619575B2 JP4619575B2 (en) 2011-01-26

Family

ID=19021713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001181443A Expired - Fee Related JP4619575B2 (en) 2001-06-15 2001-06-15 Hydrogen gas production method and hydrogen gas production facility

Country Status (1)

Country Link
JP (1) JP4619575B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242141A (en) * 2005-03-04 2006-09-14 Tokyo Gas Co Ltd Gas compressor and gas pressure raising method
WO2008035696A1 (en) * 2006-09-19 2008-03-27 Nippon Oil Corporation Hydrogen storage device and hydrogen supplying method
WO2008041076A2 (en) * 2006-10-03 2008-04-10 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Steam methane reforming with lng regasification terminal for lng vaporization
CN101353198A (en) * 2007-07-27 2009-01-28 横山功 Capping method for manufacuturing hydrogen reductive water or hydrogen reductive food and packaged cap thereof
JP2011127754A (en) * 2009-11-19 2011-06-30 Taiyo Nippon Sanso Corp Hydrogen gas cooling device
KR101169748B1 (en) 2009-10-29 2012-07-30 서울과학기술대학교 산학협력단 Hydrogen storage system of ultra low temperature and press type using lng cold energy
CN107055470A (en) * 2017-03-10 2017-08-18 同济大学 A kind of hot utilization system of liquid organic hydrogen storage carrier reactor
CN108799824A (en) * 2018-08-31 2018-11-13 中海石油气电集团有限责任公司 It is a kind of using LNG as the charging method of raw material scene hydrogen manufacturing and device
CN111322521A (en) * 2020-02-17 2020-06-23 中国石油工程建设有限公司 Hydrogen accumulation control-based hydrogen-containing natural gas pipeline safety guarantee system and method
CN111779976A (en) * 2019-04-04 2020-10-16 顾士平 Foam nanopore high pressure hydrogen storage
CN112543854A (en) * 2018-08-17 2021-03-23 爱沃特株式会社 Pressurized cryogenic fluid transfer module, pressurized cryogenic fluid transfer method, and device provided with pressurized cryogenic fluid transfer module
CN113217817A (en) * 2021-04-29 2021-08-06 中国人民解放军63796部队 Large-flow low-pressure online gas supply system
CN114704765A (en) * 2022-03-31 2022-07-05 浙江大学 Hydrogen liquefaction and boil-off gas recondensation system based on cryocooler

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101459962B1 (en) 2013-10-31 2014-11-07 현대중공업 주식회사 A Treatment System of Liquefied Gas
KR102336884B1 (en) * 2020-04-03 2021-12-09 주식회사 패리티 Hydrogen liquefaction and bog control system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140777A (en) * 1984-12-11 1986-06-27 株式会社神戸製鋼所 Manufacture of liquid h2 and gas natural gas
JPH05263998A (en) * 1992-03-23 1993-10-12 Osaka Gas Co Ltd Cold storage of cryogenic liquefied natural gas and effective utilizing method and device thereof
JPH05295374A (en) * 1992-04-16 1993-11-09 Mitsubishi Heavy Ind Ltd Reforming of liquefied natural gas
JP2000247604A (en) * 1999-02-25 2000-09-12 Toshiba Corp Hydrogen producing device and method thereof
JP2001076750A (en) * 1999-09-09 2001-03-23 Osaka Gas Co Ltd High temperature fuel cell facility
JP2002274811A (en) * 2001-03-16 2002-09-25 Air Water Inc Hydrogen preparation process and device used for the same
JP2003118548A (en) * 2001-06-15 2003-04-23 Chart Inc Station and system for supplying fuel for fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140777A (en) * 1984-12-11 1986-06-27 株式会社神戸製鋼所 Manufacture of liquid h2 and gas natural gas
JPH05263998A (en) * 1992-03-23 1993-10-12 Osaka Gas Co Ltd Cold storage of cryogenic liquefied natural gas and effective utilizing method and device thereof
JPH05295374A (en) * 1992-04-16 1993-11-09 Mitsubishi Heavy Ind Ltd Reforming of liquefied natural gas
JP2000247604A (en) * 1999-02-25 2000-09-12 Toshiba Corp Hydrogen producing device and method thereof
JP2001076750A (en) * 1999-09-09 2001-03-23 Osaka Gas Co Ltd High temperature fuel cell facility
JP2002274811A (en) * 2001-03-16 2002-09-25 Air Water Inc Hydrogen preparation process and device used for the same
JP2003118548A (en) * 2001-06-15 2003-04-23 Chart Inc Station and system for supplying fuel for fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010051144, 森塚秀人ほか, "CO2回収のための水素分離型タービン発電システムの提案−第1報燃焼器設置方式−", 日本ガスタービン学会誌, 199907, Vol.27 No.4, Page.240−244, JP *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242141A (en) * 2005-03-04 2006-09-14 Tokyo Gas Co Ltd Gas compressor and gas pressure raising method
JP4675648B2 (en) * 2005-03-04 2011-04-27 東京瓦斯株式会社 Gas compressor and gas pressure increasing method
WO2008035696A1 (en) * 2006-09-19 2008-03-27 Nippon Oil Corporation Hydrogen storage device and hydrogen supplying method
JP2008075697A (en) * 2006-09-19 2008-04-03 Nippon Oil Corp Hydrogen storing apparatus, and supplying hydrogen method
WO2008041076A2 (en) * 2006-10-03 2008-04-10 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Steam methane reforming with lng regasification terminal for lng vaporization
WO2008041076A3 (en) * 2006-10-03 2009-07-02 Air Liquide Steam methane reforming with lng regasification terminal for lng vaporization
US7849691B2 (en) 2006-10-03 2010-12-14 Air Liquide Process & Construction, Inc. Steam methane reforming with LNG regasification terminal for LNG vaporization
CN101353198A (en) * 2007-07-27 2009-01-28 横山功 Capping method for manufacuturing hydrogen reductive water or hydrogen reductive food and packaged cap thereof
JP2009029466A (en) * 2007-07-27 2009-02-12 Isao Yokoyama Cap and capping method for obtaining hydrogen reduction water or hydrogen reduction food product
KR101169748B1 (en) 2009-10-29 2012-07-30 서울과학기술대학교 산학협력단 Hydrogen storage system of ultra low temperature and press type using lng cold energy
JP2011127754A (en) * 2009-11-19 2011-06-30 Taiyo Nippon Sanso Corp Hydrogen gas cooling device
CN107055470A (en) * 2017-03-10 2017-08-18 同济大学 A kind of hot utilization system of liquid organic hydrogen storage carrier reactor
CN112543854A (en) * 2018-08-17 2021-03-23 爱沃特株式会社 Pressurized cryogenic fluid transfer module, pressurized cryogenic fluid transfer method, and device provided with pressurized cryogenic fluid transfer module
CN112543854B (en) * 2018-08-17 2023-01-03 爱沃特株式会社 Pressurized delivery module for cryogenic fluid, pressurized delivery method for cryogenic fluid, and device provided with pressurized delivery module for cryogenic fluid
CN108799824A (en) * 2018-08-31 2018-11-13 中海石油气电集团有限责任公司 It is a kind of using LNG as the charging method of raw material scene hydrogen manufacturing and device
CN111779976A (en) * 2019-04-04 2020-10-16 顾士平 Foam nanopore high pressure hydrogen storage
CN111322521A (en) * 2020-02-17 2020-06-23 中国石油工程建设有限公司 Hydrogen accumulation control-based hydrogen-containing natural gas pipeline safety guarantee system and method
CN111322521B (en) * 2020-02-17 2021-07-20 中国石油集团工程股份有限公司 Hydrogen accumulation control-based hydrogen-containing natural gas pipeline safety guarantee system and method
CN113217817A (en) * 2021-04-29 2021-08-06 中国人民解放军63796部队 Large-flow low-pressure online gas supply system
CN114704765A (en) * 2022-03-31 2022-07-05 浙江大学 Hydrogen liquefaction and boil-off gas recondensation system based on cryocooler

Also Published As

Publication number Publication date
JP4619575B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP3647028B2 (en) Liquid hydrogen production method and liquid hydrogen production equipment
JP3670229B2 (en) Method and apparatus for producing hydrogen with liquefied CO2 recovery
US7559213B2 (en) Process and apparatus for liquefying hydrogen
JP4619575B2 (en) Hydrogen gas production method and hydrogen gas production facility
JP5415109B2 (en) Hybrid hydrogen supply station
US20100083695A1 (en) Process for liquefying hydrogen
JP7412073B2 (en) Liquid hydrogen production equipment and hydrogen gas production equipment
JP6951613B1 (en) Carbon dioxide recovery hydrogen production system utilizing LNG
US11614280B2 (en) Reforming system connected with a raw material gas vaporization system
EP2889943B1 (en) Fuel cell system using natural gas
KR20220053060A (en) Hydrogen-floating production and treatment system
JP4979138B2 (en) Dry ice manufacturing method and apparatus
JP2004085099A (en) Recovery system for exhaust co2
JP4429552B2 (en) Liquid hydrogen production system
JP2002193603A (en) Method for manufacturing hydrogen and its system
JP3923766B2 (en) Hydrogen production equipment
JPH10273301A (en) Hydrogen manufacturing equipment
JP2006224885A (en) Hydrogen manufacturing equipment and manufacturing method
JP4091755B2 (en) Hydrogen purification method and system at liquefied natural gas receiving terminal
JP6553273B1 (en) Hydrogen production equipment
JP2000340242A (en) Heat pump type hydrogen purification device using waste heat of fuel cell
JPH05287284A (en) Process for reforming liquefied natural gas
TWI605015B (en) Purification of hydrogen gas filtration device
KR20230037710A (en) Hydrogen-floating production and treatment system
KR20240006365A (en) Carbon dioxide free ammonia decomposition plant

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees