JP4348781B2 - Hydrogen gas storage method and storage device - Google Patents

Hydrogen gas storage method and storage device Download PDF

Info

Publication number
JP4348781B2
JP4348781B2 JP18887899A JP18887899A JP4348781B2 JP 4348781 B2 JP4348781 B2 JP 4348781B2 JP 18887899 A JP18887899 A JP 18887899A JP 18887899 A JP18887899 A JP 18887899A JP 4348781 B2 JP4348781 B2 JP 4348781B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen gas
adsorbent
pressure vessel
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18887899A
Other languages
Japanese (ja)
Other versions
JP2001012693A5 (en
JP2001012693A (en
Inventor
光悦 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP18887899A priority Critical patent/JP4348781B2/en
Publication of JP2001012693A publication Critical patent/JP2001012693A/en
Publication of JP2001012693A5 publication Critical patent/JP2001012693A5/en
Application granted granted Critical
Publication of JP4348781B2 publication Critical patent/JP4348781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素の貯蔵方法に関する。
【0002】
【従来の技術】
従来より、水素の貯蔵方法として、高圧まで加圧する貯蔵方法、極低温まで冷却し液化する貯蔵方法、水素吸蔵合金に貯蔵する方法があった。
このような貯蔵技術によれば、常温・常圧での貯蔵に比べて水素ガス貯蔵量を増加させることができる。
【0003】
しかし上記従来の水素ガス貯蔵方法にはそれぞれ下記の点で問題があった。
すなわち、水素ガスを加圧して貯蔵する方法では、水素ガスを数100気圧まで加圧するので、そのためのエネルギーコストが高い上、十分な貯蔵密度を得ることができない。
また、水素ガスを極低温まで冷却し、液化して貯蔵する方法では、極低温をつくり出すためのエネルギーコストが高い。
【0004】
更に、水素吸蔵合金は単位体積当たりの吸蔵量は多いものの、合金重量が大きいため単位重量当たりの吸蔵量が少ない。
【0005】
【発明が解決しようとする課題】
本発明は、上記従来の貯蔵方法に対して、貯蔵圧力を低くかつ貯蔵温度を高くできる水素ガス貯蔵方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明によれば、吸着材の存在下で水素ガスを冷却することにより、吸着材の存在しない状態での水素ガスの液化条件よりも高温かつ低圧の条件で液化水素ガスを生じさせることを特徴とする水素ガス貯蔵方法が提供される。
【0007】
【発明の実施の形態】
本発明者は、水素ガスのより効率的な貯蔵方法を研究した結果、吸着材の存在下で水素ガスを冷却していくと、吸着材の存在しない状態での水素ガスの液化条件よりも高温かつ低圧で水素ガスが液化することを見出した。
吸着材の共存により水素の液化温度が高温側へシフトする原因は未だ明確には解明されていないが、吸着材の細孔内では水素が液化し易くなっており、そのため、吸着材の細孔内で通常の液化温度よりも高い温度で液化した水素が細孔から外へ溢れ出て、通常の水素の液化条件よりも高い温度であるにもかかわらず吸着材の外部で液化が起きるものと考えられる。
【0008】
なお、水素にはスピン角運動量の間の関係から、オルソ水素とパラ水素という2種類の状態が生ずる。パラ水素の方が回転のエネルギーが小さいので、低温ではすべての分子がパラ水素に変換する。パラ水素への変換は起こりにくいので、酸化鉄や酸化クロムなどの磁性体を触媒として用いる。これにより液化を促進することができる。
【0009】
また、水素ガス分子を原子状に解離し得る金属または化合物を上記吸着材に担持または接触させることにより、更に高温かつ低圧での貯蔵が可能になる。上記金属または化合物としては、Pt、Pd等の金属あるいはこれらの化合物を用いることができる。
【0010】
【実施例】
〔実施例1〕
図1に、本発明により水素ガスを液化するための装置を示す。図示した装置は、ガラス製の圧力容器10の内部に粒状の吸着材12が収容されており、圧力容器10の外側には空気層15を介して樹脂製カバー14が設けてあり、熱伝達を均一化するようになっている。カバー14の外側は更に冷媒容器16で覆われており、カバー14と冷媒容器16との間の空間には液体ヘリウム等の冷媒18が充填されている。熱電対20によって吸着材の温度が測定され、圧力計22によって圧力容器10内部の圧力が測定される。バルブ24の開閉により水素ガスの導入を制御し、配管26を介して排気および水素供給を行う。
【0011】
圧力容器10の中に、吸着材12として活性炭(関西熱学製「マックスソーブ」、比表面積3000cm2 /g)を0.5g装入し、図示しない真空ポンプにより圧力容器10内を真空引きしてから、水素ガスを導入して1気圧に維持し、冷媒容器16に冷媒を供給して冷却していき、水素ガスが液化したときの温度を液化温度として測定した。液化したことの検知は、目視によって行った。比較として、活性炭を装入しない以外は同様の操作を行った。
【0012】
その結果、活性炭を装入しない場合は20Kで液化したが、本発明により活性炭を装入した場合には25Kで液化した。
なお、パラ水素への変換を促進するために活性炭に触媒として酸化鉄や酸化クロムなどの磁性体を担持または接触させると、更に安定して液化することができた。
【0013】
なお、本実施例では吸着材として活性炭を用いたが、FSM、ゼオライト、金属錯体を用いることもできる。
次に、圧力容器10内の圧力を1気圧で一定に保ち、活性炭の温度を25Kにしたときの水素吸着量を測定した。吸着量の測定は、圧力容器10の内部圧力を、その時点での温度における平衡圧力とし、水上置換により水素ガスを回収して行った。
【0014】
その結果、液体水素吸着量として820が得られた。これは、吸着材が共存しない通常の状態での20Kにおける液体水素密度の800よりも大きい値である。
吸着量の測定においては、用いた活性炭の嵩密度は0.3g/ccであり、活性炭の使用量が0.5gであったので、1.7cc中に水素が何cc入るかによって計算した。なお、このときには、圧力容器10の内部および配管中の水素ガス量は差し引いて計算した。
【0015】
〔実施例2〕
活性炭に、水素分子を原子状に解離し得る物質としてPt、Pd、またはこれらの合金を担持させた以外は実施例1と同様の手順で水素の吸着を行った。
担持量は各々3wt%(合金の場合はPt量あるいはPd量に換算)であった。
その結果、液化温度は30Kに上昇した。
【0016】
また、水素吸着量は850に増大した。
このように、液化温度が上昇し、水素吸着量が増大した原因は現在のところ明確ではないが、水素分子が原子状になるためオルソ/パラの変換が不要となること、原子状水素として存在するため分子状水素より高密度になるため、と推察される。
【0017】
なお、本実施例の場合も、水素分子の全てが原子状水素に解離せず水素分子としても存在する分があるので、実施例1と同様に活性炭に酸化鉄や酸化クロム等の磁性体を担持または接触させ、パラ水素への変換を促進すると、更に安定して液化した。
【0018】
【発明の効果】
以上説明したように、本発明によれば、従来の貯蔵方法よりも貯蔵圧力を低くかつ貯蔵温度を高くできる水素ガス貯蔵方法が提供される。
【図面の簡単な説明】
【図1】図1は、本発明により水素ガスを液化するための装置を示す断面図である。
【符号の説明】
10…ガラス製の圧力容器
12…粒状の吸着材
14…樹脂製カバー
15…空気層
16…冷媒容器
18…冷媒
20…熱電対
22…圧力計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for storing hydrogen.
[0002]
[Prior art]
Conventionally, as a hydrogen storage method, there are a storage method of pressurizing to a high pressure, a storage method of cooling to a very low temperature and liquefying, and a method of storing in a hydrogen storage alloy.
According to such a storage technique, the amount of hydrogen gas stored can be increased as compared with storage at normal temperature and normal pressure.
[0003]
However, the above conventional hydrogen gas storage methods have the following problems.
That is, in the method of storing hydrogen gas under pressure, the hydrogen gas is pressurized to several hundred atmospheres, so that the energy cost is high and a sufficient storage density cannot be obtained.
In addition, in the method of cooling hydrogen gas to a very low temperature and liquefying and storing it, the energy cost for producing the cryogenic temperature is high.
[0004]
Further, although the hydrogen storage alloy has a large storage amount per unit volume, the storage amount per unit weight is small because the alloy weight is large.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a hydrogen gas storage method capable of lowering the storage pressure and increasing the storage temperature with respect to the conventional storage method.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, by cooling the hydrogen gas in the presence of the adsorbent, the temperature is higher than the liquefaction condition of the hydrogen gas in the absence of the adsorbent. A hydrogen gas storage method characterized by generating liquefied hydrogen gas is provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
As a result of studying a more efficient storage method of hydrogen gas, the present inventor has found that when hydrogen gas is cooled in the presence of an adsorbent, the temperature is higher than the liquefaction condition of hydrogen gas in the absence of the adsorbent. It was also found that hydrogen gas liquefies at low pressure.
The reason why the liquefaction temperature of hydrogen shifts to the high temperature side due to the coexistence of the adsorbent has not yet been clearly clarified, but hydrogen is liable to liquefy in the pores of the adsorbent. In this case, hydrogen liquefied at a temperature higher than the normal liquefaction temperature overflows from the pores, and liquefaction occurs outside the adsorbent despite the temperature being higher than the normal hydrogen liquefaction conditions. Conceivable.
[0008]
Hydrogen has two types of states, ortho hydrogen and para hydrogen, due to the relationship between spin angular momentum. Since parahydrogen has less rotational energy, all molecules convert to parahydrogen at low temperatures. Since conversion to parahydrogen hardly occurs, a magnetic substance such as iron oxide or chromium oxide is used as a catalyst. Thereby, liquefaction can be promoted.
[0009]
Further, by supporting or contacting a metal or a compound capable of dissociating hydrogen gas molecules in an atomic form on the adsorbent, storage at a higher temperature and a lower pressure becomes possible. As said metal or compound, metals, such as Pt and Pd, or these compounds can be used.
[0010]
【Example】
[Example 1]
FIG. 1 shows an apparatus for liquefying hydrogen gas according to the present invention. In the illustrated apparatus, a granular adsorbent 12 is accommodated inside a glass pressure vessel 10, and a resin cover 14 is provided outside the pressure vessel 10 via an air layer 15 to transfer heat. It is designed to be uniform. The outer side of the cover 14 is further covered with a refrigerant container 16, and a space between the cover 14 and the refrigerant container 16 is filled with a refrigerant 18 such as liquid helium. The temperature of the adsorbent is measured by the thermocouple 20, and the pressure inside the pressure vessel 10 is measured by the pressure gauge 22. The introduction of hydrogen gas is controlled by opening and closing the valve 24, and exhaust and hydrogen supply are performed via the pipe 26.
[0011]
0.5 g of activated carbon (“MAXSORB” manufactured by Kansai Thermal Engineering Co., Ltd., specific surface area of 3000 cm 2 / g) is charged as the adsorbent 12 in the pressure vessel 10, and the inside of the pressure vessel 10 is evacuated by a vacuum pump (not shown). Then, hydrogen gas was introduced and maintained at 1 atm, and the refrigerant was supplied to the refrigerant container 16 for cooling. The temperature at which the hydrogen gas was liquefied was measured as the liquefaction temperature. The liquefaction was detected visually. For comparison, the same operation was performed except that the activated carbon was not charged.
[0012]
As a result, when activated carbon was not charged, it was liquefied at 20K, but when activated carbon was charged according to the present invention, it was liquefied at 25K.
In order to promote the conversion to parahydrogen, when the activated carbon was supported or contacted with a magnetic material such as iron oxide or chromium oxide as a catalyst, it could be liquefied more stably.
[0013]
In this embodiment, activated carbon is used as the adsorbent, but FSM, zeolite, and metal complex can also be used.
Next, the hydrogen adsorption amount when the pressure in the pressure vessel 10 was kept constant at 1 atm and the temperature of the activated carbon was 25K was measured. The amount of adsorption was measured by using the internal pressure of the pressure vessel 10 as the equilibrium pressure at the temperature at that time, and recovering hydrogen gas by water replacement.
[0014]
As a result, 820 was obtained as the liquid hydrogen adsorption amount. This is a value larger than 800 of the liquid hydrogen density at 20K in a normal state where no adsorbent is present.
In the measurement of the amount of adsorption, the bulk density of the activated carbon used was 0.3 g / cc, and the amount of activated carbon used was 0.5 g. Therefore, the calculation was based on how many cc of hydrogen was contained in 1.7 cc. At this time, the amount of hydrogen gas in the pressure vessel 10 and in the piping was subtracted for calculation.
[0015]
[Example 2]
Hydrogen was adsorbed in the same procedure as in Example 1 except that Pt, Pd, or an alloy thereof was supported on activated carbon as a substance capable of dissociating hydrogen molecules into atoms.
The supported amount was 3 wt% (in the case of an alloy, converted to Pt amount or Pd amount).
As a result, the liquefaction temperature increased to 30K.
[0016]
In addition, the hydrogen adsorption amount increased to 850.
The reason why the liquefaction temperature has increased and the amount of hydrogen adsorption has increased is not clear at present. However, since the hydrogen molecules become atomic, there is no need for ortho / para conversion, and it exists as atomic hydrogen. Therefore, it is assumed that the density is higher than that of molecular hydrogen.
[0017]
In the case of this example as well, since all of the hydrogen molecules do not dissociate into atomic hydrogen and exist as hydrogen molecules, a magnetic material such as iron oxide or chromium oxide is added to the activated carbon as in Example 1. When supported or brought into contact and promoted conversion to para-hydrogen, liquefaction was further stabilized.
[0018]
【The invention's effect】
As described above, according to the present invention, there is provided a hydrogen gas storage method capable of lowering the storage pressure and increasing the storage temperature as compared with the conventional storage method.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an apparatus for liquefying hydrogen gas according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Glass pressure vessel 12 ... Granular adsorption material 14 ... Resin cover 15 ... Air layer 16 ... Refrigerant container 18 ... Refrigerant 20 ... Thermocouple 22 ... Pressure gauge

Claims (6)

活性炭、FSM、ゼオライト、金属錯体から選ばれる吸着材の存在下で水素ガスを冷却し液化状態で貯蔵することを特徴とする水素ガス貯蔵方法。A hydrogen gas storage method , wherein hydrogen gas is cooled and stored in a liquefied state in the presence of an adsorbent selected from activated carbon, FSM, zeolite, and metal complex . 水素ガス分子を原子状に解離し得る金属または化合物を上記吸着材に担持または接触させることを特徴とする請求項1記載の方法。  The method according to claim 1, wherein a metal or a compound capable of dissociating hydrogen gas molecules in an atomic form is supported on or brought into contact with the adsorbent. 水素ガス分子をオルソ水素からパラ水素へ変換する触媒を上記吸着材に担持または接触させることを特徴とする請求項1記載の方法。  The method according to claim 1, wherein a catalyst for converting hydrogen gas molecules from ortho hydrogen to para hydrogen is supported on or brought into contact with the adsorbent. 活性炭、FSM、ゼオライト、金属錯体から選ばれる吸着材を収容し、水素ガスを液化状態で貯蔵する圧力容器、
空気層を介して上記圧力容器の外側に設けたカバー、
空間を介して上記カバーを覆う冷媒容器、
記空間に充填された、水素よりも沸点の低い冷媒
記圧力容器から外部へ延び、気体状態の水素を上記圧力容器から外部へ排出する排気用配管、および
外部から気体状態の水素を上記圧力容器へ供給する供給用配管、
を備えたことを特徴とする水素ガス貯蔵装置。
A pressure vessel that contains an adsorbent selected from activated carbon, FSM, zeolite, and metal complex , and stores hydrogen gas in a liquefied state ;
A cover provided outside the pressure vessel via an air layer,
A refrigerant container covering the cover via a space;
Filled up Symbol space, the refrigerant having a boiling point lower than hydrogen,
Extending from the upper Symbol pressure vessel to the outside, the hydrogen of the gaseous piping exhaust gas discharged to the outside from the pressure vessel, and
A supply pipe for supplying gaseous hydrogen from the outside to the pressure vessel ;
A hydrogen gas storage device comprising:
水素ガス分子を原子状に解離し得る金属または化合物を上記吸着材に担持または接触させたことを特徴とする請求項4記載の装置。  The apparatus according to claim 4, wherein a metal or a compound capable of dissociating hydrogen gas molecules in an atomic form is supported or brought into contact with the adsorbent. 水素ガス分子をオルソ水素からパラ水素へ変換する触媒を上記吸着材に担持または接触させたことを特徴とする請求項4記載の装置。  The apparatus according to claim 4, wherein a catalyst for converting hydrogen gas molecules from ortho hydrogen to para hydrogen is supported on or brought into contact with the adsorbent.
JP18887899A 1999-07-02 1999-07-02 Hydrogen gas storage method and storage device Expired - Fee Related JP4348781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18887899A JP4348781B2 (en) 1999-07-02 1999-07-02 Hydrogen gas storage method and storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18887899A JP4348781B2 (en) 1999-07-02 1999-07-02 Hydrogen gas storage method and storage device

Publications (3)

Publication Number Publication Date
JP2001012693A JP2001012693A (en) 2001-01-16
JP2001012693A5 JP2001012693A5 (en) 2005-12-02
JP4348781B2 true JP4348781B2 (en) 2009-10-21

Family

ID=16231472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18887899A Expired - Fee Related JP4348781B2 (en) 1999-07-02 1999-07-02 Hydrogen gas storage method and storage device

Country Status (1)

Country Link
JP (1) JP4348781B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929654B2 (en) 2005-09-02 2012-05-09 トヨタ自動車株式会社 Hydrogen storage device
JP2007099592A (en) * 2005-10-07 2007-04-19 Iwatani Industrial Gases Corp Method and apparatus for generating ortho and para hydrogen, and device for generating standard ortho and para hydrogen used for calibration

Also Published As

Publication number Publication date
JP2001012693A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
US7036324B2 (en) Hydrogen storage and supply system
US4716736A (en) Metal assisted carbon cold storage of hydrogen
US7310954B2 (en) Cryogenic system
JP4612920B2 (en) Method for manufacturing fluid storage and supply container and method for manufacturing fluid storage and supply device
KR101426969B1 (en) Methods for hydrogen storage and refrigeration
JPS6362254B2 (en)
JP5019829B2 (en) Hydrogen storage device and hydrogen supply method
US20100115970A1 (en) Thermal management apparatus for gas storage
JPH09210295A (en) Gas storing method
JP4348781B2 (en) Hydrogen gas storage method and storage device
EP0875714A1 (en) Method and apparatus for treating bog in a low temperature liquid storage tank
JP2007218317A (en) Cryogenic liquid/gas hydrogen storage tank
JP3710594B2 (en) Automotive fuel gas tank and automotive fuel gas station
강상우 et al. Performance of a 5 L liquid hydrogen storage vessel
US6516619B2 (en) Method of storing a gas
US20190077657A1 (en) Gas-Loading and Packaging Method and Apparatus
JP2001012693A5 (en) Hydrogen gas storage method and storage device
JPH08283009A (en) Helium 3 cryostat
Swanger et al. Preliminary experimental studies into the storage capacity of cryogenic hydrogen in aerogel blanket materials
Bowman Jr et al. Characterizations of prototype sorption cryocoolers for the periodic formation of liquid and solid hydrogen
JP3546704B2 (en) Gas storage method
Longsworth et al. Continuous flow cryogen sublimation cooler
JP2000088191A (en) Method of and device for recovering liquefied gas
CN117654485A (en) Dehydrogenation catalyst for organic liquid storage and transportation hydrogen and preparation method thereof
Kockelmann et al. A charcoal-pumped 3He cryostat for neutron diffraction

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees