JP3546704B2 - Gas storage method - Google Patents

Gas storage method Download PDF

Info

Publication number
JP3546704B2
JP3546704B2 JP18871198A JP18871198A JP3546704B2 JP 3546704 B2 JP3546704 B2 JP 3546704B2 JP 18871198 A JP18871198 A JP 18871198A JP 18871198 A JP18871198 A JP 18871198A JP 3546704 B2 JP3546704 B2 JP 3546704B2
Authority
JP
Japan
Prior art keywords
temperature
gas
storage
liquefied
capsule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18871198A
Other languages
Japanese (ja)
Other versions
JP2000018497A (en
Inventor
俊宏 岡▲崎▼
直樹 中村
拓也 近藤
雅彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP18871198A priority Critical patent/JP3546704B2/en
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to KR10-2000-7014965A priority patent/KR100493648B1/en
Priority to EP99926862A priority patent/EP1099077B1/en
Priority to BR9911824-6A priority patent/BR9911824A/en
Priority to EP03001655A priority patent/EP1306605B1/en
Priority to RU2001103053/06A priority patent/RU2228485C2/en
Priority to PCT/JP1999/003530 priority patent/WO2000001980A2/en
Priority to US09/720,807 priority patent/US6481217B1/en
Priority to DE69922710T priority patent/DE69922710T2/en
Priority to KR10-2003-7010908A priority patent/KR100426737B1/en
Priority to DE69911790T priority patent/DE69911790T2/en
Priority to CN99809118A priority patent/CN1125938C/en
Priority to ARP990103239A priority patent/AR013288A1/en
Publication of JP2000018497A publication Critical patent/JP2000018497A/en
Priority to US10/125,413 priority patent/US7060653B2/en
Priority to CNB031086039A priority patent/CN1330412C/en
Application granted granted Critical
Publication of JP3546704B2 publication Critical patent/JP3546704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、天然ガス等のガスを吸着により貯蔵する方法に関する。
【0002】
【従来の技術】
天然ガス等のガスを貯蔵する際には、常温常圧下では密度の低いガスをいかにして高密度で効率良く貯蔵するかが重要なポイントになる。天然ガス成分のうちでも、ブタン等は比較的低圧で加圧して常温で液化できるが(CNG:compressed natural gas)、メタン等は常温での加圧液化が困難である。
【0003】
従来、このように常温付近での加圧液化が困難なガスの貯蔵方法として、LNG(liquified natural gas) 等のように極低温に維持して液化する方法が用いられている。このガス液化方式では、常温常圧の600倍の体積を貯蔵できる。しかし、例えばLNGの場合、−163℃以下というように極低温に維持する必要があり、設備費および運転費共に高くならざるを得ない。
【0004】
これに対して、特別な加圧も極低温も用いずに、吸着によりガスを貯蔵する方法(ANG:adsorbed natural gas)が検討されている。
特開平9−210295号公報には、水等のホスト化合物の存在下で、常温付近で活性炭等の多孔質材料にメタン、エタン等のガスを吸着させる貯蔵方法が提案されており、多孔質材料の吸着能力および擬高圧効果とホスト化合物による包接化合物の形成との相乗効果により大量のガス貯蔵が可能になる旨の説明がなされている。
【0005】
しかし上記提案された方法でも、LNGのような極低温化による貯蔵方法に代替できる貯蔵密度を実現するには到っていない。
【0006】
【発明が解決しようとする課題】
本発明は、極低温化を用いず、吸着により極めて高い貯蔵密度を実現できるガス貯蔵方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的は、本発明によれば、容器内で、貯蔵対象ガスおよび吸着材を該貯蔵対象ガスの液化温度より低温に維持することにより、該貯蔵対象ガスを液化させ且つ該吸着材に吸着させる工程、
上記低温に維持されている上記容器内に、上記貯蔵対象ガスの上記液化温度より高い凍結温度を有するガス状または液状の媒体を導入して該媒体を凍結させることにより、上記液化され上記吸着材に吸着されている上記貯蔵対象ガスを、上記凍結した上記媒体で封じ込める工程、および
上記容器内を、上記液化温度より高く上記凍結温度より低い温度に維持する工程、
を含むガス貯蔵方法によって達成される。
【0008】
【発明の実施の形態】
本発明は、一旦は極低温化により液化するが、液化したガスを凍結媒体で封じ込めることにより、上記液化に必要な極低温よりも高い温度で凍結貯蔵することができる。
凍結媒体としては、ガス状または液状であって、貯蔵対象ガスの液化温度より高い凍結温度を有し、貯蔵温度において貯蔵対象ガス、吸着材、容器等と反応しないものを用いる。
【0009】
室温に近い凍結温度(融点、昇華点)を有する媒体を用いることにより、極低温での高密度を室温付近で維持した貯蔵を実現できる。
そのような媒体のうち、例えば凍結温度(一般には「融点」)が−20℃〜+20℃の範囲にあるものとしては、水(Tm=0℃)、ドデカン(−9.6℃)、フタル酸ジメチル(0℃)、フタル酸ジエチル(−3℃)、シクロヘキサン(6.5℃)、炭酸ジメチル(0.5℃)等が代表的である。
【0010】
吸着材としては従来のガス吸着材を用いることができ、典型的には活性炭、ゼオライト、シリカゲル等の無機あるいは有機吸着材のいずれを用いてもよい。
貯蔵対象ガスは、従来のLNG程度あるいは液体窒素程度の極低温で液化および吸着できるガスであればよく、水素、ヘリウム、窒素、炭化水素等のガスに適用できる。炭化水素ガスの典型例としては、メタン、エタン、プロパン等が挙げられる。
【0011】
【実施例】
〔実施例1〕
図1に示した構成の装置を用いて、下記手順で本発明によるメタンガスの貯蔵を行った。
まず、気密構造のサンプルカプセル(容量10cc)に活性炭粉末(粒径約3〜5mm)を5g装入し、ロータリーポンプによりカプセル内を1×10−6MPaに減圧した。
【0012】
その後、メタンボンベからメタンをカプセル内に導入してカプセル内の圧力を0.5MPaにした。
この状態のカプセルを、デュワービン内に満たした液体窒素中に浸漬して、液体窒素温度(−196℃)に20分間保持した。これにより、カプセル内のメタンガスは全て液化し且つ活性炭に吸着される。
【0013】
引き続きカプセルを液体窒素中に浸漬した状態に維持し、水溜めから発生させた水蒸気(温度20〜60℃)をこのカプセル中に導入した。これにより、液体窒素温度で水蒸気は直ちに凍結して氷となり、上記液化且つ吸着されたメタンガスはこの氷内に凍結され封じ込められる。
比較例として、メタンの液化および吸着までの工程は上記実施例1と同様の手順で行ったが、その後に水蒸気は導入しなかった。
【0014】
図2に、上記実施例1および比較例によるメタン貯蔵状態から、それぞれカプセル温度を室温まで自然昇温させたときの、メタンの脱離挙動を示す。図中、横軸の温度および縦軸の圧力は、図1の熱電対および圧力計でそれぞれ測定したカプセル内の温度および圧力である。
<吸着と液化の過程:実施例1、比較例共通(図2中●印)>
メタン導入後のカプセルを液体窒素中に浸漬すると、カプセル内の温度降下に伴い吸着が進行してカプセル内圧力が直線的に低下し、液化が始まると急激にカプセル内圧力が低下して実測圧力0MPaとなり、そのまま液体窒素温度−196℃に到る。
<脱離過程:実施例1と比較例との比較>
液体窒素温度に到った後に水蒸気を導入しなかった比較例(図2中○印)の場合は、カプセルを液体窒素から取り出し昇温すると、僅かに昇温して−180℃台になると既にメタンの脱離が開始し圧力が上昇し始める。
【0015】
これに対して、液体窒素温度到達後に本発明により水蒸気を導入して凍結封じ込めを行った実施例(図2中◇)の場合は、圧力値の上昇として検出される脱離は、−50℃まで昇温が進んでからであり、0℃直下でもメタンのかなりの部分が脱離せずに吸着状態で維持されていることが分かる。
〔実施例2〕
液体窒素温度到達後に、水蒸気の代わりに、水溜めから液体の水をカプセル内に導入した以外は実施例1と同様な手順により本発明によるガス貯蔵を行った。
【0016】
その結果、図2に示した実施例1と同様の脱離挙動が認められ、0℃近傍まで低圧が維持された。
【0017】
【発明の効果】
以上説明したように、本発明によれば、極低温化を用いず、吸着により極めて高い貯蔵密度を実現できるガス貯蔵方法が提供される。
本発明の方法によれば、貯蔵温度は極低温である必要がないので、−10〜20℃程度で運転される通常の冷凍機でも十分に貯蔵が可能となり、貯蔵用の設備費および運転費をコスト低減できる。
【0018】
また、貯蔵容器その他の設備についても、極低温用の特殊な材料で作製する必要がないので、設備材料費の面でも有利である。
【図面の簡単な説明】
【図1】図1は、本発明によるガス貯蔵方法を行うための装置の構成例を示す配置図である。
【図2】図2は、極低温で吸着および液化したメタンガスの昇温による脱離挙動を本発明例と比較例について比較して示すグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for storing a gas such as natural gas by adsorption.
[0002]
[Prior art]
When storing a gas such as natural gas, it is important to store a low-density gas at a high density and efficiently under normal temperature and normal pressure. Among natural gas components, butane and the like can be liquefied at normal temperature by pressurizing at a relatively low pressure (CNG: compressed natural gas), but methane and the like are difficult to liquefy under pressure at normal temperature.
[0003]
Conventionally, as a method of storing a gas that is difficult to liquefy under pressure at around normal temperature, a method of liquefying while maintaining the temperature at an extremely low temperature, such as LNG (liquid natural gas), has been used. In this gas liquefaction method, a volume 600 times the normal temperature and normal pressure can be stored. However, in the case of LNG, for example, it is necessary to maintain the temperature at an extremely low temperature of -163 ° C. or lower, and both the equipment cost and the operation cost must be high.
[0004]
On the other hand, a method (ANG: absorbed natural gas) of storing gas by adsorption without using any special pressurization or cryogenic temperature is being studied.
JP-A-9-210295 proposes a storage method in which a gas such as methane or ethane is adsorbed on a porous material such as activated carbon at about room temperature in the presence of a host compound such as water. It is described that a large amount of gas can be stored by the synergistic effect of the adsorption capacity and pseudo high pressure effect of the compound and the formation of an inclusion compound by the host compound.
[0005]
However, even the method proposed above has not yet achieved a storage density that can be substituted for a storage method using cryogenic temperature such as LNG.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a gas storage method capable of realizing an extremely high storage density by adsorption without using an extremely low temperature.
[0007]
[Means for Solving the Problems]
According to the present invention, according to the present invention, the storage target gas and the adsorbent are maintained at a temperature lower than the liquefaction temperature of the storage target gas in the container, so that the storage target gas is liquefied and adsorbed by the adsorbent. The process of
By introducing a gaseous or liquid medium having a freezing temperature higher than the liquefaction temperature of the storage target gas into the container maintained at the low temperature and freezing the medium, the liquefied and adsorbent material is liquefied. The storage target gas that is adsorbed to the, the step of containing the frozen medium, and the container, the step of maintaining a temperature higher than the liquefaction temperature and lower than the freezing temperature,
Is achieved by a gas storage method comprising:
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, once liquefied by cryogenic temperature, the liquefied gas can be frozen and stored at a temperature higher than the cryogenic temperature required for the liquefaction by enclosing the liquefied gas with a freezing medium.
As the freezing medium, one that is gaseous or liquid, has a freezing temperature higher than the liquefaction temperature of the storage target gas, and does not react with the storage target gas, the adsorbent, the container, or the like at the storage temperature is used.
[0009]
By using a medium having a freezing temperature (melting point, sublimation point) close to room temperature, it is possible to realize storage that maintains high density at extremely low temperatures near room temperature.
Among such media, for example, those having a freezing temperature (generally "melting point") in the range of −20 ° C. to + 20 ° C. include water (Tm = 0 ° C.), dodecane (−9.6 ° C.), and phthalic acid. Representative examples include dimethyl acid (0 ° C), diethyl phthalate (-3 ° C), cyclohexane (6.5 ° C), and dimethyl carbonate (0.5 ° C).
[0010]
As the adsorbent, a conventional gas adsorbent can be used. Typically, any of inorganic or organic adsorbents such as activated carbon, zeolite, and silica gel may be used.
The storage target gas may be any gas that can be liquefied and adsorbed at a very low temperature, such as conventional LNG or liquid nitrogen, and can be applied to gases such as hydrogen, helium, nitrogen, and hydrocarbons. Typical examples of the hydrocarbon gas include methane, ethane, propane and the like.
[0011]
【Example】
[Example 1]
Using the apparatus having the configuration shown in FIG. 1, methane gas according to the present invention was stored in the following procedure.
First, 5 g of activated carbon powder (particle size: about 3 to 5 mm) was charged into a sample capsule (capacity: 10 cc) having an airtight structure, and the pressure in the capsule was reduced to 1 × 10 −6 MPa by a rotary pump.
[0012]
Thereafter, methane was introduced into the capsule from a methane cylinder to adjust the pressure in the capsule to 0.5 MPa.
The capsule in this state was immersed in liquid nitrogen filled in a Dewar bin and kept at the liquid nitrogen temperature (-196 ° C) for 20 minutes. Thereby, all the methane gas in the capsule is liquefied and adsorbed on the activated carbon.
[0013]
Subsequently, the capsule was maintained in a state of being immersed in liquid nitrogen, and steam (temperature: 20 to 60 ° C.) generated from the water reservoir was introduced into the capsule. As a result, the water vapor immediately freezes at the liquid nitrogen temperature to become ice, and the liquefied and adsorbed methane gas is frozen and sealed in the ice.
As a comparative example, the steps up to liquefaction and adsorption of methane were performed in the same procedure as in Example 1, but thereafter no steam was introduced.
[0014]
FIG. 2 shows the desorption behavior of methane when the capsule temperature is naturally raised to room temperature from the methane storage state according to Example 1 and the comparative example. In the figure, the temperature on the horizontal axis and the pressure on the vertical axis are the temperature and pressure in the capsule, respectively, measured by the thermocouple and the pressure gauge in FIG.
<Adsorption and liquefaction process: common to Example 1 and Comparative Example (indicated by ● in FIG. 2)>
When the capsule after the introduction of methane is immersed in liquid nitrogen, adsorption proceeds with the temperature drop inside the capsule, and the pressure inside the capsule decreases linearly. It becomes 0 MPa, and reaches liquid nitrogen temperature -196 ° C as it is.
<Desorption process: Comparison between Example 1 and Comparative Example>
In the case of the comparative example in which water vapor was not introduced after the temperature of the liquid nitrogen was reached (indicated by a circle in FIG. 2), the capsule was taken out of the liquid nitrogen and the temperature was raised. Methane desorption begins and the pressure starts to rise.
[0015]
On the other hand, in the embodiment in which water vapor is introduced and frozen and confined by the present invention after reaching the temperature of liquid nitrogen (◇ in FIG. 2), desorption detected as an increase in pressure value is −50 ° C. It can be seen that the temperature rise has progressed to this point, and even under 0 ° C., a considerable portion of methane is maintained in an adsorbed state without being desorbed.
[Example 2]
After the liquid nitrogen temperature was reached, gas storage according to the present invention was performed in the same procedure as in Example 1 except that liquid water was introduced into the capsule from the water reservoir instead of water vapor.
[0016]
As a result, the same desorption behavior as in Example 1 shown in FIG. 2 was observed, and the low pressure was maintained at around 0 ° C.
[0017]
【The invention's effect】
As described above, according to the present invention, a gas storage method capable of realizing an extremely high storage density by adsorption without using an extremely low temperature is provided.
According to the method of the present invention, since the storage temperature does not need to be extremely low, it is possible to sufficiently store even a normal refrigerator operated at about −10 to 20 ° C., and the equipment cost and the operating cost for storage are sufficient. Can be reduced in cost.
[0018]
Further, the storage container and other equipment do not need to be made of a special material for cryogenic use, which is advantageous in terms of equipment material cost.
[Brief description of the drawings]
FIG. 1 is a layout diagram showing a configuration example of an apparatus for performing a gas storage method according to the present invention.
FIG. 2 is a graph showing the desorption behavior of a methane gas adsorbed and liquefied at a cryogenic temperature due to a rise in temperature of a sample of the present invention and a comparative example.

Claims (1)

容器内で、貯蔵対象ガスおよび吸着材を該貯蔵対象ガスの液化温度より低温に維持することにより、該貯蔵対象ガスを液化させ且つ該吸着材に吸着させる工程、
上記低温に維持されている上記容器内に、上記貯蔵対象ガスの上記液化温度より高い凍結温度を有するガス状または液状の媒体を導入して該媒体を凍結させることにより、上記液化され上記吸着材に吸着されている上記貯蔵対象ガスを、上記凍結した上記媒体で封じ込める工程、および
上記容器内を、上記液化温度より高く上記凍結温度より低い温度に維持する工程、
を含むガス貯蔵方法。
In the container, by keeping the storage target gas and the adsorbent at a temperature lower than the liquefaction temperature of the storage target gas, liquefying the storage target gas and adsorbing the adsorbent on the adsorbent,
By introducing a gaseous or liquid medium having a freezing temperature higher than the liquefaction temperature of the storage target gas into the container maintained at the low temperature and freezing the medium, the liquefied and adsorbent material is liquefied. The storage target gas that is adsorbed to the, the step of containing the frozen medium, and the container, the step of maintaining a temperature higher than the liquefaction temperature and lower than the freezing temperature,
A gas storage method including:
JP18871198A 1998-07-03 1998-07-03 Gas storage method Expired - Fee Related JP3546704B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP18871198A JP3546704B2 (en) 1998-07-03 1998-07-03 Gas storage method
DE69911790T DE69911790T2 (en) 1998-07-03 1999-06-30 METHOD AND SYSTEM FOR STORING GAS AND GAS ADDITIVE MATERIAL
BR9911824-6A BR9911824A (en) 1998-07-03 1999-06-30 Gas storage method and system, and gas occlusion material
EP03001655A EP1306605B1 (en) 1998-07-03 1999-06-30 Gas occluding material
RU2001103053/06A RU2228485C2 (en) 1998-07-03 1999-06-30 Method and plant for accumulation of gas and agent absorbing gas and method of production of such agent
PCT/JP1999/003530 WO2000001980A2 (en) 1998-07-03 1999-06-30 Gas storage method and system, and gas occluding material
US09/720,807 US6481217B1 (en) 1998-07-03 1999-06-30 Gas storage method and system, and gas occluding material
DE69922710T DE69922710T2 (en) 1998-07-03 1999-06-30 GASADSORBING MATERIAL
KR10-2000-7014965A KR100493648B1 (en) 1998-07-03 1999-06-30 Gas occluding material and producing method thereof
EP99926862A EP1099077B1 (en) 1998-07-03 1999-06-30 Gas storage method and system, and gas occluding material
CN99809118A CN1125938C (en) 1998-07-03 1999-06-30 Gas storage method and system, and gas occluding material
KR10-2003-7010908A KR100426737B1 (en) 1998-07-03 1999-06-30 Gas storage method and system
ARP990103239A AR013288A1 (en) 1998-07-03 1999-07-02 GAS STORAGE METHOD AND ARRANGEMENT
US10/125,413 US7060653B2 (en) 1998-07-03 2002-04-19 Method of producing gas occluding material
CNB031086039A CN1330412C (en) 1998-07-03 2003-03-31 Gas storage method and system, and gas occluding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18871198A JP3546704B2 (en) 1998-07-03 1998-07-03 Gas storage method

Publications (2)

Publication Number Publication Date
JP2000018497A JP2000018497A (en) 2000-01-18
JP3546704B2 true JP3546704B2 (en) 2004-07-28

Family

ID=16228465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18871198A Expired - Fee Related JP3546704B2 (en) 1998-07-03 1998-07-03 Gas storage method

Country Status (1)

Country Link
JP (1) JP3546704B2 (en)

Also Published As

Publication number Publication date
JP2000018497A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
KR100426737B1 (en) Gas storage method and system
KR101426969B1 (en) Methods for hydrogen storage and refrigeration
JP4679057B2 (en) Compositions and methods for hydrogen storage
JP2987686B2 (en) Gas storage method
CA2589604A1 (en) Storage of natural gas in liquid solvents and methods to absorb and segregate natural gas into and out of liquid solvents
JP2007100962A (en) Method and vessel for storing gas
JP2006242350A (en) Boil-off gas treating method and treating device
US6035550A (en) Method and apparatus for treating bog in a low temperature liquid storage tank
JP3546704B2 (en) Gas storage method
Buczek et al. Improvement of hydrogen storage capacity for active carbon
US6516619B2 (en) Method of storing a gas
JP3710594B2 (en) Automotive fuel gas tank and automotive fuel gas station
JP3809894B2 (en) Gas storage method
JP4348781B2 (en) Hydrogen gas storage method and storage device
JP4812194B2 (en) Natural gas adsorption storage device and adsorption storage method
JP2003065497A (en) Hydrogen storage vessel
RU2102650C1 (en) Heat-insulating casing for cryogenic device
JP2004136146A (en) Gas occlusion method, gas releasing method and gas occlusion/releasing method, and gas occlusion apparatus, gas occlusion/releasing apparatus and gas storage device
JPH10299993A (en) Portable replacement fuel gas tank
Mattern Industrial Gases
JPS5947197B2 (en) Low temperature liquid gas storage tank
BRPI0803635A2 (en) adsorbed natural gas transport system and storage operation methods

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees