JPH01138106A - Production of nitrogen - Google Patents

Production of nitrogen

Info

Publication number
JPH01138106A
JPH01138106A JP62295189A JP29518987A JPH01138106A JP H01138106 A JPH01138106 A JP H01138106A JP 62295189 A JP62295189 A JP 62295189A JP 29518987 A JP29518987 A JP 29518987A JP H01138106 A JPH01138106 A JP H01138106A
Authority
JP
Japan
Prior art keywords
adsorption
pressure
product
concentration
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62295189A
Other languages
Japanese (ja)
Other versions
JP2596952B2 (en
Inventor
Hiroyuki Tsutaya
博之 蔦谷
Jun Izumi
順 泉
Yuichi Fujioka
祐一 藤岡
Shozo Kaneko
祥三 金子
Susumu Sato
進 佐藤
Osao Kudome
長生 久留
Norichika Kai
徳親 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62295189A priority Critical patent/JP2596952B2/en
Publication of JPH01138106A publication Critical patent/JPH01138106A/en
Application granted granted Critical
Publication of JP2596952B2 publication Critical patent/JP2596952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PURPOSE:To decrease the power unit and quantity of adsorbent for the production of nitrogen, by introducing air into plural adsorption columns filled with Ca-X type zeolite and performing the adsorption and desorption of N2 under specific condition. CONSTITUTION:Ca-X type zeolite is filled in plural N2-adsorption columns as an N2 adsorbent. A mixed gas composed mainly of N2 and O2, e.g., air, is introduced into the plural adsorption columns and the N2 gas is adsorbed under an adsorption pressure of 1-3atm. at an adsorption temperature of +25--30 deg.C. The adsorbed N2 is desorbed under a desorption pressure of 0.05-0.5atm.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空気等Nz、02混合ガスからのN2の吸着分
離方法に関し、化学プラント、発電プラントの防爆、触
媒活性保持の為のイナートがス、食品製造時の油脂酸化
防止用N1、半導体製造プロセスのイナートガスとして
のN意、アンモニア合成用の原¥:’)Ns、浸炭炉、
窒化炉と鉄鋼材表面処理用雰囲気ガスとしてのN2等に
多量、かつ広範囲に使用される窒素の製造方法に関する
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for adsorption and separation of N2 from a mixed gas of Nz and 02 such as air, and is used to prevent explosions in chemical plants and power plants, and to maintain catalyst activity. , N1 for oil and fat oxidation prevention during food manufacturing, N1 as inert gas in semiconductor manufacturing process, raw material for ammonia synthesis:')Ns, carburizing furnace,
This invention relates to a method for producing nitrogen, which is used in large quantities and widely in nitriding furnaces and N2 as an atmospheric gas for surface treatment of steel materials.

〔従来の技術〕[Conventional technology]

N2吸着剤を利用した空気からのN2吸着分離法は、装
置が小型簡易であり、又無人運転に近くほとんど保守を
必要としない利点をもつため、N:製造! 10〜3.
 OOONm” −N、/h程変の中小型装置として近
年使用例が増えてきており、深冷分離装置で作られる液
体窒素を輸送して使用するケースについての代替が進行
している。
The N2 adsorption separation method from air using a N2 adsorbent has the advantage that the equipment is small and simple, and almost unmanned operation requires almost no maintenance.N: Manufacture! 10-3.
In recent years, its use as a medium-sized and small-sized device with a speed change of OOONm'' -N,/h has been increasing, and replacement is progressing in cases where liquid nitrogen produced in a cryogenic separation device is transported and used.

本発明に関連してN!吸着剤を使用したN2製造方法は
東しく掬の三輪氏等により特願昭52−152893及
び特願昭52−152894に提案されているが、この
装置の概要を述べると、装置は空気圧縮機及び3塔又は
それ以上のN2吸着塔、又場合によっては真空ポンプ等
から構成される。この装置において、1塔に圧縮空気を
送ると、充填されたN!吸着剤によシ空気中のN2は吸
着されて残る高圧0!は吸着塔の後方に流出する。一方
、他塔では吸着したN2を自流減圧条件で放出させて吸
着塔に残存する02を軽減し搭内のN2濃度を高める。
N! related to the present invention! A method for producing N2 using an adsorbent has been proposed by Mr. Miwa et al. of Higashishikki in Japanese Patent Applications 152893 and 152894. and three or more N2 adsorption towers, and in some cases a vacuum pump. In this device, when compressed air is sent to one tower, it is filled with N! N2 in the air is adsorbed by the adsorbent and the remaining high pressure is 0! flows out to the rear of the adsorption tower. On the other hand, in other towers, the adsorbed N2 is released under self-flow depressurization conditions to reduce the O2 remaining in the adsorption tower and increase the N2 concentration in the tower.

この後置に採取された製品N、の一部を向流方向に塔内
を流過させて更にN!濃度を高める。次いで塔内を真空
ポンプにより150 Torrまで減圧してN2を回収
するとともにN!吸着剤を再生する。これを交互にくり
返して連続的にN2を製造する。
A part of the product N sampled after this is passed through the column in a countercurrent direction to further N! Increase concentration. Next, the pressure inside the column was reduced to 150 Torr using a vacuum pump to recover N2 and N! Regenerate the adsorbent. This process is repeated alternately to continuously produce N2.

国内ではすでに数台が100 Nm” −N=/h以下
の小型ではあるが稼動している。
Several units are already in operation in Japan, although they are small and have a capacity of less than 100 Nm” -N=/h.

上記の吸着塔に充填していたN、吸着剤の代表的なもの
は、ユニオンカーバイド社により実用化されたNa−A
型ゼオライト(:(10±12)NalO*At宜03
・(1,85±CL5)SiO2・(0〜6)H意O〕
の60〜80%Ca交換体であり、N、 、 o、 2
成分混合ガスからN、を選択的に吸着するものであって
、空気条件下での02の共吸着はN2の吸着の10%以
下と推定される。
The typical N and adsorbent used in the above adsorption tower was Na-A, which was put into practical use by Union Carbide.
type zeolite (:(10±12)NalO*At 03
・(1,85±CL5)SiO2・(0~6)H2O]
It is a 60-80% Ca exchanger of N, , o, 2
It selectively adsorbs N from the component mixed gas, and the co-adsorption of 02 under air conditions is estimated to be 10% or less of the adsorption of N2.

この吸着によるN、製造装置は中小型領域で有利と述べ
たが、I Nm”のNtを製造するのに(175〜I 
KWhを必要とし、大容量深冷分離法で製造されるNt
のα30Kwhに比し消費電力は大きい。
It was stated that the Nt production equipment by this adsorption is advantageous in small and medium-sized areas, but in order to produce Nt of I Nm'' (175 to I
Nt requires KWh and is produced by large-capacity cryogenic separation method.
Power consumption is large compared to α30Kwh.

又装置容量の増大に対するスケールメリットが少なく、
300 Nm” −N、/h以上の領域では深冷分離法
に競合できないといわれている。
In addition, there is little merit of scale for increasing equipment capacity.
It is said that it cannot compete with the cryogenic separation method in the region of 300 Nm''-N,/h or more.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来方法には上述したような問題点があり、その解
決手段として一般的に下記のような手段が考えられるが
、その手段とても夫々別な問題点が出現する。
The above-mentioned conventional methods have the above-mentioned problems, and the following methods can generally be considered as solutions to these problems, but each method poses very different problems.

先ず、消費電力の低減については、送風圧力を低くして
低圧で吸着操作を行なうことが考えられるが、N、吸着
量が圧力にほぼ比例して低下するため、装置の容量が極
めて増大するとともに製品N!濃度も激減する。次に、
吸着量の増大を図るために低温条件で吸着操作を行なう
ことが考えられるが、この場合はN、吸着量は増大する
ものの吸着・脱着速度が著しく低下するため、同一塔長
での製品N!濃度が室温時よりもかえって低下してしま
り。又温度の低下に伴ないN2吸着時の0!共吸着量が
上昇するため、動力原単位の上昇及び製品N!濃度の低
下が発生する。
First, in order to reduce power consumption, it is possible to lower the blowing pressure and perform the adsorption operation at low pressure, but since the amount of N adsorption decreases approximately in proportion to the pressure, the capacity of the device increases significantly and Product N! The concentration also decreases dramatically. next,
In order to increase the amount of adsorption, it is possible to perform the adsorption operation under low temperature conditions, but in this case, although the amount of N adsorbed increases, the rate of adsorption and desorption will decrease significantly, so the product N! The concentration was actually lower than it was at room temperature. Also, as the temperature decreases, 0! during N2 adsorption! Because the amount of co-adsorption increases, the power consumption rate increases and the product N! A decrease in concentration occurs.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明者は、上記欠点を改善した低温、低圧吸着
条件下での高性能なN2 # Olの分離方法につき鋭
意研究、実検を進める過程で、化学式Ca4s(AtO
x)sa(Siot)lonに代表されるCa−X型ゼ
オライトは低温、低圧吸着条件下でN2吸着量が増大す
るとともに実用的な範囲でのN、吸着速度の維持が可能
であり、かつN:吸着選択性の減少が小さいことを見出
し本発明を完成するに到ったものである。
Therefore, in the process of conducting intensive research and actual testing on a high-performance N2 #Ol separation method under low temperature and low pressure adsorption conditions that improves the above drawbacks, the present inventor developed a method using the chemical formula Ca4s (AtO
x) Ca-X type zeolite, represented by sa(Siot)lon, increases the amount of N adsorption under low temperature and low pressure adsorption conditions, and can maintain the N adsorption rate within a practical range. :We have completed the present invention by discovering that the decrease in adsorption selectivity is small.

すなわち本発明はCa−X型ゼオライトをN、吸着剤と
して充填した少なくとも2塔以上の吸着塔に空気等のN
2 * 0鵞を主成分とする混合ガスを導き、吸着圧力
1〜3 atm、吸着温度25℃〜−30℃の操作条件
でN2を吸着させた後、脱着圧力0.05〜α5 at
mの操作条件でN2を脱着させることを特徴とする窒素
製造方法である。
That is, the present invention provides at least two or more adsorption towers filled with Ca-X type zeolite as N and adsorbent, and N such as air.
A mixed gas containing 2*0 gas as the main component was introduced, and N2 was adsorbed under operating conditions of an adsorption pressure of 1 to 3 atm and an adsorption temperature of 25°C to -30°C, and then a desorption pressure of 0.05 to α5 atm.
This is a nitrogen production method characterized by desorbing N2 under operating conditions of m.

本発明の好ましい態様としては、化学式C’143(A
tOx )sa (S i Ol )tosに代表され
るCa−X型ゼオライト(ITi前記代表例の5102
/ AtO,= 1.1〜1.6の範囲)を充填した少
なくとも2塔以上の吸着塔において、室温以下の温度下
で、N2及び02を主成分とする混合気体を大気圧以上
3 atm以下で、吸着塔に流入させて該混合気体に含
まれるN2を選択的に吸着させ、該吸着塔出口から酸素
富化ガスを流出させてN、を吸着した加圧条件下の塔と
、0. 05 atm以上Q、 5 atm以下の減圧
条件下でN、を脱着回収して再生された減圧条件下の塔
とを吸着塔の後方で連結してN2吸着塔に残存する02
を再生終了後の減圧条件にある塔に移して吸着塔のNz
 rlk度を向上させた後、採取したN2を吸着塔に向
流に流過してN!線純度一ヒ昇させた後、吸着塔を0.
05 atm以上α5atm以下に減圧させて高純度N
、を回収するとともにN2吸着剤を再生する方法があげ
られる。
In a preferred embodiment of the present invention, chemical formula C'143 (A
Ca-X type zeolite (ITi) represented by tOx ) sa (S i Ol ) tos 5102
/ AtO, = 1.1 to 1.6) in at least two or more adsorption towers filled with adsorption towers, at a temperature below room temperature, a mixed gas containing N2 and 02 as main components at a pressure above atmospheric pressure and below 3 atm. A column under pressurized conditions in which N2 contained in the mixed gas is selectively adsorbed by flowing into an adsorption column and N2 is adsorbed by flowing the oxygen-enriched gas out from the outlet of the adsorption column; 05 atm or more Q, N2 remaining in the N2 adsorption tower is connected at the rear of the adsorption tower with a column under reduced pressure conditions that is regenerated by desorbing and recovering N under reduced pressure conditions of 5 atm or less.
After the regeneration is completed, the Nz of the adsorption tower is transferred to a tower under reduced pressure conditions.
After improving the rlk degree, the collected N2 is passed through an adsorption tower countercurrently to N! After increasing the linear purity, the adsorption tower was heated to 0.
High purity N by reducing the pressure to 05 atm or more and α5 atm or less
, as well as regenerating the N2 adsorbent.

〔実施例〕〔Example〕

以下本発明の方法について実施例によシ詳細に説明する
The method of the present invention will be explained in detail below using examples.

本発明の有効性を実証するため第1図に示す窒素製造方
法で空気からのN、の吸着分離をCa4s(AtOz)
ss(SiOz)xosの化学式を有するCa−X型ゼ
オライトで試みた。
In order to demonstrate the effectiveness of the present invention, the adsorption separation of N from air was performed using Ca4s (AtOz) using the nitrogen production method shown in Figure 1.
An attempt was made with Ca-X type zeolite having the chemical formula ss(SiOz)xos.

以下第1図に基づいて実施した内容を説明する。The details of the implementation will be explained below based on FIG.

入口側ライン1を通じて圧縮機2で1.05〜3 at
mに加圧された空気は、流路3aから脱湿脱CO2塔4
a 、4bに入り、極めて清浄な加圧空気となる。流路
3bの後流に設置された熱交換器5で清浄空気と回収さ
れた冷却状態にある酸素富化空気の間で冷熱の回収が行
なわれだ後、閉状1態のパルプ6aを通じて熱交換器7
に至る。
1.05 to 3 at compressor 2 through inlet side line 1
The air pressurized to
a, 4b, and becomes extremely clean pressurized air. After the cold heat is recovered between the clean air and the recovered oxygen-enriched air in a cooled state in the heat exchanger 5 installed downstream of the flow path 3b, heat is exchanged through the pulp 6a in the closed state 1. Vessel 7
leading to.

熱交換器7では空気と冷却状態の脱着N2の間で冷熱の
回収が行なわれ、その後空気はフレオン冷凍機8と直結
したフレオン1蒸発器9で最寒冷温度に到達して吸着塔
10aに入る。
In the heat exchanger 7, cold heat is recovered between the air and the desorbed N2 in the cooled state, and then the air reaches the coldest temperature in the Freon 1 evaporator 9, which is directly connected to the Freon refrigerator 8, and enters the adsorption tower 10a. .

吸着塔10aに入った加圧空気はN2吸着剤11aでN
Zが吸着されて後方に行くに従がい○!濃度が上昇する
。この酸素富化空気は開状態のバルブ12a、流路13
を通じて系外に放出される。
The pressurized air that has entered the adsorption tower 10a is converted into N2 by the N2 adsorbent 11a.
Follow Z as it gets sucked in and goes backwards○! concentration increases. This oxygen-enriched air flows through the open valve 12a and the flow path 13.
is released outside the system through

この時他のN、吸着塔1obは後述するように、製品N
!回収が終了し吸着剤11bは再生されて吸着塔10b
は最とも減圧状態にある。ここでバルブ6a、6b、1
2a、12b、14a。
At this time, the other N, the adsorption tower 1ob, is the product N, as described later.
! After the recovery is completed, the adsorbent 11b is regenerated and transferred to the adsorption tower 10b.
is in the most depressurized state. Here, valves 6a, 6b, 1
2a, 12b, 14a.

14b、15a、15bを閉、パルプ12cを開とする
と流路16を通じて吸着塔10aの圧力は降下し、吸着
塔10bの圧力は上昇し均圧化する。吸着塔1oaK残
留する02は圧力の降下とともに吸着塔10bに移り、
吸着剤11aからはNZが放出されて吸着塔のN2濃度
は上昇する。この時の圧力をP]!、、吸着工程の終了
圧力を9人、再生工程の終了圧力をPDトスルト・Pz
ハパルプ12aを開き流路13を通じて吸着塔1゜aの
残留0.を系外に放出する。またPIe<:1ならばパ
ルプ15aを開き流路17を通じて製品N!1タンク1
8から吸着塔10aにNZを導き八=1とする。吸着塔
10aに関してパルプ15a。
When 14b, 15a, and 15b are closed and the pulp 12c is opened, the pressure in the adsorption tower 10a decreases through the channel 16, and the pressure in the adsorption tower 10b increases to equalize the pressure. The 02 remaining in the adsorption tower 1oaK moves to the adsorption tower 10b as the pressure decreases,
NZ is released from the adsorbent 11a, and the N2 concentration in the adsorption tower increases. The pressure at this time is P]! ,, the end pressure of the adsorption process is 9 people, the end pressure of the regeneration process is PD Tosult・Pz
The HaPulp 12a is opened and the remaining 0.0% in the adsorption tower 1°a is passed through the channel 13. is released outside the system. If PIe<:1, the pulp 15a is opened and the product N is passed through the channel 17! 1 tank 1
NZ is introduced from 8 to the adsorption tower 10a to set 8=1. Pulp 15a for adsorption tower 10a.

12aを開いて製品N2タンク18から流路17を通じ
て吸着塔10I!Lに製品N、を流過すると残存するa
tの○:も流路13から系外に放出される。
12a is opened and the product N2 tank 18 passes through the flow path 17 to the adsorption tower 10I! When product N is passed through L, the remaining a
◯ in t: is also discharged from the flow path 13 to the outside of the system.

この後バルブ14aを開、パルプ6a、12a、12c
、15aを閉じて真空ポンプ19で吸着塔10aを減圧
条件に導くと高純度N、が製品N2タンク18に回収さ
れる。なお、吸着塔1゜a、10bは一15℃にフレオ
ン冷凍機で冷やしておくため、保冷庫20で覆われてい
る。
After this, the valve 14a is opened, and the pulp 6a, 12a, 12c is
, 15a are closed and the adsorption tower 10a is brought to a reduced pressure condition by the vacuum pump 19, and high purity N is recovered in the product N2 tank 18. Note that the adsorption towers 1°a and 10b are covered with a cold storage 20 in order to be cooled to -15°C using a Freon refrigerator.

この後同様の操作を吸着塔10bについて行ない、1塔
が馬吸着工程にある時に、他塔が製品N2パージ、減圧
N1回収を行なうように操作を行ない、これを交互に行
なうことで連続的かつ高純度にNZを回収することがで
きる。
After this, the same operation is performed for the adsorption tower 10b, and when one tower is in the horse adsorption process, the other tower performs product N2 purge and reduced pressure N1 recovery, and by performing this alternately, it is possible to continuously and NZ can be recovered with high purity.

冷熱の使用について言及すると入口空気と酸素富化空気
、入口空気と脱着N!との間の熱交換によシ冷熱の90
%程度は回収されるためフレオン冷凍機8は極めて小さ
くてすむ。
When referring to the use of cold energy, inlet air and oxygen-enriched air, inlet air and desorption N! 90% of cold and heat due to heat exchange between
% is recovered, so the Freon refrigerator 8 can be extremely small.

以上の操作方法で第1図に示したN2吸着装置でN2製
造を行なった。装置の操作諸元を第1表に示す。
N2 was produced using the N2 adsorption apparatus shown in FIG. 1 using the above operating method. The operating specifications of the device are shown in Table 1.

第1表 第1表の操作条件で空気から○t * N意を分離した
。この時の結果を第2図及至第10図に要約する。以下
第2図からCa−X型ゼオライトによる空気からの圧力
スイング式N、吸着分離の従来のNa−A型ゼオライト
の60〜70%Ca交換体(以下Ca % −N a!
A−A  と記す)によるN2製造に対する主たる改善
点を説明する。
Table 1 ○t*Ni was separated from air under the operating conditions shown in Table 1. The results at this time are summarized in FIGS. 2 to 10. As shown in Fig. 2 below, pressure swing type N from air using Ca-X type zeolite, 60 to 70% Ca exchanger (hereinafter Ca % -Na!) of conventional Na-A type zeolite for adsorption separation.
The main improvements to N2 production by A-A) will be explained.

第2図は吸着温度と製品Nz D度との関係を示す図で
、横軸は吸着温度(℃)、縦軸は製品N!濃度(Vo1
%)である。吸着剤としてCa−X及びCa% −Na
5A−Aを使用し、吸着圧力1.2 atm再生圧力α
1 atmに設定しである。なお、第2図反型第10図
の○印はCa−Xを4印はCa%−Na%−Aを表わす
Figure 2 is a diagram showing the relationship between adsorption temperature and product NzD degrees, where the horizontal axis is adsorption temperature (°C) and the vertical axis is product N! Concentration (Vol1
%). Ca-X and Ca%-Na as adsorbents
5A-A, adsorption pressure 1.2 atm regeneration pressure α
It is set to 1 ATM. In addition, in FIG. 2 and FIG. 10, the circle mark represents Ca-X, and the four marks represent Ca%-Na%-A.

真空ポンプによる採取NztをGD(Nt)、製品とし
て取り出すNz量をGR(Nt) 、パージ用に吸着塔
にもどすN含量をGp(Nt)とするとパージ率R(6
)タイム80秒、パージ率50%として、製品N2を毎
時55Nm”/h採取した。
The purge rate R (6
) Product N2 was sampled at a rate of 55 Nm''/h with a time of 80 seconds and a purge rate of 50%.

第2図で判るようにCa%−Na5A−Aは25℃で最
高値を示すがN鵞濃度は96%にとどまる。
As seen in FIG. 2, Ca%-Na5A-A reaches its maximum value at 25°C, but the N concentration remains at 96%.

Ca−Xでは25℃では94%程度とCa%−Na%−
Aよりもむしろ低いのに対して、−15℃では99.5
%に達し、−50℃までほぼ一定値を示し一40℃以下
では減少する。
In Ca-X, at 25℃, it is about 94% and Ca%-Na%-
99.5 at -15°C, whereas it is rather lower than A.
%, shows a nearly constant value up to -50°C, and decreases below -40°C.

第3図は吸着圧力と製品N、濃度との関係を示す図で、
横軸は吸着圧力(atm ) 、縦軸は製品N2濃電(
701%)を示す。吸着剤としてはCa−X 、 Ca
%−Na%−Aを使用し、Ca−Xについては吸着温度
−15℃、 Ca%−Na%−Aについては25℃を選
定している。その他再生圧力、ハーフサイクルタイム、
パージ率については第2図の条件と同一である。吸着圧
力については両者ともS atm程度でN3濃度はほぼ
飽和する。
Figure 3 is a diagram showing the relationship between adsorption pressure, product N, and concentration.
The horizontal axis is the adsorption pressure (atm), and the vertical axis is the product N2 concentration (
701%). Adsorbents include Ca-X, Ca
%-Na%-A is used, and the adsorption temperature is -15°C for Ca-X and 25°C for Ca%-Na%-A. Other regeneration pressure, half cycle time,
The purge rate is the same as the conditions shown in FIG. Regarding the adsorption pressure, the N3 concentration is almost saturated at about Satm in both cases.

第4図は吸着圧力と製品N2回収率との関係を示す図で
あり、操作条件は第3図と全く同様である。製品N:回
収率R(%)は 着圧力の上昇とともに製品N2回収率は幾分低下する。
FIG. 4 is a diagram showing the relationship between adsorption pressure and product N2 recovery rate, and the operating conditions are exactly the same as in FIG. 3. Product N: Recovery rate R (%) As the bonding pressure increases, the recovery rate of Product N2 decreases somewhat.

第3図、第4図で判るLうに吸着圧力S atm以上で
のN、製造は効果的でないことが判る。
As can be seen from FIGS. 3 and 4, it can be seen that the production of N at an adsorption pressure of more than S.sub.atm is not effective.

第5図は脱着圧力(再生圧力) (atm )と製品N
z6度(701%)との関係を示す図でありCa−Xに
ついては=15℃、 Ca%−NaイーAについては2
5℃に吸着濃度を設定している。吸着圧力を1.2 a
tmに固定し脱着圧力の影響を調べた。その他の条件は
第3図の条件と同一である。
Figure 5 shows desorption pressure (regeneration pressure) (atm) and product N.
It is a diagram showing the relationship with z6 degrees (701%), and for Ca-X = 15°C, for Ca%-NaE-A, it is 2
The adsorption concentration is set at 5°C. Adsorption pressure 1.2a
The influence of desorption pressure was investigated by fixing the pressure at tm. Other conditions are the same as those shown in FIG.

脱着圧力の低下にともない製品N!濃度は著しく上昇す
る。但しα05 atm以下での脱着は真空ポンプ動力
の大幅な増大をともなうため経済的ではない。
As the desorption pressure decreases, product N! The concentration increases significantly. However, desorption at α05 atm or less is not economical because it involves a significant increase in vacuum pump power.

第6図は脱着圧力(at、m )と製品N2回収率(転
)との関係を示す図であり吸着剤、操作条件とも第5図
と全く同一である。脱着圧力の低下にともない大幅に製
品N2回収率は増大する。
FIG. 6 is a diagram showing the relationship between desorption pressure (at, m 2 ) and product N2 recovery rate (conversion), and the adsorbent and operating conditions are exactly the same as in FIG. 5. As the desorption pressure decreases, the product N2 recovery rate increases significantly.

第7図はパージ率(%)と製品N2濃度(Vo1%)と
の関係を示す図であり、横軸はパージ率(%)、縦軸は
製品N、濃度(701%)を表わす。
FIG. 7 is a diagram showing the relationship between purge rate (%) and product N2 concentration (Vo1%), where the horizontal axis represents purge rate (%) and the vertical axis represents product N concentration (701%).

吸着剤Ca−Xについては吸着濃度−15℃、Ca%−
Na3A−Aについては吸着温度25℃、吸着圧力1.
2 atm 、脱着圧力α2atm、ハーフサイクルタ
イム80sec、に操作条件は設定しである。
For adsorbent Ca-X, adsorption concentration -15℃, Ca%-
For Na3A-A, the adsorption temperature was 25°C and the adsorption pressure was 1.
The operating conditions were set to 2 atm, desorption pressure α2 atm, and half cycle time 80 sec.

第7図で判るようにパージ率の増大で大幅にN!濃度が
増大する事が判る。
As you can see in Figure 7, increasing the purge rate significantly increases N! It can be seen that the concentration increases.

第8図はパージ率と製品N2回収率との関係を示す図で
、横・袖はパージ率(%)、縦軸は製品N2回収率(%
)を示す。当然のことながらパージ率の増大にともない
回収率は低下するため、パージ率50%付近が製品NI
(、製品N8回収率の両者を併せ考えると最適と思われ
る。
Figure 8 is a diagram showing the relationship between purge rate and product N2 recovery rate.
) is shown. Naturally, as the purge rate increases, the recovery rate decreases, so a purge rate of around 50% is the product NI.
(It seems to be optimal if both the product N8 recovery rate and the product N8 recovery rate are considered together.

第9図は製品N!濃度と1%m”のN、を製造するのに
必要な消費電力を表わす動力原単位との関係を示す図で
、横軸は製品N、 /a度(701%)、縦軸は動力原
単位(KWh / Nm” −rTz ’)を表わす。
Figure 9 shows product N! This is a diagram showing the relationship between the concentration and the power consumption unit representing the power consumption required to produce 1% m'' of N. The horizontal axis is the product N, /a degrees (701%), and the vertical axis is the power consumption. Represents the unit (KWh/Nm"-rTz').

操作条件は第2図と同一である。製品’h t’fk度
の低下にともない消費電力は激減し、イナートガス等低
濃度N2製造に最適なことが判るとともに、N3儂度9
9.5%でもQ、 2 KWh / Nm” −N雪と
深冷分離装置のCL 25 KWh / Nm” −N
2、従来型のPS A −N、 (Ca9A−Na5A
−A使用、25℃)の0,6KWh / Nm” −N
2を下廻り極めて消費電力の少ない装置である。
The operating conditions are the same as in FIG. As the product's 'h t'
Even at 9.5%, Q, 2 KWh/Nm”-N Snow and Cryogenic Separator CL 25 KWh/Nm”-N
2. Conventional PS A-N, (Ca9A-Na5A
-A used, 25℃) 0.6KWh / Nm” -N
It is a device with extremely low power consumption.

第10図は製品N!濃度とI TONの吸着剤で1時間
当りN2を製造する能力の関係を示す図で、横軸は製品
N、濃度(701%)、縦軸はI TOHの吸着剤によ
る毎時のN2製造量(Nm3− N2/T ON/h 
)である。吸着剤、操作条件とも第9図と同一である。
Figure 10 shows product N! This is a diagram showing the relationship between the concentration and the ability to produce N2 per hour with the ITON adsorbent. The horizontal axis is the product N and the concentration (701%), and the vertical axis is the hourly N2 production amount ( Nm3- N2/T ON/h
). Both the adsorbent and operating conditions are the same as in FIG. 9.

!!!品N!濃度の低下にともないN2製造量は大幅に
上昇する。又、従来型psA−N、の約3倍のN、製造
量を有することが判る。
! ! ! Product N! As the concentration decreases, the amount of N2 produced increases significantly. Furthermore, it can be seen that the production amount of N is approximately three times that of the conventional psA-N.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように従来のP S A −N。 As explained in detail above, the conventional PSA-N.

及び大容tNz製造においてよく使用されている深冷法
に対しても本発明は優位性のあることが判る。すなわち
本発明は所要の動力原単位及び吸着剤量が従来の吸着剤
法に比べ少なく、産業上非常に有用な混合気体からの窒
素の分離方法を提案するものである。
It can be seen that the present invention is also superior to the deep cooling method, which is often used in large-volume tNz production. That is, the present invention proposes a method for separating nitrogen from a mixed gas that requires less power consumption and less adsorbent than conventional adsorbent methods and is very useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である窒素製造装置の系統図
、第2図は吸着温度と製品N2濃度との関係図、第3図
は吸着圧力と製品Nz11度との関係図、第4図は吸着
圧力と製品N2回収率との関係図、第5図は脱着圧力と
製品N2濃度との関係図、第6図は脱着圧力と製品N、
回収率との関係図、第7図はパージ率と製品Hz 11
N度との関係図、第8図はパージ率と製品N2回収率と
の関係図、第9図は製品N、濃変と動力原単位との関係
図、第10図は製品N2濃度とN2製造能力との関係図
である。
Fig. 1 is a system diagram of a nitrogen production apparatus that is an embodiment of the present invention, Fig. 2 is a relation diagram between adsorption temperature and product N2 concentration, Fig. 3 is a relation diagram between adsorption pressure and product Nz 11 degrees, Figure 4 shows the relationship between adsorption pressure and product N2 recovery rate, Figure 5 shows the relationship between desorption pressure and product N2 concentration, Figure 6 shows the relationship between desorption pressure and product N2 concentration, and Figure 6 shows the relationship between desorption pressure and product N2 concentration.
Figure 7 shows the relationship between the recovery rate and the purge rate and product Hz.
Figure 8 is a diagram of the relationship between purge rate and product N2 recovery rate, Figure 9 is a diagram of the relationship between product N, concentration change, and power consumption, and Figure 10 is a diagram of the relationship between product N2 concentration and N2 It is a relationship diagram with manufacturing capacity.

Claims (1)

【特許請求の範囲】[Claims]  Ca−X型ゼオライトをN_2吸着剤として充填した
少なくとも2塔以上の吸着塔に空気等のN_2、O_2
を主成分とする混合ガスを導き、吸着圧力1〜3atm
、吸着温度25℃〜−30℃の操作条件でN_2を吸着
させた後、脱着圧力0.05〜0.5atmの操作条件
でN_2を脱着させることを特徴とする窒素製造方法。
N_2, O_2 such as air is added to at least two or more adsorption towers filled with Ca-X type zeolite as an N_2 adsorbent.
A mixed gas consisting mainly of
A method for producing nitrogen, which comprises adsorbing N_2 under operating conditions of an adsorption temperature of 25°C to -30°C, and then desorbing N_2 under operating conditions of a desorption pressure of 0.05 to 0.5 atm.
JP62295189A 1987-11-25 1987-11-25 Nitrogen production method Expired - Fee Related JP2596952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62295189A JP2596952B2 (en) 1987-11-25 1987-11-25 Nitrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62295189A JP2596952B2 (en) 1987-11-25 1987-11-25 Nitrogen production method

Publications (2)

Publication Number Publication Date
JPH01138106A true JPH01138106A (en) 1989-05-31
JP2596952B2 JP2596952B2 (en) 1997-04-02

Family

ID=17817355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62295189A Expired - Fee Related JP2596952B2 (en) 1987-11-25 1987-11-25 Nitrogen production method

Country Status (1)

Country Link
JP (1) JP2596952B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0760248A1 (en) * 1994-03-18 1997-03-05 Uop Nitrogen-selective zeolitic adsorbent for use in air separation process
US5656066A (en) * 1995-05-19 1997-08-12 Bayer Aktiengesellschaft Adsorptive oxygen enrichment of air with mixtures of molecular sieve zeolites
US5698013A (en) * 1994-03-18 1997-12-16 Uop Nitrogen-selective zeolitic adsorbent for use in air separation process
JPH1192110A (en) * 1997-09-12 1999-04-06 Ishikawajima Harima Heavy Ind Co Ltd Ozone adsorbing-desorbing unit and method for controlling temperature of the same
CN1133490C (en) * 1995-09-27 2004-01-07 环球油品公司 Nitrogen-selective zeolitic adsorbent for use in air separation process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096507A (en) * 1983-10-27 1985-05-30 Zenji Hagiwara Selective concentration of oxygen gas by adsorption

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096507A (en) * 1983-10-27 1985-05-30 Zenji Hagiwara Selective concentration of oxygen gas by adsorption

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0760248A1 (en) * 1994-03-18 1997-03-05 Uop Nitrogen-selective zeolitic adsorbent for use in air separation process
US5698013A (en) * 1994-03-18 1997-12-16 Uop Nitrogen-selective zeolitic adsorbent for use in air separation process
US5656066A (en) * 1995-05-19 1997-08-12 Bayer Aktiengesellschaft Adsorptive oxygen enrichment of air with mixtures of molecular sieve zeolites
CN1133490C (en) * 1995-09-27 2004-01-07 环球油品公司 Nitrogen-selective zeolitic adsorbent for use in air separation process
JPH1192110A (en) * 1997-09-12 1999-04-06 Ishikawajima Harima Heavy Ind Co Ltd Ozone adsorbing-desorbing unit and method for controlling temperature of the same

Also Published As

Publication number Publication date
JP2596952B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
US6093379A (en) Purification of gases
JPH10114508A (en) Method for purifying flow of inert gas
JPS60227813A (en) Pressure swing method for adsorptive separation of gaseous mixture
JPH0459926B2 (en)
TW201730102A (en) Method for argon production via cold pressure swing adsorption
EP1281430A2 (en) Purification of gases
JPH11179136A (en) Method for removing carbon dioxide from gas by circulating type pressure swing adsorption process
JPH01138106A (en) Production of nitrogen
JPH0624962B2 (en) Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace
JPS63107720A (en) Method for separating and removing water content and carbon dioxide gas in air
JPH0952703A (en) Method for adsorbing nitrogen from gas mixture by using pressure pendulum adsorption with zeolite
JPH0530762B2 (en)
EP1005895A1 (en) Purification of gases
JPH0768042B2 (en) High-purity oxygen production method
JPH0455964B2 (en)
JPH0825727B2 (en) Nitrogen production method
US2142694A (en) Process for reducing chromium compounds
JP3201923B2 (en) Method and apparatus for producing high-purity nitrogen gas
JPS60819A (en) Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method
JPS61113689A (en) Purification of coke oven gas
JPS60231401A (en) Production of oxygen with ca-na-a and na-x-nacl in n2 adsorption tower
JPH06178933A (en) Oxygen adsorbent and separation of oxygen and nitrogen
JPH0768041B2 (en) Oxygen-enriched gas manufacturing method
JPS6125619A (en) Pressure swing system gas separation utilizing cold heat
JPS61129020A (en) Separation of oxygen and nitrogen from gaseous mixture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees