JP2596952B2 - Nitrogen production method - Google Patents

Nitrogen production method

Info

Publication number
JP2596952B2
JP2596952B2 JP62295189A JP29518987A JP2596952B2 JP 2596952 B2 JP2596952 B2 JP 2596952B2 JP 62295189 A JP62295189 A JP 62295189A JP 29518987 A JP29518987 A JP 29518987A JP 2596952 B2 JP2596952 B2 JP 2596952B2
Authority
JP
Japan
Prior art keywords
adsorption
product
pressure
concentration
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62295189A
Other languages
Japanese (ja)
Other versions
JPH01138106A (en
Inventor
博之 蔦谷
順 泉
祐一 藤岡
祥三 金子
佐藤  進
長生 久留
徳親 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62295189A priority Critical patent/JP2596952B2/en
Publication of JPH01138106A publication Critical patent/JPH01138106A/en
Application granted granted Critical
Publication of JP2596952B2 publication Critical patent/JP2596952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空気等N2,O2混合ガスからのN2の吸着分離方
法に関し、化学プラント、発電プラントの防爆、触媒活
性保持の為のイナートガス、食品製造時の油脂酸化防止
用N2、半導体製造プロセスのイナートガスとしてのN2
アンモニア合成用の原料N2、浸炭炉、窒化炉と鉄鋼材表
面処理用雰囲気ガスとしてのN2等に多量、かつ広範囲に
使用される窒素の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for adsorbing and separating N 2 from a mixed gas of N 2 and O 2 such as air. Inert gas, N 2 for preventing oil and fat oxidation during food manufacturing, N 2 as inert gas for semiconductor manufacturing process,
The present invention relates to a method for producing nitrogen that is used in a large amount and widely in a raw material N 2 for ammonia synthesis, a carburizing furnace, a nitriding furnace, and N 2 as an atmosphere gas for steel material surface treatment.

〔従来の技術〕[Conventional technology]

N2吸着剤を利用した空気からのN2吸着分離法は、装置
が小型簡易であり、又無人運転に近くほとんど保守を必
要としない利点をもつため、N2製造量10〜3,000Nm3−N2
/h程度の中小型装置として近年使用例が増えてきてお
り、深冷分離装置で作られる液体窒素を輸送して使用す
るケースについての代替が進行している。
N 2 adsorption separation from air using N 2 adsorption agent device is a compact simple, also because it has the advantage of not requiring a close little maintenance unattended operation, N 2 production amount 10~3,000Nm 3 - N 2
In recent years, examples of use of small and medium-sized devices of about / h have been increasing, and alternatives to the case of transporting and using liquid nitrogen produced by a cryogenic separation device are in progress.

本発明に関連してN2吸着剤を使用したN2製造方法は東
レ(株)の三輪氏等により特願昭52−152893及び特願昭
52−152894に提案されているが、この装置の概要を述べ
ると、装置は空気圧縮機及び3塔又はそれ以上のN2吸着
塔、又場合によつては真空ポンプ等から構成される。こ
の装置において、1塔に圧縮空気を送ると、充填された
N2吸着剤により空気中のN2は吸着されて残る高圧O2は吸
着塔の後方に流出する。一方、他塔では吸着したN2を向
流減圧条件で放出させて吸着塔に残存するO2を軽減し塔
内のN2濃度を高める。この後既に採取された製品N2の一
部を向流方向に塔内を流過させて更にN2濃度を高める。
次いで塔内を真空ポンプにより150Torrまで減圧してN2
を回収するとともにN2吸着剤を再生する。これを交互に
くり返して連続的にN2を製造する。
In connection with the present invention, a method for producing N 2 using an N 2 adsorbent has been disclosed by Miwa et al.
52-152894 have been proposed, but if outlined in this device, the device air compressor and 3 columns or more N 2 adsorption towers, also by the case connexion consists vacuum pump. In this apparatus, compressed air was sent to one column,
The N 2 in the air is adsorbed by the N 2 adsorbent, and the remaining high-pressure O 2 flows out of the adsorption tower. On the other hand, in the other tower, the adsorbed N 2 is released under countercurrent depressurization conditions to reduce O 2 remaining in the adsorption tower and increase the N 2 concentration in the tower. Further increasing the N 2 concentration already column, among others allowed to flow bulk part of the product N 2 taken in the countercurrent direction after this.
Then reducing the pressure in the column by the vacuum pump to 150 Torr N 2
And regenerate the N 2 adsorbent. This is repeated alternately to produce N 2 continuously.

国内ではすでに数台が100Nm3−N2/h以下の小型ではあ
るが稼動している。
In Japan, several units are already in operation, albeit smaller than 100 Nm 3 -N 2 / h.

上記の吸着塔に充填していたN2吸着剤の代表的なもの
は、ユニオンカーバイド社により実用化されたNa−A型
ゼオライト〔(1.0±0.2)Na2O・Al2O3・(1.85±0.5)
SiO2・(0〜6)H2O〕の60〜80%Ca交換体であり、N2,
O22成分混合ガスからN2を選択的に吸着するものであつ
て、空気条件下でのO2の共吸着はN2の吸着の10%以下と
推定される。
Additional N 2 adsorbents typical that were packed in the adsorption tower, practically been Na-A type zeolite by Union Carbide Corporation [(1.0 ± 0.2) Na 2 O · Al 2 O 3 · (1.85 ± 0.5)
SiO 2 · (0-6) H 2 O] is a 60-80% Ca exchanger, and N 2 ,
It selectively adsorbs N 2 from the O 2 binary gas mixture, and the co-adsorption of O 2 under air conditions is estimated to be 10% or less of the N 2 adsorption.

この吸着によるN2製造装置は中小型領域で有利と述べ
たが、1Nm3のN2を製造するのに0.75〜1KWhを必要とし、
大容量深冷分離法で製造されるN2の0.30KWnに比し消費
電力は大きい。又装置容量の増大に対するスケールメリ
ツトが少なく、300Nm3/N2/h以上の領域では深冷分離法
に競合できないといわれている。
Although N 2 production apparatus according to the adsorption mentioned advantageous in small and medium-sized region, and requires 0.75~1KWh for preparing a N 2 of 1 Nm 3,
Power than the large depth of N 2 produced by cold separation method 0.30KWn is large. In addition, it is said that there is little scale advantage with respect to an increase in apparatus capacity, and that it cannot compete with the cryogenic separation method in a region of 300 Nm 3 / N 2 / h or more.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前記従来方法には上述したような問題点があり、その
解決手段として一般的に下記のような手段が考えられる
が、その手段とても夫々別な問題点を出現する。
The above-mentioned conventional method has the above-mentioned problems, and the following means can be generally considered as means for solving the problems. However, very different problems appear for each of the means.

先ず、消費電力の低減については、送風圧力を低くし
て低圧で吸着操作を行なうことが考えられるが、N2吸着
量が圧力にほぼ比例して低下するため、装置の容量が極
めて増大するとともに製品N2濃度も激減する。次に、吸
着量の増大を図るために低温条件で吸着操作を行なうこ
とが考えられるが、この場合はN2吸着量は増大するもの
の吸着・脱着速度が著しく低下するため、同一塔長での
製品N2濃度が室温時よりもかえつて低下してしまう。又
温度の低下に伴ないN2吸着時のO2共吸着量が上昇するた
め、動力原単位の上昇及び製品N2濃度の低下が発生す
る。
First, the reduction of power consumption, it is conceivable to carry out the adsorption operation at low pressure to lower the blowing pressure, for N 2 adsorption amount is reduced substantially in proportion to the pressure, with the capacity of the apparatus is extremely increased product N 2 concentration is also drastically reduced. Then, it is conceivable to carry out the adsorption operation at a low temperature conditions in order to increase the adsorption amount, this case is because the adsorption and desorption rates of those N 2 adsorption amount to increase significantly decreases, in the same column length product N 2 concentration decreases with One place than at room temperature. In addition, as the temperature decreases, the O 2 co-adsorption amount during N 2 adsorption increases, so that the power consumption unit increases and the product N 2 concentration decreases.

〔問題点を解決するための手段〕[Means for solving the problem]

そこで本発明者は、上記欠点を改善した低温、低圧吸
着条件下での高性能なN2,O2の分離方法につき鋭意研
究、実験を進める過程で、化学式Ca43(AlO286(Si
O2108に代表されるCa−X型ゼオライトは低温、低圧
吸着条件下でN2吸着量が増大するとともに実用的な範囲
でのN2吸着速度の維持が可能であり、かつN2吸着選択性
の減少が小さいことを見出し本発明を完成するに到つた
ものである。
The inventor of the present invention has studied the method of separating N 2 and O 2 under high-temperature and low-pressure adsorption conditions, which has improved the above-mentioned disadvantages, in the course of intensive research and experiments, and found that the chemical formula Ca 43 (AlO 2 ) 86 (Si
The Ca-X type zeolite represented by O 2 ) 108 can increase the amount of N 2 adsorbed under low-temperature, low-pressure adsorption conditions, maintain the N 2 adsorption speed in a practical range, and adsorb N 2. The inventors have found that the decrease in selectivity is small, and completed the present invention.

すなわち本発明はCa−X型ゼオライトをN2吸着剤とし
て充填した少なくとも2塔以上の吸着塔に空気等のN2,O
2を主成分とする混合ガスを導き、吸着圧力1〜3atm、
吸着温度0℃〜−30℃の操作条件でN2を吸着させた後、
脱着圧力0.05〜0.5atmの操作条件でN2を脱着させること
を特徴とする窒素製造方法である。
That is, the present invention is N 2, such as air, at least two towers or more adsorption towers filled with Ca-X type zeolite as N 2 adsorbent, O
A mixture gas containing 2 as the main component is introduced, and the adsorption pressure is 1 to 3 atm,
After the N 2 adsorbed at the operating conditions of the adsorption temperature 0 ℃ ~-30 ℃,
A nitrogen production method characterized by desorbing N 2 under operating conditions of a desorption pressure of 0.05 to 0.5 atm.

本発明の好ましい態様としては、化学式Ca43(AlO2
86(SiO2108に代表されるCa−X型ゼオライト(前記
代表例のSiO2/AlO2=1.1〜1.6の範囲)を充填した少な
くとも2塔以上の吸着塔において、0℃以下の温度下
で、N2及びO2を主成分とする混合気体を大気圧以上3atm
以下で、吸着塔に流入させて該混合気体に含まれるN2
選択的に吸着させ、該吸着塔出口から酸素富化ガスを流
出させてN2を吸着した加圧条件下の塔と、0.05atm以上
0.5atm以下の減圧条件下でN2を脱着回収して再生された
減圧条件下の塔とを吸着塔の後方で連結してN2吸着塔に
残存するO2再生終了後の減圧条件にある塔に移して吸着
塔のN2濃度を向上させた後、採取したN2を吸着塔に向流
に流過したN2純度を上昇させた後、吸着塔を0.05atm以
上0.5atm以下に減圧させて高純度N2を回収するとともに
N2吸着剤を再生する方法があげられる。
In a preferred embodiment of the present invention, the chemical formula Ca 43 (AlO 2 )
86 (SiO 2 ) In at least two or more adsorption columns filled with a Ca-X type zeolite represented by 108 (the typical example of SiO 2 / AlO 2 = 1.1 to 1.6), at a temperature of 0 ° C. or less. in a mixed gas composed mainly of N 2 and O 2 or atmospheric pressure 3atm
Hereinafter, the selectively adsorbed from adsorption tower outlet of the oxygen-enriched gas pressurized condition with adsorbed N 2 by spill towers of N 2 contained in the allowed and the mixed gas flows into the adsorption tower, 0.05atm or more
Under the reduced pressure condition of 0.5 atm or less, N 2 is desorbed and recovered and the tower under the reduced pressure condition regenerated is connected at the back of the adsorption tower and the N 2 adsorption tower remains under the reduced pressure condition after the completion of O 2 regeneration after improving the N 2 concentration in the adsorption tower and transferred to the tower, vacuum harvested N 2 after raising the N 2 purity spent flow countercurrent to the adsorption tower, the adsorption tower below or 0.05 atm 0.5 atm To recover high-purity N 2
There is a method of regenerating the N 2 adsorbent.

〔実施例〕〔Example〕

以下本発明の方法について実施例により詳細に説明す
る。
Hereinafter, the method of the present invention will be described in detail with reference to examples.

本発明の有効性を実証するため第1図に示す窒素製造
装置で空気からのN2の吸着分離をCa43(AlO286(Si
O2108の化学式を有するCa−X型ゼオライトで試み
た。
In order to demonstrate the effectiveness of the present invention, the adsorption and separation of N 2 from air was performed using Ca 43 (AlO 2 ) 86 (Si
O 2 ) An attempt was made with a Ca-X type zeolite having a chemical formula of 108 .

以下第1図に基づいて実施した内容を説明する。 Hereinafter, the contents performed based on FIG. 1 will be described.

入口側ライン1を通じて圧縮機2で1.05〜3atmに加圧
された空気は、流路3aから脱湿脱CO2塔4a,4bに入り、極
めて清浄な加圧空気となる。流路3bの後流に設置された
熱交換器5で清浄空気と回収された冷却状態にある酸素
富化空気の間で冷熱の回収が行なわれた後、開状態のバ
ルブ6aを通じて熱交換器7に至る。
Air pressurized to 1.05~3atm by the compressor 2 through the inlet side line 1, dehumidification de CO 2 column 4a from the channel 3a, enters 4b, a very clean pressurized air. After the cold heat is recovered between the clean air and the recovered oxygen-enriched air in the cooled state in the heat exchanger 5 installed downstream of the flow path 3b, the heat exchanger is opened through the valve 6a in the open state. Reaches 7.

熱交換器7では空気と冷却状態の脱着N2の間で冷熱の
回収が行なわれ、その後空気はフレオン冷凍機8と直結
したフレオン蒸発器9で最寒冷温度に到達して吸着塔10
aに入る。
In the heat exchanger 7, cold heat is recovered between the air and the desorbed N 2 in the cooled state. After that, the air reaches the coldest temperature in the Freon evaporator 9 directly connected to the Freon refrigerator 8, and the adsorption tower 10
Enter a.

吸着塔10aに入つた加圧空気はN2吸着剤11aでN2が吸着
されて後方に行くに従がいO2濃度が上昇する。この酸素
富化空気は開状態のバルブ12a、流路13を通じて系外に
放出される。この時他のN2吸着塔10bは後述するよう
に、製品N2回収が終了し吸着剤11bは再生されて吸着塔1
0bは最とも減圧状態にある。ここでバルブ6a,6b,12a,12
b,14a,14b,15a,15bを閉、バルブ12cを開とすると流路16
を通じて吸着塔10aの圧力は降下し、吸着塔10bの圧力は
上昇し均圧化する。吸着塔10aに残留するO2は圧力の降
下とともに吸着塔10bに移り、吸着剤11aからはN2が放出
されて吸着塔のN2濃度は上昇する。この時の圧力をPE
吸着工程の終了圧力をPA、再生工程の終了圧力をPDとす
ると、PEとなる。ここでPE>1ならばバルブ12aを開き流路13を
通じて吸着塔10aの残留O2を系外に放出する。またPE
1ならばバルブ15aを開き流路17を通じて製品N2タンク1
8から吸着塔10aにN2を導きPE=1とする。吸着塔10aに
関してバルブ15a,12aを開いて製品N2タンク16から流路1
7を通じて吸着塔10aに製品N2を流過すると残存する微量
のO2も流路13から系外に放出される。
NyuTsuta pressurized air to the adsorption tower 10a is N 2 in N 2 adsorbent 11a there is従Gai O 2 concentration toward the rear are adsorbed increases. This oxygen-enriched air is discharged out of the system through the valve 12a and the flow path 13 in the open state. At this time, as will be described later, the other N 2 adsorption tower 10b finishes recovering the product N 2 and regenerates the adsorbent 11b to
0b is at the lowest pressure. Where valves 6a, 6b, 12a, 12
When b, 14a, 14b, 15a, 15b are closed and valve 12c is opened,
The pressure in the adsorption tower 10a drops, and the pressure in the adsorption tower 10b rises and equalizes. O 2 remaining in the adsorption tower 10a passes to the adsorption column 10b with drop in pressure, N 2 concentration in the adsorption tower N 2 is released from the adsorbent 11a is increased. The pressure at this time is P E ,
If the end pressure of the adsorption step is P A and the end pressure of the regeneration step is P D , P E Becomes Here, if P E > 1, the valve 12a is opened and the residual O 2 in the adsorption tower 10a is discharged to the outside through the flow path 13. Also P E <
Product N 2 tank 1 through 1 if channel 17 by opening the valve 15a
From N8, N 2 is led to the adsorption tower 10a, and P E = 1. Channel 1 from the product N 2 tank 16 by opening valve 15a, and 12a with respect to the adsorption tower 10a
O 2 remaining traces of the flow through the product N 2 adsorption tower 10a through 7 is also released from the channel 13 to the outside of the system.

この後バルブ14aを開、バルブ6a、12a、12c、15aを閉
じて真空ポンプ19で吸着塔10aを減圧条件に導くと高純
度N2が製品N2タンク18に回収される。なお、吸着塔10a,
10bは−15℃にフレオン冷凍機で冷やしておくため、保
冷庫20で覆われている。
Thereafter, when the valve 14a is opened, the valves 6a, 12a, 12c, and 15a are closed and the adsorption tower 10a is brought into a reduced pressure condition by the vacuum pump 19, high-purity N 2 is recovered in the product N 2 tank 18. The adsorption tower 10a,
10b is covered with a cool box 20 to be cooled to −15 ° C. by a Freon refrigerator.

この後同様の操作を吸着塔10bについて行ない、1塔
がN2吸着工程にある時に、他塔が製品N2パージ、減圧N2
回収を行なうように操作を行ない、これを交互に行なう
ことで連続的かつ高純度にN2を回収することができる。
Performed for the adsorption column 10b the same operation thereafter, when one column is in the N 2 adsorption step, the other tower product N 2 purge, vacuum N 2
An operation is performed so as to perform recovery, and by performing the operation alternately, N 2 can be recovered continuously and with high purity.

冷熱の使用について言及すると入口空気と酸素富化空
気、入口空気と脱着N2との間の熱交換により冷熱の90%
程度は回収されるためフレオン冷凍機8は極めて小さく
てすむ。
When referring to the use of cold inlet air and oxygen-enriched air, cold 90% by the heat exchange between the inlet air and desorption N 2
Since the freon refrigerator 8 is recovered to a certain extent, the freon refrigerator 8 can be extremely small.

以上の操作方法で第1図に示したN2吸着装置でN2製造
を行なつた。装置の操作諸元を第1表に示す。
With the above operation method, N 2 was produced by the N 2 adsorption apparatus shown in FIG. Table 1 shows the operation specifications of the apparatus.

第1表の操作条件で空気からO2,N2を分離した。この
時の結果を第2図乃至第10図に要約する。以下第2図か
らCa−X型ゼオライトによる空気からの圧力スイング式
N2吸着分離の従来のNa−A型ゼオライトの60〜70%Ca交
換体(以下Ca2/3−Na1/3−Aと記す)によるN2製造に対
する主たる改善点を説明する。
Under the operating conditions shown in Table 1, O 2 and N 2 were separated from air. The results at this time are summarized in FIG. 2 to FIG. From Fig.2, pressure swing type from air by Ca-X type zeolite
N 2 illustrating the major improvement over N 2 production by 60 to 70% Ca exchanger in conventional Na-A type zeolite (hereinafter referred to as Ca2 / 3-Na1 / 3- A) adsorptive separation.

第2図は吸着温度と製品N2濃度との関係を示す図で、
横軸は吸着温度(℃)、縦軸は製品N2濃度(Vol%)で
ある。吸着剤としてCa−X及びCa2/3−Na1/3−Aを使用
し、吸着圧力1.2atm再生圧力0.1atmに設定してある。な
お、第2図乃至第10図の○印はCa−Xを●印はCa2/3−N
a1/3−Aを表わす。
FIG. 2 is a diagram showing the relationship between the adsorption temperature and the product N 2 concentration.
The horizontal axis is the adsorption temperature (° C.), and the vertical axis is the product N 2 concentration (Vol%). Ca-X and Ca2 / 3-Na1 / 3-A were used as the adsorbent, and the adsorption pressure was set at 1.2 atm and the regeneration pressure was set at 0.1 atm. In FIGS. 2 to 10, a circle indicates Ca-X and a circle indicates Ca2 / 3-N.
represents a1 / 3-A.

真空ポンプによる採取N2量をGD(Nl).製品として取
り出すN2量をGR(Nl)、パージ用に吸着塔にもどすN2
をGP(Nl)とするとパージ率R(%)は となる、ここではハーフサイクルタイム80秒、パージ率
50%として、製品N2を毎時55Nm3/h採取した。
The amount of N 2 collected by the vacuum pump is G D (Nl). The N 2 amount taken out as a product G R (Nl), when the N 2 volume returned to the adsorption tower to purge the G P (Nl) purge rate R (%) is Where the half cycle time is 80 seconds and the purge rate
Assuming 50%, product N 2 was collected at 55 Nm 3 / h per hour.

第2図で判るようにCa2/3−Na1/3−Aは25℃で最高値
を示すがN2濃度は96%にとどまる。Ca−Xでは25℃では
95.5程度とCa2/3−Na1/3−Aよりもむしろ低いのに対し
て、0℃では98.5%を超え、−15℃では99.5%に達し、
−30℃までほぼ一定値を示し−40℃以下では減少する。
It is a Ca2 / 3-Na1 / 3- A , as seen in Figure 2 shows the highest value at 25 ° C. N 2 concentration remains at 96%. At 25 ° C for Ca-X
While it is about 95.5 and lower than Ca2 / 3-Na1 / 3-A, it exceeds 98.5% at 0 ° C and reaches 99.5% at -15 ° C.
The value is almost constant up to -30 ° C and decreases below -40 ° C.

第3図は吸着圧力と製品N2濃度との関係を示す図で、
横軸は吸着圧力(atm)、縦軸は製品N2濃度(Vol%)を
示す。吸着剤としてはCa−X,Ca2/3−Na1/3−Aを使用
し、Ca−Xについては吸着温度−15℃,Ca2/3−Na1/3−
Aについては25℃を選定している。その他再生圧力、ハ
ーフサイクルタイム、パージ率については第2図の条件
と同一である。吸着圧力については両者とも3atm程度で
N2濃度はほぼ飽和する。
FIG. 3 is a diagram showing the relationship between the adsorption pressure and the product N 2 concentration.
The horizontal axis shows the adsorption pressure (atm), the vertical axis products N 2 concentration (Vol%). As the adsorbent, Ca-X, Ca2 / 3-Na1 / 3-A was used. For Ca-X, the adsorption temperature was −15 ° C., and the Ca2 / 3-Na1 / 3-− was used.
For A, 25 ° C is selected. Other conditions such as the regeneration pressure, half cycle time, and purge rate are the same as those in FIG. The adsorption pressure is about 3 atm for both.
N 2 concentration is nearly saturated.

第4図は吸着圧力と製品N2回収率との関係を示す図で
あり、操作条件は第3図と全く同様である。製品N2回収
率R(%)は で定義している。吸着圧力の上昇とともに製品N2回収率
は幾分低下する。
Figure 4 is a diagram showing the relation between the adsorption pressure and the product N 2 recovery, operating conditions are exactly the same as Figure 3. Product N 2 recovery rate R (%) Defined in Product N 2 recovery with increasing adsorption pressure is somewhat reduced.

第3図、第4図で判るように吸着圧力3atm以上でのN2
製造は効果的でないことが判る。
As can be seen from FIGS. 3 and 4, N 2 at an adsorption pressure of 3 atm or more is used.
Manufacturing proves ineffective.

第5図は脱着圧力(再生圧力)(atm)と製品N2濃度
(Vol%)との関係を示す図でありCa−Xについては−1
5℃,Ca2/3−Na1/3−Aについては25℃に吸着濃度を設定
している。吸着圧力を1.2atmに固定し脱着圧力の影響を
調べた。その他の条件は第3図の条件と同一である。脱
着圧力の低下にともない製品N2濃度は著しく上昇する。
但し0.05atm以下での脱着は真空ポンプ動力の大幅な増
大をともなうため経済的ではない。
FIG. 5 is a diagram showing the relationship between the desorption pressure (regeneration pressure) (atm) and the product N 2 concentration (Vol%).
The adsorption concentration is set at 25 ° C for 5 ° C and Ca2 / 3-Na1 / 3-A. The adsorption pressure was fixed at 1.2 atm and the effect of desorption pressure was investigated. Other conditions are the same as those in FIG. Product N 2 concentration with the decrease of the desorption pressure is markedly increased.
However, desorption at 0.05 atm or less is not economical because it requires a large increase in vacuum pump power.

第6図は脱着圧力(atm)と製品N2回収率(%)との
関係を示す図であり吸着剤、操作条件とも第5図と全く
同一である。脱着圧力の低下にともない大幅に製品N2
収率は増大する。
FIG. 6 is a diagram showing the relationship between the desorption pressure (atm) and the product N 2 recovery rate (%), and the adsorbent and operating conditions are exactly the same as in FIG. As the desorption pressure decreases, the product N 2 recovery rate greatly increases.

第7図はパージ率(%)と製品N2濃度(Vol%)との
関係を示す図であり、横軸はパージ率(%)、縦軸は製
品N2濃度(Vol%)を表わす。吸着剤Ca−Xについては
吸着濃度−15℃,Ca2/3−Na1/3−Aについては吸着温度2
5℃、吸着圧力1.2atm、脱着圧力0.2atm、ハーフサイク
ルタイム80sec、に操作条件は設定してある。第7図で
判るようにパージ率の増大で大幅にN2濃度が増大する事
が判る。
FIG. 7 is a diagram showing the relationship between the purge rate (%) and the product N 2 concentration (Vol%), the horizontal axis represents the purge rate (%), the vertical axis represents the product N 2 concentration (Vol%). Adsorption concentration of -15 ° C for Ca-X adsorbent, adsorption temperature of 2 for Ca2 / 3-Na1 / 3-A
Operating conditions are set at 5 ° C., an adsorption pressure of 1.2 atm, a desorption pressure of 0.2 atm, and a half cycle time of 80 sec. As can be seen from FIG. 7, it can be seen that the N 2 concentration is greatly increased by increasing the purge rate.

第8図はパージ率と製品N2回収率との関係を示す図
で、横軸はパージ率(%)、縦軸は製品N2回収率(%)
を示す。当然のことながらパージ率の増大にともない回
収率は低下するため、パージ率50%付近が製品N2濃度、
製品N2回収率の両者を併せ考えると最適と思われる。
FIG. 8 is a graph showing the relationship between the purge rate and the product N 2 recovery rate. The horizontal axis represents the purge rate (%), and the vertical axis represents the product N 2 recovery rate (%).
Is shown. Naturally for recovery with an increase of the purge rate is decreased, near the purge rate 50% product N 2 concentration,
It seems to be optimal considering both the product N 2 recovery rate.

第9図は製品N2濃度と1Nm3のN2を製造するのに必要な
消費電力を表わす動力原単位との関係を示す図で、横軸
は製品N2濃度(Vol%)、縦軸は動力原単位(KWh/Nm3
N2)を表わす。操作条件は第2図と同一である。製品N2
濃度の低下にともない消費電力は激減し、イナートガス
等低濃度N2製造に最適なことが判るとともに、N2濃度9
9.5%でも0.2KWh/Nm3−N2と深冷分離装置の0.25KWh/Nm3
−N2、従来型のPSA−N2(Ca2/3−Na1/3−A使用、25
℃)の0.6KWh/Nm3−N2を下廻り極めて消費電力の少ない
装置である。
Figure 9 is a graph showing the relationship between power per unit representing the power consumption required to produce the N 2 product N 2 concentration and 1 Nm 3, the horizontal axis represents the product N 2 concentration (Vol%), vertical axis Is the power consumption unit (KWh / Nm 3
N 2 ). The operating conditions are the same as in FIG. Product N 2
Power along with the reduction of the concentration was depleted, with apparent optimum that a low concentration N 2 production and the like inert gas, N 2 concentration of 9
Even 9.5% 0.2KWh / Nm 3 -N 2 and 0.25KWh / Nm 3 of the cryogenic separation unit
−N 2 , conventional PSA-N 2 (using Ca2 / 3-Na1 / 3-A, 25
℃) below 0.6KWh / Nm 3 -N 2 and extremely low power consumption.

第10図は製品N2濃度と1TONの吸着剤で1時間当りN2
製造する能力の関係を示す図で、横軸は製品N2濃度(Vo
l%)、縦軸は1TONの吸着剤による毎時のN2製造量(Nm3
−N2/TON/h)である。吸着剤、操作条件とも第9図と同
一である。製品N2濃度の低下にともないN2製造量は大幅
に上昇する。又、従来型PSA−N2の約3倍のN2製造量を
有することが判る。
Fig. 10 is a graph showing the relationship between the product N 2 concentration and the ability to produce N 2 per hour with 1TON of adsorbent. The horizontal axis is the product N 2 concentration (Vo
l%), N 2 production amount per hour by the adsorbent and the vertical axis 1 ton (Nm 3
−N 2 / TON / h). The adsorbent and operating conditions are the same as in FIG. N 2 production amount due to reduction of the product N 2 concentration is significantly increased. Further, it is understood to have about three times the N 2 production amount of conventional PSA-N 2.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したように従来のPSA−N2及び大容量N
2製造においてよく使用されている深冷法に対しても本
発明は優位性のあることが判る。すなわち本発明は所要
の動力原単位及び吸着剤量が従来の吸着剤法に比べ少な
く、産業上非常に有用な混合気体からの窒素の分離方法
を提案するものである。
As described in detail above, the conventional PSA-N 2 and the large capacity N
2 It can be seen that the present invention is superior to the cryogenic method often used in production. That is, the present invention proposes a method for separating nitrogen from a mixed gas which is very useful in industry because the required power consumption and the amount of adsorbent are smaller than those of the conventional adsorbent method.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例である窒素製造装置の系統
図、第2図は吸着温度と製品N2濃度との関係図、第3図
は吸着圧力と製品N2濃度との関係図、第4図は吸着圧力
と製品N2回収率との関係図、第5図は脱着圧力と製品N2
濃度との関係図、第6図は脱着圧力と製品N2回収率との
関係図、第7図はパージ率と製品N2濃度との関係図、第
8図はパージ率と製品N2回収率との関係図、第9図は製
品N2濃度と動力原単位との関係図、第10図は製品N2濃度
とN2製造能力との関係図である。
FIG. 1 is a system diagram of a nitrogen production apparatus according to one embodiment of the present invention, FIG. 2 is a diagram showing a relationship between adsorption temperature and product N 2 concentration, and FIG. 3 is a diagram showing a relationship between adsorption pressure and product N 2 concentration. , Figure 4 is graph showing the relationship between the adsorption pressure and the product N 2 recovery, Fig. 5 desorption pressure and the product N 2
Graph showing the relationship between concentration, FIG. 6 is graph showing the relationship between the desorption pressure and the product N 2 recovery, FIG. 7 is graph showing the relationship between the purge rate and the product N 2 concentration, FIG. 8 is the purge rate and product N 2 recovery FIG. 9 is a diagram showing the relationship between the product N 2 concentration and the power consumption unit, and FIG. 10 is a diagram showing the relationship between the product N 2 concentration and the N 2 production capacity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金子 祥三 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (72)発明者 佐藤 進 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (72)発明者 久留 長生 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (72)発明者 甲斐 徳親 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (56)参考文献 特開 昭60−96507(JP,A) ────────────────────────────────────────────────── ─── Continuing on the front page (72) Shozo Kaneko 1-1, Akunoura-cho, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Susumu Sato 1-1-1, Akunoura-cho, Nagasaki-shi, Nagasaki Mitsubishi In Nagasaki Shipyard, Heavy Industries, Ltd. (72) Nagao Kurume, Inventor 1-1, Akunoura-cho, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd.- Nagasaki Shipyard (72) Inventor 1-1, Akunoura-cho, Nagasaki, Nagasaki, Japan Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (56) References JP-A-60-96507 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ca−X型ゼオライトをN2吸着剤として充填
した少なくとも2塔以上の吸着塔に空気等のN2,O2を主
成分とする混合ガスを導き、吸着圧力1〜3atm、吸着温
度0℃〜−30℃の操作条件でN2を吸着させた後、脱着圧
力0.05〜0.5atmの操作条件でN2を脱着させることを特徴
とする窒素製造方法。
1. A mixed gas mainly composed of N 2 and O 2 such as air is introduced into at least two or more adsorption columns filled with a Ca-X type zeolite as an N 2 adsorbent, and an adsorption pressure of 1 to 3 atm. after the N 2 adsorbed at the operating conditions of the adsorption temperature 0 ℃ ~-30 ℃, nitrogen producing method characterized by desorbing N 2 at operating conditions of the desorption pressure 0.05~0.5Atm.
JP62295189A 1987-11-25 1987-11-25 Nitrogen production method Expired - Fee Related JP2596952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62295189A JP2596952B2 (en) 1987-11-25 1987-11-25 Nitrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62295189A JP2596952B2 (en) 1987-11-25 1987-11-25 Nitrogen production method

Publications (2)

Publication Number Publication Date
JPH01138106A JPH01138106A (en) 1989-05-31
JP2596952B2 true JP2596952B2 (en) 1997-04-02

Family

ID=17817355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62295189A Expired - Fee Related JP2596952B2 (en) 1987-11-25 1987-11-25 Nitrogen production method

Country Status (1)

Country Link
JP (1) JP2596952B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698013A (en) * 1994-03-18 1997-12-16 Uop Nitrogen-selective zeolitic adsorbent for use in air separation process
US5454857A (en) * 1994-03-18 1995-10-03 Uop Air separation process
DE19518407A1 (en) * 1995-05-19 1996-11-21 Bayer Ag Process for the adsorptive oxygen enrichment of air with mixtures of molecular sieve zeolites
CN1133490C (en) * 1995-09-27 2004-01-07 环球油品公司 Nitrogen-selective zeolitic adsorbent for use in air separation process
JPH1192110A (en) * 1997-09-12 1999-04-06 Ishikawajima Harima Heavy Ind Co Ltd Ozone adsorbing-desorbing unit and method for controlling temperature of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096507A (en) * 1983-10-27 1985-05-30 Zenji Hagiwara Selective concentration of oxygen gas by adsorption

Also Published As

Publication number Publication date
JPH01138106A (en) 1989-05-31

Similar Documents

Publication Publication Date Title
KR930010762B1 (en) Preliminary refining method of seperating air
EP0349655A1 (en) Process for separating and recovering carbonic acid gas from gas mixture by adsorption
JPS63166702A (en) Concentration of oxygen gas
NO317783B1 (en) Decarbonation of gas streams using zeolite adsorbents
JPH0459926B2 (en)
EP0453202B1 (en) Pre-purification of air for separation
TW201730102A (en) Method for argon production via cold pressure swing adsorption
JPS63278520A (en) Improved adsorptive refining method
US5931022A (en) Air purification process with thermal regeneration
JP2596952B2 (en) Nitrogen production method
GB2109266A (en) Pressure swing process for the separation of gas mixtures by adsorption
JPS6137970B2 (en)
JPH0530762B2 (en)
JPS63107720A (en) Method for separating and removing water content and carbon dioxide gas in air
JPH0455964B2 (en)
JPH0825727B2 (en) Nitrogen production method
JPH0378126B2 (en)
JPS59179127A (en) Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressure
JPH06178933A (en) Oxygen adsorbent and separation of oxygen and nitrogen
JPS621767B2 (en)
EP1254695A1 (en) Process for removing carbon dioxide and water vapour from a feed gas
JPH0768041B2 (en) Oxygen-enriched gas manufacturing method
JPH0768042B2 (en) High-purity oxygen production method
JPH06178934A (en) Oxygen adsorbent and separation of oxygen and nitrogen
JPH0455965B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees