JPH0378126B2 - - Google Patents

Info

Publication number
JPH0378126B2
JPH0378126B2 JP59103506A JP10350684A JPH0378126B2 JP H0378126 B2 JPH0378126 B2 JP H0378126B2 JP 59103506 A JP59103506 A JP 59103506A JP 10350684 A JP10350684 A JP 10350684A JP H0378126 B2 JPH0378126 B2 JP H0378126B2
Authority
JP
Japan
Prior art keywords
adsorption
adsorbent
pressure
air
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59103506A
Other languages
Japanese (ja)
Other versions
JPS60246205A (en
Inventor
Hiroyuki Tsutaya
Jun Izumi
Seiichi Shirakawa
Juji Tokita
Takei Kubo
Kenichi Maehara
Hiroshi Onoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59103506A priority Critical patent/JPS60246205A/en
Publication of JPS60246205A publication Critical patent/JPS60246205A/en
Publication of JPH0378126B2 publication Critical patent/JPH0378126B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は空気等のO2、N2を主成分とする混合
気体より選択的にN2を吸着するN2吸着剤を使用
してのO2製造方法に於いて、再生工程時のN2
有する寒冷熱を蓄冷材と接触せしめて回収し、そ
の後昇温したN2と脱湿用吸着剤とを接触せしめ
て脱湿用吸着剤をも再生する事を特徴とするO2
製造装置の脱湿・冷熱回収方法に関するものであ
る。 〔従来の技術〕 N2吸着剤を利用した空気からのO2、N2吸着分
離法は、装置が小型簡易であり、又無人運転に近
い殆ど保守を必要としない利点をもつ為、O2
造量10〜3000Nm3−O2/h程度の中小型装置と
して近年使用例が増えてきており、深冷分離装置
で作られる液体酸素を輸送して使用するケースに
ついての代替が進行している。 この装置の代表的なものの概要を述べると、装
置は空気圧縮器、及び2塔又はそれ以上のN2
着塔、又場合によつては真空ポンプ等から構成さ
れる。この装置において、1塔に圧縮空気を送る
と、充填されたN2吸着剤により空気中のN2は吸
着除去されて、残る高圧O2は吸着塔の後方に流
出し回収される。一方、他塔では吸着したN2
減圧条件で放出させ(時として製品O2の一部を
向流で流すとか、真空ポンプで強力にN2を除去
する方法もとられる)再生する。これを交互にく
り返して連続的にO2、N2を分離する。上記の吸
着塔に充填していたN2吸着剤の代表的なものは、
ユニオンカーバイド社により実用化されたNa−
A型ゼオライトの60〜70%Ca交換体であり、O2
N2 2成分混合ガスからN2を選択的に吸着する
ものであつて、空気条件下でのO2の共吸着はN2
吸着の10%以下と推定される。 この吸着によるO2、N2分離装置は中小型領域
で有利と前述したが、1Nm3のO2を製造するのに
0.75〜1Kwhを必要とし、大容量深冷分離法で製
造されるO2の0.45Kwhに比し消費電力は大きい。
又装置容量の増大に対するスケールメリツトが少
く、3000Nm3−O2/h以上の領域では深冷分離
法に競合できないといわれている。 従つて、これら欠点についての改善方法が種々
考えられるが、本発明に関連して改善方法を述べ
ると以下のような障害が通常出現する。 先ず、消費電力の低減については、送風圧力を
低くして低圧で吸着操作を行なう事が考えられる
が、N2吸着量が圧力にほぼ比例して低下する為、
装置の容量が極めて増大する。次に、吸着量の増
大を図る為に、低温条件で吸着操作を行なう事が
考えられるが、この場合はN2吸着量は増大する
ものの吸着・脱着速度が著しく低下する為、同一
塔長での製品O2濃度が室温時よりもかえつて低
下してしまう。又温度の低下に伴ないN2吸着時
のO2共吸着量が上昇する為、動力原単位が漸次
上昇する。 〔先願発明〕 そこで既に本発明者らは、上記欠点を改善した
低温、低圧吸着条件下での高性能なO2、N2の分
離方法につき鋭意研究、実験を進める過程で、ゼ
オライト系吸着剤時にNa−X型ゼオライトに代
表される鉱物名ナトリウムフアウジアサイトを充
填したN2吸着塔又はN2吸着塔の前方のO2濃度の
低い領域にCa2/3−Na1/3−A、後方の高O2
濃度域にNa−Xを充填したNa吸着塔が低温、低
圧吸着条件下でN2吸着量が増大するとともに実
用的な範囲でのN2吸着速度の維持が可能であり、
かつN2吸着選択性の減少が小さいことを見出し、
これに基づいた発明を既に特願昭58−54626号、
特願昭58−232348号及び特願昭58−204408号とし
て出願した。 以下、特願昭58−54626号に開示した発明の一
実施例について第3図を用いて説明する。 入口側ライン1を通じて圧縮機2で1.05〜3ata
に加圧された空気は、流路3から脱湿塔4に入
り、極めて清浄な加圧空気となる。流路3′の後
流に設置されたバルブ5は開となつており、清浄
な加圧空気は流路6及び開状態のバルブ7を通じ
て吸着塔8に入る。吸着塔8に入つた加圧空気は
N2吸着剤9でN2が吸着除去されて後方に行くに
従がいO2濃度が上昇する。この後加圧空気は開
状態のバルブ10,11,12及びバルブ11,
12の間に挿入された製品O2タンク13を通じ
て製品O2として回収される。一方製品O2の一部
は流路14の途中にある減圧弁15で減圧され
て、開状態のバルブ10′を通じて吸着塔8′に入
り吸着塔8′は開状態のバルブ16及び流路17
を通じて連結された真空ポンプ18で減圧されひ
かれており、この為吸着塔8′は空気流れと反対
方向に製品O2の一部が負圧状態で流れ、吸着塔
8′中の吸着剤9′に吸着されていたN2は容易に
離脱され吸着剤9′は短時間で再生される。吸着
塔8のN2吸着剤9が飽和し、一方吸着塔8′の
N2吸着剤9′からN2が離脱して再生が済むと、
入口空気の流路6を6′に切り換え、今迄述べた
方法を交互に行なうと製品O2が連続的に回収で
きる。なお、入口の清浄な加圧空気のライン3′
と離脱N2を主成分とするガスライン17の間は
熱交換器19で、熱交換可能となつており、製品
O2ライン21と流路3′との間も又熱交換器22
で熱交換可能となつている。又流路3′には圧縮
式冷凍機20が設置されている為、極めて能率的
に吸着塔8及び8′は冷却され低温条件に設定さ
れる。なお、吸着塔の切り換えにあたつては、単
純に流路6から6′へ(又はその逆)切り換える
だけでなく、切り換え直後の昇圧に伴なう入口空
気の吹きぬけを防ぎかつ、吸着塔の後方に残存す
るO2及び前方の加圧空気の系外への放出を最小
にする為、先ず、バルブ10,15,10′を全
開にして吸着直後の吸着塔8の後方の残存O2
再生直後の吸着塔8′に一部移す。この時吸着塔
8の圧力をP0(ata)吸着塔8′の圧力をP1(ata)
とすると、均圧後の圧力は約P0+P1/2(ata)と なる。この後約P0+P1/2(ata)となつた吸着塔 8′はバルブ10,11′を開として製品O2タン
ク13と吸着塔を均圧化して吸着塔8′を更に高
圧のO2で満たす。製品O2タンク13との均圧時
の圧力P2(ata)は吸着塔8,8′の死容量(吸着
塔内の吸着剤で占められていない空間の容積)を
V1(l)、製品O2タンクの容量をV2(l)とし、
均圧前の製品O2タンク13の圧力をP0(ata)に
ほぼ等しいとすると、均圧化圧力P2(ata)は、
概略 P2=P0+P1/2V1+P0V2/V1+V2 となり、単に塔を切り換える時のP1(ata)から
P0(ata)への急速な昇圧に比べ、以上の操作で
はP1(ata)、P0+P1/2(ata)、P2(ata)、P0(ata
) とゆるやかに昇圧する為、昇圧時の空気の吹き抜
けを防止しつつ、脱着工程での残存O2、高圧空
気の系外への放出を最小にする様な対策が可能と
なつている。 以上の操作方法で第3図に示した空気分離装置
で空気分離を行なつた。装置の操作諸元を第1表
に示す。
[Industrial Application Field] The present invention relates to an O 2 production method using an N 2 adsorbent that selectively adsorbs N 2 from a mixed gas mainly composed of O 2 and N 2 such as air. The feature is that the cold heat possessed by N 2 during the regeneration process is recovered by contacting with a cold storage material, and then the heated N 2 is brought into contact with a dehumidifying adsorbent to regenerate the dehumidifying adsorbent as well. and O 2
The present invention relates to a method for dehumidifying and recovering cold heat from manufacturing equipment. [Prior art] O 2 and N 2 adsorption separation method from air using N 2 adsorbent has the advantage that the equipment is small and simple and requires almost no maintenance, which is close to unmanned operation. In recent years, the use of small and medium-sized equipment with a production capacity of 10 to 3000Nm 3 -O 2 /h has been increasing, and alternatives to cases in which liquid oxygen produced in cryogenic separation equipment is transported and used are progressing. . To give an overview of a typical device, the device consists of an air compressor, two or more N 2 adsorption towers, and in some cases a vacuum pump. In this device, when compressed air is sent to one tower, the N 2 in the air is adsorbed and removed by the N 2 adsorbent filled, and the remaining high-pressure O 2 flows out to the rear of the adsorption tower and is recovered. On the other hand, in other towers, the adsorbed N 2 is released under reduced pressure conditions (sometimes a part of the product O 2 is flowed in a countercurrent, or a vacuum pump is used to powerfully remove N 2 ) for regeneration. This is repeated alternately to continuously separate O 2 and N 2 . Typical N 2 adsorbents packed in the adsorption towers mentioned above are:
Na−, which was put into practical use by Union Carbide
It is a 60-70% Ca exchanger of type A zeolite, and contains O 2 ,
It selectively adsorbs N 2 from a two-component mixed gas, and the co-adsorption of O 2 under air conditions is
Estimated to be less than 10% of adsorption. As mentioned above, this adsorption-based O 2 and N 2 separation device is advantageous in small and medium-sized areas, but it is difficult to produce 1Nm 3 of O 2 .
It requires 0.75 to 1Kwh, which is higher than the 0.45Kwh of O 2 produced by large-capacity cryogenic separation.
Furthermore, it is said that there is little merit of scale for increasing the capacity of the equipment, and that it cannot compete with the cryogenic separation method in the region of 3000 Nm 3 -O 2 /h or more. Therefore, various methods for improving these drawbacks are conceivable, but when describing the improvement methods in relation to the present invention, the following obstacles usually appear. First, to reduce power consumption, it is possible to lower the blowing pressure and perform adsorption operation at low pressure, but since the amount of N2 adsorption decreases almost in proportion to the pressure,
The capacity of the device increases significantly. Next, in order to increase the amount of adsorption, it is possible to perform the adsorption operation under low temperature conditions, but in this case, although the amount of N 2 adsorbed increases, the adsorption/desorption rate will decrease significantly, so it is possible to On the contrary, the product O 2 concentration will be lower than at room temperature. Furthermore, as the temperature decreases, the amount of O 2 co-adsorbed during N 2 adsorption increases, so the power consumption rate gradually increases. [Prior application invention] Therefore, the present inventors have already developed a zeolite-based adsorption method in the process of conducting intensive research and experiments on a high-performance O 2 and N 2 separation method under low temperature and low pressure adsorption conditions that improves the above-mentioned drawbacks. Ca2 / 3-Na1 / 3 - A, rear high o 2
The Na adsorption tower filled with Na-X in the concentration range increases the amount of N 2 adsorption under low temperature and low pressure adsorption conditions, and can maintain the N 2 adsorption rate within a practical range.
and found that the decrease in N 2 adsorption selectivity was small,
An invention based on this has already been published in Japanese Patent Application No. 58-54626.
The patent applications were filed as Japanese Patent Application No. 58-232348 and Japanese Patent Application No. 58-204408. An embodiment of the invention disclosed in Japanese Patent Application No. 58-54626 will be described below with reference to FIG. 1.05 to 3 ata in compressor 2 through inlet side line 1
The pressurized air enters the dehumidification tower 4 through the flow path 3 and becomes extremely clean pressurized air. The valve 5 installed downstream of the flow path 3' is open, and clean pressurized air enters the adsorption tower 8 through the flow path 6 and the open valve 7. The pressurized air that entered the adsorption tower 8
N 2 is adsorbed and removed by the N 2 adsorbent 9, and the O 2 concentration increases as it moves toward the rear. After this, the pressurized air is supplied to the valves 10, 11, 12 and 11 in the open state.
The product O 2 is recovered as product O 2 through the product O 2 tank 13 inserted between 12 and 12 . On the other hand, a part of the product O 2 is depressurized by the pressure reducing valve 15 located in the middle of the flow path 14, and enters the adsorption tower 8' through the open valve 10', and the adsorption tower 8' passes through the open valve 16 and the flow path 17.
The pressure is reduced by a vacuum pump 18 connected through the adsorption tower 8', so that part of the product O 2 flows in the opposite direction to the air flow in the adsorption tower 8' under negative pressure, and the adsorbent 9' in the adsorption tower 8' The N 2 adsorbed on the adsorbent 9' is easily released and the adsorbent 9' is regenerated in a short time. The N 2 adsorbent 9 of the adsorption tower 8 is saturated, while the N 2 adsorbent 9 of the adsorption tower 8' is saturated.
When N 2 is released from the N 2 adsorbent 9' and regeneration is completed,
By switching the inlet air flow path 6 to 6' and performing the methods described so far alternately, product O 2 can be continuously recovered. In addition, the clean pressurized air line 3' at the inlet
A heat exchanger 19 is installed between the gas line 17 and the gas line 17 whose main component is separated N2 .
There is also a heat exchanger 22 between the O2 line 21 and the flow path 3'.
heat exchange is possible. Furthermore, since a compression refrigerator 20 is installed in the flow path 3', the adsorption towers 8 and 8' are extremely efficiently cooled and set to a low-temperature condition. When switching the adsorption tower, it is important not only to simply switch from flow path 6 to 6' (or vice versa), but also to prevent the inlet air from blowing through due to pressure increase immediately after switching, and to In order to minimize the release of the O 2 remaining at the rear and the pressurized air at the front to the outside of the system, first, the valves 10, 15, and 10' are fully opened to remove the O 2 remaining at the rear of the adsorption tower 8 immediately after adsorption. A portion is transferred to the adsorption tower 8' immediately after regeneration. At this time, the pressure of adsorption tower 8 is P 0 (ata), and the pressure of adsorption tower 8' is P 1 (ata)
Then, the pressure after pressure equalization will be approximately P 0 +P 1 /2 (ata). After this, the adsorption tower 8', which has reached approximately P 0 + P 1 /2 (ata), opens the valves 10 and 11' to equalize the pressure of the product O 2 tank 13 and the adsorption tower, and then the adsorption tower 8' is exposed to even higher pressure O2. Fill with 2 . The pressure P 2 (ata) when the pressure is equalized with the product O 2 tank 13 is the dead capacity of the adsorption towers 8 and 8' (volume of the space not occupied by adsorbent in the adsorption tower).
V 1 (l), the capacity of the product O 2 tank is V 2 (l),
Assuming that the pressure in the product O 2 tank 13 before pressure equalization is approximately equal to P 0 (ata), the equalization pressure P 2 (ata) is
Roughly P 2 = P 0 + P 1 /2V 1 +P 0 V 2 /V 1 +V 2 , and from P 1 (ata) when simply switching towers
Compared to the rapid increase in pressure to P 0 (ata), the above operation reduces the
) Since the pressure is gradually increased, it is possible to prevent air from blowing through when the pressure is increased, and to minimize the release of residual O 2 and high-pressure air to the outside of the system during the desorption process. Air separation was carried out using the air separation apparatus shown in FIG. 3 using the above operating method. The operating specifications of the device are shown in Table 1.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、第3図に示す圧力スイング方式に於い
ては、以下に列挙する欠点を有している為設備費
及び動力費を上昇する事となつた。 脱湿塔4を独立して設置している為、その分
設備費が上昇する。脱湿塔4としては、再生方
式によつて温度スイング法と圧力スイング法の
いずれかが考えられるが、温度スイング法であ
ればヒーター用電力消費と吸着剤の補充が必要
であり、圧力スイング法であれば真空ポンプの
付設(この場合吸着圧力が低いため、大気圧再
生では不充分。)とその為の電力消費が追加さ
れる。 入口空気と脱着N2間の冷熱回収用熱交19
はガス−ガス熱交となる為、価格も高くかなり
のスペースを必要とする。 上記の出口露点が何らかの理由で上昇した
場合、吸着工程の温度(又は熱交の表面温度)
が0℃以下になると、熱交19,22冷凍機2
0、バルブ5,6,6′,7,7′に水分が氷結
し正常な操作が不可能となる。又除去はかなり
難しい。 バルブ5,6,6′,7,7′,16,16′,
10,10′,11,11′,12,15が低温
域になる為、保冷等について考慮する必要があ
る。 〔問題点を解決するための手段〕 本発明者等は、低温低圧条件での圧力スイング
式O2製造に於けるこれ等の諸問題の解決の為、
プロセス的な検討を進める中で、再生工程に於け
る脱着N2の有する冷熱の蓄冷材による回収と、
脱着N2と脱湿用吸着剤との接触による脱湿用吸
着剤の再生を行ない、吸着工程に於いて入口空気
中の水分の脱湿用吸着剤による除去と、蓄冷材に
よる冷却の可能なことを見出した。この事により
独立した脱湿装置、入口空気−脱着N2ガス−ガ
ス熱交は省略される事となり上記諸問題が解決さ
れるとともに大幅な設備費の低減と脱湿用動力の
削減が実現した。 すなわち、本発明は、合成ゼオライト系吸着
剤、特にNa−Xに代表される鉱物名ナトリウム
フアウジヤサイトを充填したN2吸着塔又は前方
にCa2/3−Na1/3−A、後方にNa−Xを充
填したN2吸着塔で少くとも2塔の吸着塔におい
て、室温以下の温度下で、酸素及び窒素を主成分
とする混合気体を大気圧以上3ata以下で吸着塔に
流入させて該混合気体に含まれる窒素を選択的に
吸着せしめ、該吸着塔出口から高純度酸素又は酸
素富化ガスを流出させ、一方窒素を吸着した吸着
塔を0.08ata以上0.5ata以下に製品再循環する事
なく減圧せしめて再生することを特徴とするO2
製造方法に於いて、入口空気側から、脱湿用吸着
剤及び蓄冷材及び寒冷熱供給用の空気−寒冷熱の
熱交及びゼオライト系のN2吸着剤を順に結び、
吸着工程に於いて、入口空気側から逐次脱湿用吸
着剤による脱湿及び蓄冷材と空気との接触による
冷却、及び寒冷熱不足分の補給、および上記吸着
圧力条件でのゼオライト系N2吸着剤による空気
からのN2吸着除去によるO2製造を行ない、再生
工程に於いては、上記減圧条件下で向流方向に
N2を脱着して、まずN2の有する寒冷熱を蓄冷材
と接触せしめて回収し、その後昇温したN2と脱
湿用吸着剤とを接触せしめて、脱湿用吸着剤をも
再生する事を特徴とし、従来の独立した脱湿装
置、ガス−ガス熱交による冷熱回収を省略し、脱
湿用動力費の削減及び設備費の低減する事が出来
るO2製造装置の脱湿・冷熱回収方法を提案する
ものである。 〔実施例〕 以下本発明の方法について実施例により詳細に
説明する。 (1) 第1実施例 本発明の有効性を実証する為第1図に示す空気
分離装置で空気からのNa−X等のナトリウムフ
アウジヤサイト系のN2吸着剤によるO2、N2分離
を試みた。 以下第1図に基づいて実施した内容を説明す
る。 フイルター30入口流路31を通じて圧縮機3
2で約750Nm3/hの空気が1.05〜3ataに加圧さ
れ、流路33、アフタークーラ34を通過して30
℃迄冷却される。この後開いたバルブ35流路3
6を通じて脱湿塔37に入る。脱湿塔37には水
分吸着用吸着剤38としてシリカゲルが約25Kg充
填されており、露点−70℃まで水分が除去され
る。 その後流路39には、製品O2ライン40とプ
レートフイン熱交41が設置されており、製品
O2温度はプレートフイン熱交41で−15℃から
30℃に上昇する。その時脱湿塔37で脱湿された
空気はプレートフイン熱交41で30℃から25℃に
冷却されて流路42を通じて、蓄冷塔43に入り
蓄冷材44と接触しながら降温し、蓄冷塔43の
出口では−10℃まで冷却される。 本実施例では蓄冷材44として厚さ0.6mm幅16
mmのアルミニウム波板を使用し、1塔当り50Kg充
填した。−10℃に冷却された空気は、冷凍機45
から流路46を通じて流れる−22℃のフレオンで
熱交47でさらに冷却され約−15℃の最寒冷温度
となり流路48を通じてO2吸着剤49としてNa
−Xが約2.5TON充填されたN2吸着塔50に至
る。空気中のN2はN2吸着剤49で吸着除去され
てO2濃度は上昇し、出口流路40プレートフイ
ン熱交41、開いたバルブ51を通じて流路52
から、O2濃度93%の製品O2が110Nm3−O2/h採
取される。 一方再生工程にあるN2吸着塔50′は、バルブ
35′,51′,53,54を閉じた状態でバルブ
53′を開け真空ポンプ55により流路56を通
じて減圧されており、N2吸着剤49′からはN2
が吸着時とは向流方向に離脱している。離脱した
N2は、流路48′、熱交47′を経て蓄冷塔4
3′に入り蓄冷材44′により冷熱を回収され、流
路39′では約25℃にまで昇温する。この後脱湿
塔37′を吸着時とは向流に減圧条件下で乾燥N2
が流れる為、水分は吸着剤38′から離脱してN2
と共に流路36′、バルブ53′、流路56を通じ
て真空ポンプ55から系外へ放出される。 本実施例に於ては、吸着工程を75秒、再生工程
を60〜240秒で交互に切り換えた。 なお、塔を切り換える直前に、バルブ35,3
5′,51,51′,53,53′を閉じバルブ5
4のみを開いて吸着工程時のN2吸着塔50の後
方に濃縮した残存O2を減圧条件下にあるN2吸着
塔50′へ移して2塔間の圧力を等しくした。こ
れはO2回収率の向上及び圧力の昇降をゆるやか
にして塔内じよう乱を抑制する上で極めて効果が
ある。(本工程を省略するとO2の回収率は70%前
後から約40%に激減する。) なお、N2吸着塔50,50′、熱交47,4
7′、蓄冷塔43,43′、プレートフイン熱交4
1,41′は全体を保冷材57で囲まれている。 以上の操作方法で第1図に示した空気分離装置
で空気分離を行なつた。装置の操作諸元を第2表
に示す。
However, the pressure swing method shown in FIG. 3 has the following drawbacks, which leads to increased equipment costs and power costs. Since the dehumidification tower 4 is installed independently, the equipment cost increases accordingly. For the dehumidification tower 4, either the temperature swing method or the pressure swing method can be considered depending on the regeneration method, but the temperature swing method requires power consumption for the heater and the replenishment of adsorbent, and the pressure swing method If so, a vacuum pump will be required (in this case, the adsorption pressure is low, so atmospheric pressure regeneration is insufficient) and power consumption will be added. Heat exchanger 19 for cold heat recovery between inlet air and desorption N2
Since it is a gas-gas heat exchanger, it is expensive and requires a considerable amount of space. If the above outlet dew point rises for some reason, the temperature of the adsorption process (or the surface temperature of the heat exchanger)
When the temperature drops below 0℃, the heat exchanger 19, 22 refrigerator 2
0. Moisture freezes on the valves 5, 6, 6', 7, and 7', making normal operation impossible. It is also quite difficult to remove. Valve 5, 6, 6', 7, 7', 16, 16',
10, 10', 11, 11', 12, and 15 are in the low-temperature range, so it is necessary to consider cold storage, etc. [Means for Solving the Problems] In order to solve these various problems in pressure swing type O 2 production under low temperature and low pressure conditions, the present inventors have
As we proceeded with process considerations, we decided to use a cold storage material to recover the cold energy of desorbed N2 during the regeneration process.
The dehumidifying adsorbent is regenerated by the contact between the desorbed N2 and the dehumidifying adsorbent, and in the adsorption process, the moisture in the inlet air can be removed by the dehumidifying adsorbent, and the coolant can be used for cooling. I discovered that. This eliminates the need for an independent dehumidifier and inlet air-desorption N2 gas-gas heat exchanger, solving the above problems and significantly reducing equipment costs and dehumidifying power. . That is, the present invention provides a synthetic zeolite-based adsorbent, particularly an N 2 adsorption tower filled with sodium phaujasite, a mineral name represented by Na- In at least two N 2 adsorption towers filled with Nitrogen contained in the gas is selectively adsorbed, and high-purity oxygen or oxygen-enriched gas flows out from the outlet of the adsorption tower, while the adsorption tower that has adsorbed nitrogen does not have to recirculate the product to 0.08 ata or more and 0.5 ata or less. O 2 characterized by being depressurized and regenerated
In the manufacturing method, from the inlet air side, connect an adsorbent for dehumidification, a cold storage material, an air-cold heat heat exchanger for cold heat supply, and a zeolite-based N2 adsorbent in order,
In the adsorption process, successive dehumidification using an adsorbent for dehumidification from the inlet air side, cooling by contact between the cold storage material and air, replenishment of cold heat deficiency, and zeolite-based N 2 adsorption under the above adsorption pressure conditions O 2 is produced by adsorption and removal of N 2 from the air using a regeneration agent, and in the regeneration process, O 2 is produced by adsorption and removal of N 2 from the air.
After desorbing N 2 , the cold heat of N 2 is first brought into contact with a cold storage material and recovered, and then the heated N 2 is brought into contact with a dehumidifying adsorbent to regenerate the dehumidifying adsorbent. It is characterized by the fact that it eliminates the conventional independent dehumidification equipment and cold recovery using gas-gas heat exchange, and reduces dehumidification power costs and equipment costs . This project proposes a cold heat recovery method. [Example] Hereinafter, the method of the present invention will be explained in detail with reference to Examples. (1) First Example In order to demonstrate the effectiveness of the present invention, O 2 and N 2 were separated from air using a sodium phaujasite-based N 2 adsorbent such as Na-X using the air separation device shown in Figure 1. I tried. The details of the implementation will be explained below based on FIG. Compressor 3 through filter 30 inlet channel 31
2, approximately 750Nm 3 /h of air is pressurized to 1.05 to 3ata, passes through the flow path 33 and aftercooler 34, and is
Cooled to ℃. Valve 35 flow path 3 opened after this
It enters the dehumidification tower 37 through 6. The dehumidifying tower 37 is filled with about 25 kg of silica gel as a moisture adsorbing adsorbent 38, and moisture is removed to a dew point of -70°C. After that, a product O2 line 40 and a plate fin heat exchanger 41 are installed in the flow path 39, and the product O2 line 40 and plate fin heat exchanger 41 are installed.
O2 temperature is from -15℃ with plate fin heat exchanger 41
The temperature rises to 30℃. At that time, the air dehumidified in the dehumidification tower 37 is cooled from 30°C to 25°C by the plate fin heat exchanger 41, enters the cold storage tower 43 through the flow path 42, and is lowered in temperature while contacting the cold storage material 44, At the outlet, it is cooled down to -10℃. In this example, the cold storage material 44 has a thickness of 0.6 mm and a width of 16 mm.
A corrugated aluminum plate with a diameter of 50 mm was used, and 50 kg was packed per tower. The air cooled to -10℃ is transferred to the refrigerator 45
The -22°C freon flowing through the flow path 46 is further cooled by the heat exchanger 47, reaching the coldest temperature of approximately -15°C, and Na is released as an O 2 adsorbent 49 through the flow path 48.
-The N 2 adsorption tower 50 is filled with approximately 2.5 TON of X. N 2 in the air is adsorbed and removed by the N 2 adsorbent 49 and the O 2 concentration increases, and the O 2 concentration increases through the outlet flow path 40, the plate fin heat exchanger 41, and the opened valve 51 to the flow path 52.
110 Nm 3 −O 2 /h of product O 2 with an O 2 concentration of 93% is collected from the sample. On the other hand, the N 2 adsorption tower 50' in the regeneration process is depressurized through the channel 56 by the vacuum pump 55 with the valves 35', 51', 53, and 54 closed and the valve 53 ' opened. From 49' N 2
is separated in the countercurrent direction from that during adsorption. left
N2 passes through the flow path 48' and the heat exchanger 47' to the cold storage tower 4.
3', the cold energy is recovered by the cold storage material 44', and the temperature rises to about 25°C in the flow path 39'. After that, the dehumidifying tower 37' is dried with N 2 under reduced pressure in a countercurrent to that during adsorption.
flows, water is separated from the adsorbent 38' and N 2
At the same time, it is discharged from the vacuum pump 55 to the outside of the system through the flow path 36', the valve 53', and the flow path 56. In this example, the adsorption step was alternately switched between 75 seconds and the regeneration step between 60 and 240 seconds. In addition, just before switching the tower, valves 35, 3
Close valve 5', 51, 51', 53, 53'.
4 was opened and the residual O 2 concentrated behind the N 2 adsorption tower 50 during the adsorption step was transferred to the N 2 adsorption tower 50' under reduced pressure conditions to equalize the pressure between the two towers. This is extremely effective in improving the O 2 recovery rate and slowing down the rise and fall of pressure to suppress disturbances within the column. (If this step is omitted, the O 2 recovery rate will drastically decrease from around 70% to about 40%.)
7', cold storage tower 43, 43', plate fin heat exchanger 4
1 and 41' are entirely surrounded by a cold insulating material 57. Air separation was carried out using the air separation apparatus shown in FIG. 1 using the above operating method. The operating specifications of the device are shown in Table 2.

【表】【table】

【表】 第2表の操作条件で空気からO2、N2を分離し
た。 第2図および第1表に示す従来例と、第1図お
よび第2表に示す本発明の一実施例との実験結果
の比較を第3表に要約する。 (従来例脱湿工程としては、吸着圧力1.2ata再生
圧力0.05ataの圧力スイング法を前提とした。)
[Table] O 2 and N 2 were separated from air under the operating conditions shown in Table 2. Table 3 summarizes the comparison of experimental results between the conventional example shown in FIG. 2 and Table 1 and the embodiment of the present invention shown in FIG. 1 and Table 2. (The conventional dehumidification process was based on a pressure swing method with an adsorption pressure of 1.2ata and a regeneration pressure of 0.05ata.)

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明は所要の動
力原単位及び設備費が従来のO2製造装置に比べ
少なく、産業上非常に有用な混合気体からのO2
製造装置の脱湿・冷熱回収方法を提案するもので
ある。
As explained in detail above, the present invention requires less power consumption and equipment costs than conventional O 2 production equipment, and produces O 2 from a mixed gas that is very useful industrially.
This paper proposes a method for dehumidifying and recovering cold heat from manufacturing equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のO2製造装置の脱湿・冷熱回
収方法の第1実施例を実施するのに用いられる空
気分離装置の例示図、第2図は本発明のO2製造
装置の脱湿・冷熱回収方法の第2実施例を実施す
るのに用いられる空気分離装置の例示図、第3図
は従来の分離方法を実施するのに用いられる空気
分離装置の例示図である。 37,37′……脱湿塔、38,38′……水分
吸着用吸着剤、41,41′……プレートフイン
熱交、43,43′……蓄冷塔、44,44′……
蓄冷材、49,49′……N2吸着剤、50,5
0′……N2吸着塔。
FIG. 1 is an illustrative diagram of an air separation device used to carry out the first embodiment of the dehumidification/cold heat recovery method for an O 2 production device of the present invention, and FIG. FIG. 3 is an illustration of an air separation device used to carry out the second embodiment of the wet/cold heat recovery method. FIG. 3 is an illustration of an air separation device used to carry out the conventional separation method. 37, 37'... Dehumidification tower, 38, 38'... Adsorbent for moisture adsorption, 41, 41'... Plate fin heat exchanger, 43, 43'... Cold storage tower, 44, 44'...
Cold storage material, 49,49'... N2 adsorbent, 50,5
0'... N2 adsorption tower.

Claims (1)

【特許請求の範囲】[Claims] 1 ゼオライト系のN2吸着剤を充填した少なく
とも2塔の吸着塔に室温以下の温度下で、酸素及
び窒素を主成分とする混合気体を大気圧以上3ata
以下で吸着塔に流入させて該混合気体に含まれる
窒素を選択的に吸着せしめ、該吸着塔出口から高
純度酸素又は酸素富化ガスを流出させ、一方窒素
を吸着した吸着塔を0.08ata以上0.5ata以下に製
品再循環する事なく減圧せしめて再生するO2
造方法に於いて、入口空気側から、脱湿用吸着剤
及び蓄冷材および寒冷熱供給用の空気−寒冷熱の
熱交及びゼオライト系のN2吸着剤を順に結び、
吸着工程に於いては、入口空気側から逐次脱湿用
吸着剤による脱湿及び蓄冷材と空気との接触によ
る冷却および寒冷熱不足分の補給および、上記吸
着圧力条件でのゼオライト系N2吸着剤による空
気からのN2吸着除去による酸素製造を行い、再
生工程に於いては、上記減圧条件下で向流方向に
N2を脱着して、まずN2の有する寒冷熱を蓄冷材
と接触せしめて回収し、昇温したN2と脱湿用吸
着剤とを接触せしめて脱湿用吸着剤をも再生する
事を特徴とするO2製造装置の脱湿・冷熱回収方
法。
1 At least two adsorption towers filled with zeolite-based N2 adsorbent are charged with a gas mixture mainly consisting of oxygen and nitrogen at a pressure of 3 ata above atmospheric pressure at a temperature below room temperature.
The nitrogen contained in the mixed gas is then selectively adsorbed by flowing into an adsorption tower, and high-purity oxygen or oxygen-enriched gas is flowed out from the outlet of the adsorption tower, while the adsorption tower that has adsorbed nitrogen is heated to 0.08 ata or more. In the O 2 manufacturing method, which regenerates by reducing the pressure without recirculating the product to 0.5 ata or less, from the inlet air side, the dehumidifying adsorbent, the cold storage material, the air for cold heat supply, and the heat exchange of cold heat and Connect zeolite N2 adsorbent in order,
In the adsorption process, sequential dehumidification is performed from the inlet air side using an adsorbent for dehumidification, cooling by contact between the cold storage material and air, replenishment of cold heat deficiency, and zeolite-based N 2 adsorption under the above adsorption pressure conditions. Oxygen is produced by adsorption and removal of N2 from the air using a regeneration agent, and in the regeneration process, oxygen is removed in the countercurrent direction under the above reduced pressure conditions.
N 2 is desorbed, first the cold heat of N 2 is brought into contact with a cold storage material and recovered, and then the heated N 2 is brought into contact with a dehumidifying adsorbent to regenerate the dehumidifying adsorbent. A method for dehumidification and cold recovery for O 2 production equipment, characterized by:
JP59103506A 1984-05-22 1984-05-22 Method of dehumidification and cold heat recovery of o2 production unit Granted JPS60246205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59103506A JPS60246205A (en) 1984-05-22 1984-05-22 Method of dehumidification and cold heat recovery of o2 production unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59103506A JPS60246205A (en) 1984-05-22 1984-05-22 Method of dehumidification and cold heat recovery of o2 production unit

Publications (2)

Publication Number Publication Date
JPS60246205A JPS60246205A (en) 1985-12-05
JPH0378126B2 true JPH0378126B2 (en) 1991-12-12

Family

ID=14355857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59103506A Granted JPS60246205A (en) 1984-05-22 1984-05-22 Method of dehumidification and cold heat recovery of o2 production unit

Country Status (1)

Country Link
JP (1) JPS60246205A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169413A (en) * 1991-10-07 1992-12-08 Praxair Technology Inc. Low temperature pressure swing adsorption with refrigeration
JPH07251023A (en) * 1994-03-16 1995-10-03 Sumitomo Seika Chem Co Ltd Method for separating gas and apparatus therefor
JP4721967B2 (en) * 2006-07-06 2011-07-13 吸着技術工業株式会社 Oxygen production method and apparatus by pressure swing method using high temperature oxygen adsorbent
JP2009018970A (en) * 2007-07-13 2009-01-29 Ihi Corp Oxygen concentrator
JP2013010647A (en) * 2011-06-28 2013-01-17 Hino Motors Ltd Ozonizer
CN105381527B (en) * 2015-12-29 2019-05-31 深圳中物兴华科技发展有限公司 Automatic oxygen supply apparatus
JP2020171875A (en) * 2019-04-09 2020-10-22 株式会社森機械製作所 Gas concentration device and gas concentration method

Also Published As

Publication number Publication date
JPS60246205A (en) 1985-12-05

Similar Documents

Publication Publication Date Title
US4472178A (en) Adsorptive process for the removal of carbon dioxide from a gas
CA2267938C (en) Method and apparatus for manufacturing high concentration ozone gas
JPH11518A (en) Temperature swing adsorption method
JPH0459926B2 (en)
JPS6241055B2 (en)
JPH0378126B2 (en)
JPH0530762B2 (en)
JPH0455964B2 (en)
JPS59179127A (en) Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressure
CN104073310A (en) Device and method for purifying and drying natural gas
GB2090160A (en) Process and Apparatus for Separating a Mixed Gas Such as Air
JP2596952B2 (en) Nitrogen production method
JPS621434A (en) Dehumidification/heat recovery method of gas separation apparatus
JPH09122432A (en) Gas separator using pressure swing adsorption process
JPH0455965B2 (en)
JPH0141379B2 (en)
JPH0255203A (en) Production of high-purity oxygen
JPH0255202A (en) Production of gas rich in oxygen
JPH0573449B2 (en)
JPS6161611A (en) Separation of oxygen and nitrogen from gaseous mixture
JPH0240366B2 (en)
JPH0825727B2 (en) Nitrogen production method
JPH05192528A (en) Method for separating oxygen and nitrogen from gaseous mixture
JPH043877A (en) Air separating device
JPH0423563B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term