JPS6161611A - Separation of oxygen and nitrogen from gaseous mixture - Google Patents

Separation of oxygen and nitrogen from gaseous mixture

Info

Publication number
JPS6161611A
JPS6161611A JP59183633A JP18363384A JPS6161611A JP S6161611 A JPS6161611 A JP S6161611A JP 59183633 A JP59183633 A JP 59183633A JP 18363384 A JP18363384 A JP 18363384A JP S6161611 A JPS6161611 A JP S6161611A
Authority
JP
Japan
Prior art keywords
adsorption
pressure
adsorption tower
oxygen
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59183633A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tsutaya
博之 蔦谷
Jun Izumi
順 泉
Seiichi Shirakawa
白川 精一
Takei Kubo
久保 多兄
Kenichi Maehara
前原 健一
Hiroshi Onoe
宏 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59183633A priority Critical patent/JPS6161611A/en
Publication of JPS6161611A publication Critical patent/JPS6161611A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To enhance the recovery rate of product O2 by using an adsorption tower packed with Na faujasite, adsorbing N2 at low temps. and pressure, and connecting the outflow passages of both adsorption towers at the end of adsorption and regeneration in a pressure swing method. CONSTITUTION:Air is compressed by a compressor 2 to 1.05-3ata, and sent into an adsorption tower 8 through a tower 4 for removing humidity and CO2, and N2 is adsorbed and removed to recover product O2 from a tank 13. Na faujasite is used as the adsorbent, and the adsorption tower is sent under low- temp. condition. Meanwhile, the pressure of an adsortion tower 8' is reduced by a vacuum pump 16 through a flow passage 15, and regeneration is carried out. The adsorption tower 8 at the end of adsorption and the adsorption tower 8' at the end of regeneration are connected for at least 6sec by opening valves 10 and 10' send O2 remaining in the adsorption tower 8 to the adsorption tower 8'. Consequently, the recovery rate of product O2 is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空気等のQM e NMを主成分とする混合気
体より選択的にlx  t”吸着するM: 吸着剤を使
用してのOs * N鵞を主成分とする混合気体より0
雪e”Mを分離する際の均圧工程の改良方法に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention selectively adsorbs lx t'' from a mixed gas such as air whose main component is QM e NM:Os * using an adsorbent. 0 from a mixed gas whose main component is nitrogen
This invention relates to a method for improving the pressure equalization process when separating snow e''M.

〔従来の技術〕[Conventional technology]

M! 吸着剤を利用した空気からの02m”雪吸着分離
法は、装置が小型簡易であ夛、又無人運転に近い殆ど保
守を必要としない利点をもつ為、0、製造量10 A−
d−1000Hm” −Os/ h程度の中小型装置と
して近年使用例が増えてきておシ、深冷分離装置で作ら
れる液酸を輸送して使用するケースについての代替が進
行している。
M! The adsorption separation method for snow from air using an adsorbent has the advantage that the equipment is small and simple, and requires almost no maintenance as it can be operated unmanned.
In recent years, the number of uses for small and medium-sized devices on the order of d-1000 Hm'' -Os/h has increased, and alternatives to cases in which liquid acid produced in cryogenic separation devices is transported and used are progressing.

この装置の代表的なものの概要を述べると、装置は空気
圧縮機、及び2塔又はそれ以上のN。
To give an overview of a typical device, the device includes an air compressor and two or more N columns.

吸着塔、又場合によっては真空ポンプ等から構成される
。この装置において、1塔罠圧縮空気を送ると、充填さ
れたN2  吸着剤により空気中のN! は吸着除去さ
れて、残る高圧0! は吸着塔の後方に流出し回収され
る。一方、他塔では吸着したNz  k減圧条件で放出
させ(時として製品0鵞 の一部を向流で流すとか、真
空ポンプで強力にNs  t−除去する方法もとられる
)再生する。これを交互にくシ返して連続的に02゜R
x  を分離する。上記の吸着塔に充填していたN、 
 吸着剤の代表的なものは、ユニオンカー−(イド社に
より実用化されたMa−A型ゼオライトQ60〜70%
Oa 交換体であシ、O,、Nt2成分混合ガスからN
s  t−選択的に吸着するものであって、空気条件下
での0鵞 の共吸着はN2吸着の10%以下と推定され
る。
It consists of an adsorption tower and, in some cases, a vacuum pump. In this device, when compressed air is sent to one tower, the N2 adsorbent packed in the air absorbs N2! is removed by adsorption, and the remaining high pressure is 0! flows out to the rear of the adsorption tower and is recovered. On the other hand, in other towers, the adsorbed Nz is released under reduced pressure conditions (sometimes a part of the product is flowed in a countercurrent, or a method of powerfully removing Nst with a vacuum pump is also used) for regeneration. Turn this alternately and continue to 02°R.
Separate x. N, which was filled in the above adsorption tower,
A typical adsorbent is Union Car (Ma-A type zeolite Q60-70% commercialized by Ido Co., Ltd.).
Oa is an exchanger, O,, Nt from a binary mixed gas
It adsorbs st-selectively, and the co-adsorption of 0x2 under air conditions is estimated to be less than 10% of N2 adsorption.

この吸着によるO、、N、分離装置は中小型領域で有利
と前述したが、INm”の0! 全製造するのK(L7
5〜I Kwh t−必要とし、大容量深冷分離法で製
造される0、のα4.5Kwhに比し消費電力は大きい
。又装置容量の増大に対するスケールメリットが少く、
1000 Nm” −ox/h以上の領域では深冷分離
法に競合できないといわれている。
As mentioned above, this adsorption-based O, N, separation device is advantageous in the small and medium-sized areas,
The power consumption is large compared to α4.5Kwh of 0, which is produced by large-capacity cryogenic separation method. In addition, there is little merit of scale for increasing equipment capacity,
It is said that it cannot compete with the cryogenic separation method in the region of 1000 Nm"-ox/h or more.

従って、これら欠点についての改善方法が種々考えられ
るが、本発明に関連して改善方法を述べると以下のよう
な障害が通常出現する。
Therefore, various methods of improving these drawbacks can be considered, but when describing the method of improvement in relation to the present invention, the following obstacles usually appear.

先ず、消費電力の低減については、送風圧力を低くして
低圧で吸着操作を行なうことが考えられるが、N、  
吸着量が圧力にほぼ比例して低下する為、装置の容量が
極めて増大する。次に。
First, in order to reduce power consumption, it is possible to lower the blowing pressure and perform suction operation at low pressure.
Since the amount of adsorption decreases almost in proportion to the pressure, the capacity of the device increases significantly. next.

吸着量の増大を図る為に、低温条件で吸着操作を行なう
ことが考えられるが、この場合はN!吸着量は増大する
ものの吸着・脱着速度が著しく低下する為、同一塔長で
の製品0言 濃度が室温時よシもかえって低下してしま
う。又温度の低下に伴ないN、吸着時の02  共成着
量が上昇する為、動力原単位が漸次上昇する。
In order to increase the amount of adsorption, it is possible to perform the adsorption operation under low temperature conditions, but in this case, N! Although the amount of adsorption increases, the rate of adsorption and desorption decreases significantly, so the product concentration at the same column length is even lower than at room temperature. Furthermore, as the temperature decreases, the amount of N and 02 co-deposited during adsorption increases, so the power consumption rate gradually increases.

そこで本発明者は、上記欠点を改善した低温。Therefore, the inventors of the present invention have developed a low-temperature solution that improves the above drawbacks.

低圧吸着条件下での高性能7kO,,1gの分離方法に
つき鋭意研究、実験を進める過程で、Na−I型ゼオラ
イトに代表される鉱物基ナトリウムファウジアサイトは
低温、低圧吸着条件下でN2吸着員が増大するとともに
実用的な範囲でのN。
In the process of intensive research and experimentation on a high-performance separation method for 7kO,.1g under low-pressure adsorption conditions, we discovered that mineral-based sodium faudiasite, represented by Na-I type zeolite, can adsorb N2 under low-temperature, low-pressure adsorption conditions. N within a practical range as the number of staff increases.

吸着速度の維持が可能であシ、かつN、  吸着選択性
の減少が小さいことを見出しこれに基づいた発明を既に
特願昭58−54626号として提案しており、該発明
はNa−Xに代表される鉱物基ナトリウムファウジャサ
イトを充填した少なくとも2塔の吸着塔において、室温
以下の温度下で、酸素及び窒素を主成分とする混合気体
を大気圧以上3 ata以下で、吸着塔に流入させて該
混合気体に含まれる窒素を選択的に吸着せしめ、該吸着
塔出口から高純度酸素又は酸素富化ガスを流出させ、一
方窒素を吸着した吸着塔をα08 ata以上Q、5 
ata  以下に減圧せしめて再生することを特徴とす
る低温、低圧条件下での混合気体からの酸素及び窒素の
分離方法に関するものである。
It was discovered that the adsorption rate could be maintained and the decrease in N adsorption selectivity was small, and an invention based on this was already proposed in Japanese Patent Application No. 58-54626. In at least two adsorption towers filled with a typical mineral-based sodium faujasite, a gas mixture containing oxygen and nitrogen as main components is introduced into the adsorption towers at a pressure above atmospheric pressure and below 3 ata at a temperature below room temperature. The nitrogen contained in the mixed gas is selectively adsorbed, and high-purity oxygen or oxygen-enriched gas flows out from the outlet of the adsorption tower, while the adsorption tower that has adsorbed nitrogen is
The present invention relates to a method for separating oxygen and nitrogen from a mixed gas under low temperature and low pressure conditions, which is characterized in that the pressure is reduced to below .

以下に、上記発明の方法の一実施態様につき、第1図に
基き説明する。第1図において入口側ライン1を通じて
圧縮機2で1.05〜3 ataに加圧され念空気は、
流路3から脱湿膜CO,塔4に入り、極めて清浄な加圧
空気となる。流路5′の後光に設置されたバルブ5は開
となっておシ、清浄な加圧空気は流路6及び開状態のバ
ルブZを通じて吸着塔8に入る。吸着塔8に入った加圧
空気はN、吸着剤9でN!が吸着除去されて後方に行く
に従がい01濃度が上昇する。この後加圧空気は開状態
のバルブ10,11.12及びバルブ11.12の間に
挿入された製品0゜タンク13を通じて製品O1として
回収される。
An embodiment of the method of the invention will be described below with reference to FIG. In Fig. 1, the air is pressurized to 1.05 to 3 ata by the compressor 2 through the inlet line 1.
The air enters the dehumidifying membrane CO and tower 4 from the flow path 3, and becomes extremely clean pressurized air. The valve 5 installed in the aureole of the flow path 5' is open and clean pressurized air enters the adsorption tower 8 through the flow path 6 and the open valve Z. The pressurized air that entered the adsorption tower 8 is N, and the adsorbent 9 is N! is adsorbed and removed and as it moves backward, the concentration of 01 increases. The pressurized air is then recovered as product O1 through the product 0° tank 13 inserted between the open valves 10, 11.12 and 11.12.

一方吸着塔8′は開状態のバルブ14′及び流路15t
−通じて連結された真空ポンプ16で減圧されひかれて
おり、この為吸着塔8′中の吸着剤9′に吸着されてい
たN1  は容易に離脱され吸着剤9′は短時間で再生
される。吸着塔8ON! 吸着剤9が飽和し、一方吸着
塔8′のN2  吸着剤9′からN、  が離脱して再
生が済むと、入口空気の流路A t−6’に切シ換え、
今迄述べた方法を交互に行なうと製品0.  が連続的
に回収できる。なお、入口の清浄な加圧空気のライン3
′と離脱N2を主成分とするガスライン15の間は熱交
換器17で、熱交換可能となっており、製品0□ ライ
ン18と流路3′との間も又熱交換器19で熱交換可能
となっている。又流路3′には圧縮式冷凍機20が設置
されている為、極めて能率的に吸着塔8及び8′は冷却
され低温県外に設定される。なお、吸着塔の切シ換えに
あたっては、単純に流路6から6′へ(又はその逆)切
シ換えるだけでなく、切シ換え直後の昇圧に伴なう入口
空気の吹きぬけを防ぎかつ、吸着塔の後方に残存する0
! 及び前方の加圧空気の系外への放出を最小にする為
、先ず、バルブ10.10’を全開にして吸着直後の吸
着塔8の後方の残存0!を再生直後の吸着塔8′に一部
移す。この時吸着塔8の圧力iP@  (ata)吸着
塔8′の圧力t’Pt(ata)とすると、均圧後の圧
力は約1凸(、ta )となる。この後約工EEシ・(
ata)となった吸着塔8′はパルプ10’、11i開
として製品02  タンク13と吸着塔を均圧化して吸
着塔8′ヲ更に高圧のO,で満たす。製品0鵞 タンク
13との均圧時の圧力P!  (ata)は吸着塔B、
8′の死容積(吸着塔内の吸着剤で占められていない空
間の容MR)をV、(Z)、製品0! タンクの容量t
vt(t)とし、均圧前の製品、0=  タンク15の
圧力t−oo  (ata)にほぼ等しいとすると、均
圧化圧力Pl (ata)は、概略 換える時のPK(ata)’dsらPo  (ata)
への急速な昇圧に比べ、以上の操作でFi PI (a
ta)、h土’−(ata)、PI (ata)、PI
 (ata)とゆるやかに昇圧する為、昇圧時の空気の
吹き抜けを防止しつつ、脱着工程での残存0!、高圧空
気の系外への放出を最小にするような対策が可能となっ
ている。
On the other hand, the adsorption tower 8' has a valve 14' in an open state and a flow path 15t.
- The pressure is reduced and drawn by the vacuum pump 16 connected through the adsorption tower 8', so that the N1 adsorbed on the adsorbent 9' in the adsorption tower 8' is easily released and the adsorbent 9' is regenerated in a short time. . Adsorption tower 8 ON! When the adsorbent 9 is saturated and the N2 in the adsorption tower 8' is removed from the adsorbent 9' and regeneration is completed, the flow path is switched to the inlet air flow path At-6',
If the methods described so far are carried out alternately, the product will be 0. can be collected continuously. In addition, clean pressurized air line 3 at the inlet
A heat exchanger 17 is used to exchange heat between the gas line 15 whose main component is separated N2, and a heat exchanger 19 is used between the product 0□ line 18 and the flow path 3'. It is replaceable. Furthermore, since a compression type refrigerator 20 is installed in the flow path 3', the adsorption towers 8 and 8' are cooled extremely efficiently and are set outside the prefecture at low temperatures. In addition, when switching the adsorption tower, it is not only necessary to simply switch from flow path 6 to 6' (or vice versa), but also to prevent inlet air from blowing through due to pressure increase immediately after switching. 0 remaining behind the adsorption tower
! In order to minimize the release of pressurized air from the front to the outside of the system, first, the valves 10 and 10' are fully opened to ensure that there is no residual air remaining at the rear of the adsorption tower 8 immediately after adsorption. is partially transferred to the adsorption tower 8' immediately after regeneration. At this time, if the pressure in the adsorption tower 8 is iP@(ata) and the pressure in the adsorption tower 8' is t'Pt(ata), then the pressure after pressure equalization will be about 1 convex (, ta). After this, the construction EE (
In the adsorption tower 8', which has become the product 02, the pulps 10' and 11i are opened, and the pressure of the product 02 tank 13 and the adsorption tower is equalized, and the adsorption tower 8' is filled with even higher pressure O. Product 0 Pressure P when equalizing pressure with tank 13! (ata) is adsorption tower B,
8' dead volume (volume MR of space not occupied by adsorbent in the adsorption tower) is V, (Z), product 0! Tank capacity t
vt(t), and the product before pressure equalization, 0=approximately equal to the pressure t-oo (ata) of the tank 15, the equalization pressure Pl (ata) is approximately PK(ata)'ds at the time of conversion. RaPo (ata)
Compared to rapid pressure increase to Fi PI (a
ta), h Sat'-(ata), PI (ata), PI
Since the pressure is gradually increased to (ata), it prevents air from blowing through when increasing the pressure, and there is no residual air left in the desorption process! Measures can be taken to minimize the release of high-pressure air outside the system.

以上の操作方法で第1図に示した空気分離装置で空気分
離を行なった。装置の操作諸元を第1表に示す。
Air separation was carried out using the air separation apparatus shown in FIG. 1 using the above operating method. The operating specifications of the device are shown in Table 1.

第1表  吸着装置諸元 第1表の操作条件で空気から’!+N!を分離した。Table 1 Adsorption device specifications From air under the operating conditions in Table 1! +N! was separated.

しかし以上説明した第1図の圧力スイング式のo、、n
、分離方法に於いては、吸着塔8と8′の間の均圧【関
連し、塔間の流体移行に充分と思われる塔間均圧時間で
ある(通常用いられる)5秒以下の操作では、有効7k
(h  回収率の向上は見出せなかった。
However, the pressure swing type shown in FIG.
In the separation method, pressure equalization between adsorption towers 8 and 8' [related to this, an operation of 5 seconds or less, which is the inter-column pressure equalization time considered to be sufficient for fluid transfer between the columns (usually used)] So, effective 7k
(h) No improvement in recovery rate was found.

〔発明が解決しようとする間;i月点コ本発明#:t%
上記の特願昭58−54626号明細書にて提案した方
法における欠点の解消、すなわち0鵞 回収率の向上を
目的とするものである。
[While the invention is trying to solve; i month invention invention #: t%
The purpose of this invention is to eliminate the drawbacks of the method proposed in the above-mentioned Japanese Patent Application No. 58-54626, that is, to improve the recovery rate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、回収率の向上について検討を進める中で
、塔間均圧時間と02  回収率の間に顕著な関係のあ
る事を見い出した。
The present inventors, while proceeding with studies on improving the recovery rate, discovered that there is a significant relationship between the inter-column pressure equalization time and the 02 recovery rate.

即ち、第1図の方法において塔間均圧の時間を従来の5
秒以下Kかえて、少なくとも6秒以上行なうことにより
製品O1回収率は、均圧をしない場合の35俤租度から
一挙に55%以上に改善され、15秒程度の均圧では7
2%にも達することが判明した。
That is, in the method shown in FIG.
On the contrary, by performing the process for at least 6 seconds or more, the product O1 recovery rate is improved from 35 degrees without pressure equalization to more than 55% at once, and with pressure equalization for about 15 seconds, the product O1 recovery rate is improved to 75% or more.
It was found that it reached as high as 2%.

なお、製品0! 回収率Rは、製品0宜濃度90%の酸
素を製造する時の入口空気中のO!景GA、 O,[u
 l/ h 〕と製品0冨 中の02 p Gp、 −
[ut/h ]の比であり、(1)式であられさ几る。
In addition, there are 0 products! The recovery rate R is the O! Kei GA, O, [u
l/h] and 02 p Gp in product 0 wealth, -
It is the ratio of [ut/h], and is calculated by equation (1).

”A、O。“A, O.

したがって本発明は、Ma−X K代表される鉱物名ナ
トリウムファウジャサイトを充填した少くとも2塔の吸
着塔において、室温以下の温度下で、酸素及び窒素を主
成分とする混合気体を大気圧以上3 ata以下で吸着
塔KR人させて該混合気体に含まれる窒素を選択的に吸
着せしめ、該吸着塔出口から高純度酸素又は酸素富化ガ
スを流出させ、一方窒素を吸着した吸着塔1i:(10
8ata以上[15ata以下に減圧せしめて再生する
低温、イ氏圧条件下での混合気体からの酸素及び窒素の
分離方法に於いて、少なくとも6秒以上吸着終了後のN
、吸着塔と再生終了後のM、  吸着塔の出口側流路を
連結し、吸着終了後の塔後方に残存する製品酸素を再生
終了後のN、  吸着塔へ移送する事により製品酸素の
回収率を向上することを特命とする混合気体からの酸素
及び窒素の分離法を提供する。
Therefore, the present invention provides at least two adsorption towers filled with the mineral name sodium faujasite represented by Ma-X K, at a temperature below room temperature, at atmospheric pressure. The nitrogen contained in the mixed gas is selectively adsorbed by the adsorption tower KR under 3 ata or less, and high-purity oxygen or oxygen-enriched gas is flowed out from the outlet of the adsorption tower, while the adsorption tower 1i adsorbing nitrogen is :(10
In a method for separating oxygen and nitrogen from a mixed gas at low temperature and pressure conditions of 1 degree Celsius, where the pressure is reduced to 8 ata or more [15 ata or less and regenerated, N
By connecting the adsorption tower and the flow path on the outlet side of the adsorption tower, the product oxygen remaining at the rear of the tower after the completion of adsorption is transferred to the N, adsorption tower after the regeneration is completed, and the product oxygen is recovered. The present invention provides a method for separating oxygen and nitrogen from a gas mixture with the mission of increasing the efficiency.

〔実施例〕〔Example〕

以下本発明の方法について実施例によりその効果を説明
する。
The effects of the method of the present invention will be explained below using Examples.

実施例 既に述べた第1図の装置を使用して、吸着塔8と吸着塔
8′の間の均圧に於て、パルプ1oとパルプ10′の開
状態の時間を、0秒から15秒まで変化させて、その時
の製品0.  の回収率の変化を調べた。その結果を第
2図に示す。
EXAMPLE Using the apparatus shown in FIG. 1, which has already been described, with the pressure equalized between the adsorption tower 8 and the adsorption tower 8', the open state time of the pulp 1o and the pulp 10' was varied from 0 seconds to 15 seconds. The product at that time is 0. The changes in the recovery rate were investigated. The results are shown in FIG.

第2図に於て、横軸はパルプ10とパルプ10′の開状
態の時間(即ち均圧化時間)、縦軸は製品02  回収
率R(1)である。
In FIG. 2, the horizontal axis represents the time during which the pulp 10 and the pulp 10' are in an open state (ie, the pressure equalization time), and the vertical axis represents the product 02 recovery rate R(1).

第2図から明らかなように、均圧時間を増大する事によ
り製品0冨 回収率R(イ)が大幅に向上する事がわか
る。
As is clear from Fig. 2, increasing the pressure equalization time significantly improves the product zero-volume recovery rate R(a).

本発明は、この傾向の中で製品0.回収yiR@)が、
何も均圧しない時の製品0.  回収率35チから、5
5%以上に改善される均圧時間である6秒以上を本発明
の有効な領域とするものである。
The present invention addresses this trend with a product of 0.0. Collection yiR@) is
Product 0 when no pressure is equalized. Recovery rate from 35ch to 5
The effective range of the present invention is a pressure equalization time of 6 seconds or more, which is improved by 5% or more.

この時の1 klrn’の08ヲ製造するのに必要な消
費電力(動力原単位)の改善t@3図に示す。
At this time, the improvement in the power consumption (power unit) required to manufacture 08 of 1 klrn' is shown in Figure 3.

第3図に於て、横軸は第2図と同じく均圧化時間(秒)
を、縦軸は動力原単位0 (Kwh/Im”−01〕を
それぞれ示す。
In Figure 3, the horizontal axis is the pressure equalization time (seconds) as in Figure 2.
, and the vertical axis indicates the power consumption unit 0 (Kwh/Im''-01), respectively.

第3図から明らかなように、動力原単位0は何も均圧を
しない時の値であるQ、 75 (Kwh 71m”−
01,:l  から6秒の均圧で[lL55 (KWh
/Nl”−0!]に改善され、さらに15秒の均圧では
、α351: Kwh/Nm’−0冨〕 にまでに改善
される。
As is clear from Figure 3, the power consumption rate of 0 is the value when no pressure is equalized, Q, 75 (Kwh 71m”-
[lL55 (KWh
/Nl''-0!], and further improved to α351: Kwh/Nm'-0! after equalizing the pressure for 15 seconds.

〔発明の効果〕〔Effect of the invention〕

以上の説明及び実施例の結果から明らかなように、本発
明の方法は、−品酸素の回収率が向上し、かつ消費電力
は低減できるという、経済上有利な方法である。
As is clear from the above description and the results of the examples, the method of the present invention is an economically advantageous method that can improve the recovery rate of oxygen and reduce power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するの罠用いられる空気分離
装置の例示図、第2図は均圧時間と製品o雪 の回収率
の関係を示すグラフ、第3図は均圧時間と動力原単位と
の関係を示すグラフである。 復代理人  内 1)  明 復代理人  荻 原 亮 − 第1図
Fig. 1 is an illustration of an air separation device used to implement the method of the present invention, Fig. 2 is a graph showing the relationship between pressure equalization time and recovery rate of product or snow, and Fig. 3 is a graph showing the relationship between pressure equalization time and the recovery rate of products or snow. It is a graph showing the relationship with basic unit. Sub-Agents 1) Meifuku Agent Ryo Ogihara - Figure 1

Claims (1)

【特許請求の範囲】[Claims] Na−Xに代表される鉱物名ナトリウムファウジャサイ
トを充填した少くとも2塔の吸着塔において、室温以下
の温度下で、酸素及び窒素を主成分とする混合気体を大
気圧以上3ata以下で吸着塔に流入させて該混合気体
に含まれる窒素を選択的に吸着せしめ、該吸着塔出口か
ら高純度酸素又は酸素富化ガスを流出させ、一方窒素を
吸着した吸着塔を0.08ata以上0.5ata以下
に減圧せしめて再生する低温、低圧条件下での混合気体
からの酸素及び窒素の分離方法に於いて、少なくとも6
秒以上吸着終了後のN_2吸着塔と再生終了後のN_2
吸着塔の出口側流路を連結し、吸着終了後の塔後方に残
存する製品酸素を再生終了後のN_2吸着塔へ移送する
事により製品酸素の回収率を向上することを特徴とする
混合気体からの酸素及び窒素の分離法。
At least two adsorption towers filled with the mineral name sodium faujasite, represented by Na-X, adsorb a gas mixture mainly consisting of oxygen and nitrogen at a pressure above atmospheric pressure and below 3 ata at a temperature below room temperature. The nitrogen contained in the mixed gas is selectively adsorbed into the column, and high-purity oxygen or oxygen-enriched gas is discharged from the outlet of the adsorption column, while the adsorption column that has adsorbed nitrogen is heated to a concentration of 0.08 ata or more. In a method for separating oxygen and nitrogen from a mixed gas under low temperature and low pressure conditions in which the pressure is reduced to 5 ata or less and regenerated, at least 6
N_2 adsorption tower after adsorption for more than seconds and N_2 after regeneration
A mixed gas characterized in that the recovery rate of product oxygen is improved by connecting the flow paths on the outlet side of the adsorption tower and transferring the product oxygen remaining at the rear of the tower after completion of adsorption to the N_2 adsorption tower after completion of regeneration. Method for separating oxygen and nitrogen from
JP59183633A 1984-09-04 1984-09-04 Separation of oxygen and nitrogen from gaseous mixture Pending JPS6161611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59183633A JPS6161611A (en) 1984-09-04 1984-09-04 Separation of oxygen and nitrogen from gaseous mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59183633A JPS6161611A (en) 1984-09-04 1984-09-04 Separation of oxygen and nitrogen from gaseous mixture

Publications (1)

Publication Number Publication Date
JPS6161611A true JPS6161611A (en) 1986-03-29

Family

ID=16139187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59183633A Pending JPS6161611A (en) 1984-09-04 1984-09-04 Separation of oxygen and nitrogen from gaseous mixture

Country Status (1)

Country Link
JP (1) JPS6161611A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132600A (en) * 1974-09-12 1976-03-19 Dai Ichi Kogyo Seiyaku Co Ltd KORESUTEROORUOBUNRISURUHOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132600A (en) * 1974-09-12 1976-03-19 Dai Ichi Kogyo Seiyaku Co Ltd KORESUTEROORUOBUNRISURUHOHO

Similar Documents

Publication Publication Date Title
US4472178A (en) Adsorptive process for the removal of carbon dioxide from a gas
US4299596A (en) Adsorption process for the separation of gaseous mixtures
JPS6241055B2 (en)
JPH0378126B2 (en)
JPS59179127A (en) Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressure
JPH0530762B2 (en)
JPS6161611A (en) Separation of oxygen and nitrogen from gaseous mixture
JPH0455964B2 (en)
JP2596952B2 (en) Nitrogen production method
JPH0768042B2 (en) High-purity oxygen production method
JP4508716B2 (en) Isotope selective adsorbent, isotope separation and enrichment method, and isotope separation and enrichment apparatus
JPH0573449B2 (en)
JPH0455965B2 (en)
JPH0141379B2 (en)
JPH0768041B2 (en) Oxygen-enriched gas manufacturing method
JPH09122432A (en) Gas separator using pressure swing adsorption process
JPH0531331A (en) Separation of hydrogen isotope
JPS621434A (en) Dehumidification/heat recovery method of gas separation apparatus
JPH06178933A (en) Oxygen adsorbent and separation of oxygen and nitrogen
JP7319830B2 (en) Nitrogen production method and apparatus
JPH05192528A (en) Method for separating oxygen and nitrogen from gaseous mixture
JPH06178934A (en) Oxygen adsorbent and separation of oxygen and nitrogen
JPH0351647B2 (en)
JPS6078638A (en) N2-adsorbent and separation of o2 and n2 thereby
JP2006007004A (en) Isotope selective adsorbent, isotope separation concentration method and isotope separation concentration apparatus