JPS59179127A - Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressure - Google Patents
Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressureInfo
- Publication number
- JPS59179127A JPS59179127A JP58054626A JP5462683A JPS59179127A JP S59179127 A JPS59179127 A JP S59179127A JP 58054626 A JP58054626 A JP 58054626A JP 5462683 A JP5462683 A JP 5462683A JP S59179127 A JPS59179127 A JP S59179127A
- Authority
- JP
- Japan
- Prior art keywords
- adsorbent
- adsorption
- pressure
- tower
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/02—Preparation of oxygen
- C01B13/0229—Purification or separation processes
- C01B13/0248—Physical processing only
- C01B13/0259—Physical processing only by adsorption on solids
- C01B13/0262—Physical processing only by adsorption on solids characterised by the adsorbent
- C01B13/027—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/02—Preparation of oxygen
- C01B13/0229—Purification or separation processes
- C01B13/0248—Physical processing only
- C01B13/0259—Physical processing only by adsorption on solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/10—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/12—Oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40083—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/402—Further details for adsorption processes and devices using two beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0407—Constructional details of adsorbing systems
- B01D53/0446—Means for feeding or distributing gases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0043—Impurity removed
- C01B2210/0046—Nitrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Of Gases By Adsorption (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
【発明の詳細な説明】
気体より選択的にN2を吸着するN2吸着剤を使用して
の02+ N2を主成分とする混合気体より02。DETAILED DESCRIPTION OF THE INVENTION 02+ using a N2 adsorbent that selectively adsorbs N2 from gases 02+ from a mixed gas mainly composed of N2.
N2を分離する方法に関するものである。The present invention relates to a method for separating N2.
N2吸着剤を利用した空気からの02,N.吸着分離法
は、装置が小型簡易であり、又無人運転に近い殆ど保守
を必要としない利点をもつ為、o2製造量10〜3ρ0
ON77m’−02b程度の中小型装置として近年使用
例が増えてきており、深冷分離装置で作られる液酸を輸
送して使用するケースについての代替が進行している。02, N. from air using N2 adsorbent. The adsorption separation method has the advantage that the equipment is small and simple and requires almost no maintenance, which is similar to unmanned operation, so the O2 production amount is 10 to 3 ρ0.
In recent years, the use of small and medium-sized devices such as ON77m'-02b has been increasing, and replacement of cases in which liquid acid produced in cryogenic separation devices is transported and used is progressing.
この装置の成人的なものの概要を述べると、装置は空気
圧縮機、及び2塔又はそれ以上のN2吸着塔、又場合に
よっては真空ポンプ等から構成される。この装置におい
て、1塔に圧縮空気を送ると、充填されたN2吸着剤に
より空気中のN2は吸着除去されて、残る高圧02は吸
着塔の後方に流出し回収される。一方、他塔では吸着し
たN2を減圧条件で放出させ(時として製品o2の一部
を向流で流すとか、真空ポンプで強力にN2を除去する
方法もとられる)再生する。これを交互にくり返して連
続的に02+ N2を分離する。To give a general overview of this equipment, the equipment is composed of an air compressor, two or more N2 adsorption towers, and in some cases a vacuum pump. In this device, when compressed air is sent to one tower, N2 in the air is adsorbed and removed by the packed N2 adsorbent, and the remaining high pressure 02 flows out to the rear of the adsorption tower and is recovered. On the other hand, in other towers, the adsorbed N2 is released under reduced pressure conditions (sometimes a part of the product O2 is flowed in a countercurrent, or a method of powerfully removing N2 with a vacuum pump is used) for regeneration. This is repeated alternately to continuously separate 02+N2.
上記の吸着塔に充填していたN2r1に着剤の代表的な
ものは、ユニオンカーバイド社により実用化されたNa
−A型ゼオライトの60〜70qbca交換体であり、
02 、 N22成分混合ガスからN2を選択的に吸着
するものであって、空気条件下での02の共吸着はN2
吸着の10%以下と推定される。A typical adhesive for the N2r1 packed in the adsorption tower mentioned above is Na, which was commercialized by Union Carbide.
- 60-70 qbca exchanger of type A zeolite,
02, which selectively adsorbs N2 from the N2 component mixed gas, and the co-adsorption of 02 under air conditions is
Estimated to be less than 10% of adsorption.
この吸着による02.N2分離装置は中/J%型領域で
有利と前述したが、INm’の02を製造するのに07
5〜IKwhを必要とし、大容量深冷分離法で製造され
る02の0.45 Kwhに比し消費電力は太きい。02 due to this adsorption. As mentioned above, the N2 separation equipment is advantageous in the medium/J% type region, but it is necessary to use the 07
The power consumption is higher than the 0.45 Kwh of 02, which is produced by large-capacity cryogenic separation method.
又装置容量の増大に対するスケールメリットが少く、3
,0OON−一〇2/h以上の領域では深冷分離法に競
合できないといわれている。In addition, there is little economy of scale for increasing equipment capacity, and 3
, 0OON-102/h or more, it is said that it cannot compete with the cryogenic separation method.
従って、これら欠点についての改善方法が種々考えられ
るが、本発明に関連して改善方法を述べると以下のよう
な障害が通常出現する。Therefore, various methods of improving these drawbacks can be considered, but when describing the method of improvement in relation to the present invention, the following obstacles usually appear.
先ず、消費電力の低減については、送風圧力を低くして
低圧で吸着操作を行なう事が考えられるが、N2吸着量
が圧力にほぼ比例して低下する為、装置の容量が極めて
増大する。次に、吸着量の増大を図る為に、低温条件で
吸着操作を行なう事が考えられるが、この場合はN2吸
着量は増大するものの吸着・脱着速度が著しく低下する
為、同一塔長での製品02濃度が室温時よりもかえって
低下してしまう。又温度の低下に伴ないN2吸着時の0
2共吸着量が上昇する為、動力原単位が漸次上昇する。First, in order to reduce power consumption, it is possible to lower the blowing pressure and perform the adsorption operation at low pressure, but since the amount of N2 adsorption decreases almost in proportion to the pressure, the capacity of the device increases significantly. Next, in order to increase the amount of adsorption, it is possible to perform the adsorption operation under low temperature conditions, but in this case, although the amount of N2 adsorbed increases, the adsorption/desorption rate will decrease significantly, so The concentration of product 02 is actually lower than that at room temperature. Also, as the temperature decreases, 0 during N2 adsorption
Since the amount of 2 co-adsorption increases, the power consumption rate gradually increases.
そこで本発明者は、上記欠点を改善した低温。Therefore, the inventors of the present invention have developed a low-temperature solution that improves the above-mentioned drawbacks.
低圧吸着条件下での高性能な02 + NZの分離方法
につき鋭意研究、実験を進める過程で、Na−X型ゼオ
ライトに代表される鉱物基ナトリウムファウジアサイト
は低温、低圧吸着条件下でN2吸着量が増大するととも
に実用的な範囲でのN2e、着速度の維持が可能であり
、かつN2吸着選択性の減少が小さいことを見出し本発
明を完成するに到ったものである。In the process of conducting intensive research and experiments on a high-performance separation method for 02 + NZ under low-pressure adsorption conditions, we discovered that mineral-based sodium faugiasite, represented by Na-X type zeolite, can adsorb N2 under low-temperature, low-pressure adsorption conditions. We have completed the present invention by discovering that as the amount increases, it is possible to maintain N2e and deposition rate within a practical range, and the decrease in N2 adsorption selectivity is small.
すなわち本発明はNa−Xに代表される鉱物者ナトリウ
ムファウジャサイトを充填した少くとも2塔の吸着塔に
おいて、室温以下の温度下で、酸素及び窒素を主成分と
する混合気体を大気圧以上3aia以下で、吸着塔に流
入させて該混合気体に含まれる窒素を選択的に吸着せし
め、該吸着塔出口から高純度酸素又は酸素富化ガスを流
出させ、一方窒素を吸着した吸着塔を0.08a ta
以上0,5ata以下に減圧せしめて再生することを特
徴とする低温、低圧条件下での混合気体からの酸素及び
窒素の分離方法を提案するものである。In other words, the present invention provides at least two adsorption towers filled with the mineral sodium faujasite represented by Na-X, at a temperature below room temperature, at a temperature above atmospheric pressure. 3aia or less, the nitrogen contained in the mixed gas is flowed into an adsorption tower to selectively adsorb it, and high-purity oxygen or oxygen-enriched gas is flowed out from the outlet of the adsorption tower, while the adsorption tower that has adsorbed nitrogen is .08a ta
The present invention proposes a method for separating oxygen and nitrogen from a mixed gas under low temperature and low pressure conditions, which is characterized by reducing the pressure to below 0.5 ata and regenerating it.
以下本発明の方法について実施例により詳細に説明する
。The method of the present invention will be explained in detail below with reference to Examples.
実施例
本発明の有効性を実証する為第1図に示す空気分離装置
で空気からのNa−X等のす) IJウムファウジャサ
イト系のN2吸着剤によるo21 N2分離を試みた。EXAMPLE In order to demonstrate the effectiveness of the present invention, an attempt was made to separate Na-X, etc. from air using an air separation apparatus shown in FIG. 1 using an IJ umfaujasite-based N2 adsorbent.
以下第1図に基づいて実施した内容を説明する。The details of the implementation will be explained below based on FIG.
入口側ライン1を通じて圧縮機2で105〜3ataに
加圧された空気は、流路3から脱湿脱CO2塔4罠入り
、極めて清浄な加圧空気となる。流路3゛の後流に設置
されたバルブ5は開となっており、清浄な加圧空気は流
路6及び開状態のバルブ7を通じて吸着塔8に入る。吸
着塔8に入った加圧空気はN2吸着剤9でN2が吸着除
去されて後方に行くに従かい029度が上昇する。この
後加圧空気は開状態のバルブ10 、11 、12及び
バルブ11゜12の間に挿入された製品02タンク13
を通じて製品02として回収される。一方、製品02の
一部は流路14の途中にある減圧弁15で減圧されて、
開状態のバルブ10′を通じて吸着塔8゛に入る。吸着
塔8°は開状態のバルブ16及び流路17を通じて連結
された真空ポンプ18で減圧されひかれており、この為
吸着塔8“は空気流れと反対方向に製品02の一部が負
圧状態で流れ、吸着塔8°中の吸着剤9゛に吸着されて
いたN2は容易に離脱され吸着剤91は短時間で再生さ
れる。吸着塔8のN2吸着剤9が飽和し、一方吸着塔8
″のN2吸着剤9′からN2が離脱して成年が済むと、
入口空気の流路6を6′に切り換え、今迄述べた方法を
交互に行なうと製品02が連続的に回収できる。なお、
入口の清浄な加圧空気のライン3°七離脱N2を主成分
とするガスライン17の間は熱交換器19で、熱交換可
能となっており、製品02ライン21と流路3°との間
も又熱交換器22で熱交換可能となっている。Air pressurized to 105 to 3 ata by the compressor 2 through the inlet side line 1 enters the dehumidifying and dehumidifying CO2 tower 4 trap from the flow path 3, and becomes extremely clean pressurized air. The valve 5 installed downstream of the flow path 3' is open, and clean pressurized air enters the adsorption tower 8 through the flow path 6 and the open valve 7. The pressurized air that has entered the adsorption tower 8 has N2 adsorbed and removed by the N2 adsorbent 9, and its temperature increases by 029 degrees as it goes toward the rear. After this, pressurized air is supplied to the open valves 10, 11, 12 and the product 02 tank 13 inserted between the valves 11 and 12.
It is collected as product 02 through the process. On the other hand, a part of the product 02 is depressurized by the pressure reducing valve 15 located in the middle of the flow path 14,
It enters the adsorption column 8' through the open valve 10'. The adsorption tower 8° is depressurized and drawn by the vacuum pump 18 connected through the open valve 16 and flow path 17, and therefore the adsorption tower 8'' is in a negative pressure state with a part of the product 02 in the opposite direction to the air flow. The N2 adsorbed on the adsorbent 9 in the adsorption tower 8° is easily desorbed and the adsorbent 91 is regenerated in a short time.The N2 adsorbent 9 in the adsorption tower 8 is saturated; 8
When N2 leaves the N2 adsorbent 9' and reaches adulthood,
By switching the inlet air flow path 6 to 6' and performing the methods described so far alternately, the product 02 can be continuously recovered. In addition,
A heat exchanger 19 is used to exchange heat between the clean pressurized air line 3°7 at the inlet and the gas line 17 whose main component is N2. The heat exchanger 22 also enables heat exchange between the two.
又流路3′には圧縮式冷凍機20が設置されている為、
極めて能率的に吸着塔8及び8“は冷却され低温条件に
設定される。なお、吸着塔の切り換えにあたっては、単
純に流路6から6″へ(又はその逆)切り換えるだけで
々く、切り換え直後の昇圧に伴なう入口空気の吹きぬけ
を防ぎかつ、吸着塔の後方に残存する02及び前方の加
圧空気の系外への放出を最小にする為、先ず、パルプ1
0 、15 、10’を全開にして吸着直後の吸着塔8
の後方の残存02を再生直後の吸着塔8°に一部移す。Also, since a compression refrigerator 20 is installed in the flow path 3',
The adsorption towers 8 and 8" are cooled and set to low temperature conditions in a very efficient manner. When switching the adsorption towers, simply switching from flow path 6 to 6" (or vice versa) is enough. In order to prevent the inlet air from blowing out due to the pressure increase immediately after, and to minimize the release of the 02 remaining at the rear of the adsorption tower and the pressurized air at the front to the outside of the system, first, the pulp 1
Adsorption tower 8 immediately after adsorption with 0, 15, and 10' fully open.
A portion of the remaining 02 at the rear of is transferred to the adsorption tower 8° immediately after regeneration.
この時吸着塔8の圧力をPo(ata)吸着塔8°の圧
力はパルプ10°、11゛を開として製品o2タンク1
3と吸着塔を均圧化して吸着塔8゛を更に高圧の。2で
満たす。製品02タンク13との均圧時の圧力P 2(
aia)は吸着塔8,8°の死容積(吸着塔内の吸着剤
で占められていない空間の容積)をV、(Z)、製品0
2タンクの容量をV2(t)とし、均圧前の製品o2タ
ンク13の圧力をP6(ata)にほぼ等しいとすると
、均となり、単に塔を切り換える時のPH(ata)が
らP。At this time, the pressure of the adsorption tower 8 is Po(ata), and the pressure of the adsorption tower 8 is the product o2 tank 1 with the pulp 10° and 11° open.
3 and the adsorption tower are equalized, and the adsorption tower 8 is brought to an even higher pressure. Fill with 2. Pressure P2 when equalizing pressure with product 02 tank 13
aia) is the dead volume of the adsorption tower 8,8° (the volume of the space not occupied by the adsorbent in the adsorption tower), V, (Z), product 0
Assuming that the capacity of the 2 tanks is V2 (t) and the pressure of the product O2 tank 13 before pressure equalization is approximately equal to P6 (ata), it will be equalized, and the PH (ata) when simply switching the tower will be P.
(ara)への急速な昇圧に比べ、以上の操作ではP1
Po十P。Compared to the rapid increase in pressure to (ara), the above operation P1
Po ten P.
(ata)、 −2−(ata)、P2(ata)、P
G (a ta )とゆるやかに昇圧する為、昇圧時の
空気の吹き抜けを防止しつつ、脱着工程での残存02、
高圧空気の系外への放出を最小にする様な対策が可能と
なっている。(ata), -2-(ata), P2(ata), P
Since the pressure is gradually increased to G (a ta ), the remaining 02,
Measures can be taken to minimize the release of high-pressure air outside the system.
以上の操作方法で第1図に示した空気分離装置で空気分
離を行なづ゛た。装置の操作諸元を第1表に示す。Air separation was carried out using the air separation apparatus shown in FIG. 1 using the above operating method. The operating specifications of the device are shown in Table 1.
第1表 吸着装置諸元 第1表の操作条件で空気から021N2を分離した。Table 1 Adsorption device specifications 021N2 was separated from air under the operating conditions shown in Table 1.
この時の結果を第2図以下に要約する。以下第2図から
逐次ナトリウムファウジャサイト系吸着剤(以下Na−
Xと記す)による空気からの圧カスイング弐〇2”+
N2吸着分離の従来のNa−A型ゼオライトの60〜7
0%Ca交換体(以下Ca 2A−Na 、/l−Aと
記す)による空気分離に対する主たる改善点を説明する
。The results are summarized in Figure 2 and below. From Figure 2 below, the sodium faujasite adsorbent (hereinafter referred to as Na-
Pressure swing from the air due to
60-7 of conventional Na-A type zeolite for N2 adsorption separation
The main improvements over air separation using a 0% Ca exchanger (hereinafter referred to as Ca2A-Na, /1-A) will be explained.
第2図は吸着圧力と動力原単位との関係を示すグラフで
あり、第2図に於いて、横軸は吸着圧力Poata、縦
軸は1Nyl?/hで02を製造するに必要な消費電力
(KW)である。吸着剤としてNa−X及びCa 2/
/3− Na % −Aを使用し、温度20t、脱着圧
力PI= 0.2ata 、塔内空筒速度TJ = 0
.8mハec (出口規準)に設定して、吸着塔圧力を
15〜4.5ataに変更した0印
時の消費電力を調べたものである図中←はNa−Xにつ
いて・印はCa 2A−Na %−Aについて示してい
る。Figure 2 is a graph showing the relationship between adsorption pressure and power consumption. In Figure 2, the horizontal axis is the adsorption pressure Poata, and the vertical axis is 1Nyl? /h is the power consumption (KW) required to manufacture 02. Na-X and Ca2/ as adsorbents
/3- Using Na%-A, temperature 20t, desorption pressure PI = 0.2ata, column internal cylinder speed TJ = 0
.. The power consumption at 0 mark was investigated when the adsorption tower pressure was changed from 15 to 4.5 ata with the setting at 8mH EC (outlet standard). Shown is Na%-A.
第2図から判るように従来全圧力領域でCa2A−Na
I/l−Aに比べ劣ると思われていたNa−Xも詳細に
調べると吸着圧力3ata以下でCa2A−Na%−A
に対し、より小さな動力原単位で空気から酸素を分離し
得る極めて有用な事実を見出した。これは従来の実用化
されたいかなるN2吸着剤を利用した空気分離方法にお
いてもNa−Xが利用されていない事又従来のいかなる
文献にも記載されていない事からも全く新しい事実とい
える。As can be seen from Figure 2, conventionally Ca2A-Na
When Na-X, which was thought to be inferior to I/l-A, was investigated in detail, it became Ca2A-Na%-A at an adsorption pressure of 3 ata or less.
In contrast, we have discovered an extremely useful fact that allows oxygen to be separated from air with a smaller power unit. This can be said to be a completely new fact since Na-X has not been used in any conventional air separation method using a N2 adsorbent that has been put into practical use, and it has not been described in any conventional literature.
次に上記の有効性が成立する領域である吸着圧力P o
−1,5a ta +空筒速度U= 0.8cm7 s
ec 、温度20°Cに操作条件を設定して吸着剤とし
てCa2A−N8%−A。Next, the adsorption pressure P o is the region where the above effectiveness holds true.
-1,5a ta + empty cylinder speed U = 0.8cm7 s
ec, Ca2A-N8%-A as adsorbent with operating conditions set at temperature 20 °C.
Na−Xの各々について脱着圧力P+を01〜0.5a
ta迄変更して動力原単位を測定しこれを第3図に示し
た。第3図は脱着圧力と動力原単位との関係を示すグラ
フである。第3図に於いて横軸は脱着圧力pl(aia
) +縦軸は021Nm’/h製造時の動力原単位を示
す。図中0印はNa−Xについてe印はCa、/3−N
a VA−Aについて示している。脱着圧に関連して特
異的な現象は見出されなかった力!、深冷分離法による
02製造動力原単位が0.45〜0.6KWh I N
m5−02であり、N2吸着剤を用いた現行装置での分
離による動力原単位が0.7KWh /N??+” −
02近傍を下限とする事及び第3図から実用的な脱着圧
力としては、Q、Q8ata〜Q、5ataの領域であ
り特に好ましくは0.1〜0.3 a t a近傍と思
われる。次いで吸着塔を冷却条件に導き低温条件下での
吸着分離を試みた。これは、低温条件に設定する事によ
り吸着量の上昇が一般的におこるので吸着時の破過帯が
縮少し装置の小型化と分離効率の向上が期待できた為で
ある。The desorption pressure P+ for each of Na-X is 01 to 0.5a.
The power consumption was measured by changing up to ta, and the results are shown in Figure 3. FIG. 3 is a graph showing the relationship between desorption pressure and power consumption. In Fig. 3, the horizontal axis is the desorption pressure pl (aia
) + The vertical axis shows the power consumption rate during production of 021 Nm'/h. In the figure, mark 0 is Na-X, mark e is Ca, /3-N
a Shown for VA-A. No specific phenomenon was found related to desorption pressure force! , 02 production power consumption by cryogenic separation method is 0.45-0.6KWh I N
m5-02, and the power unit for separation with the current equipment using N2 adsorbent is 0.7KWh/N? ? +”−
From the fact that the lower limit is around 0.02 and from FIG. 3, the practical desorption pressure is in the range of Q, Q8 ata to Q, 5 ata, and particularly preferably around 0.1 to 0.3 ata. Next, the adsorption tower was brought to a cooling condition and adsorption separation under low temperature conditions was attempted. This is because the adsorption amount generally increases when the temperature is set to low temperature conditions, so the breakthrough zone during adsorption is reduced, and it was expected that the device would be more compact and the separation efficiency would be improved.
その他の操作条件を吸着圧力1.5ata +再生圧力
0,2 a ta 、空筒速度IJ = 0.8cT
n/ secに設定し温度を室温から漸次低温へ下げて
021 N ??+”/ 11製造時の動力原単位を求
めた。第4図は操作温度と動力原単位との関係を示すグ
ラフである。第4図において横軸は温度、縦軸は動力原
単位を示し0印はNa−Xについて、e印はCa2A−
N8%−Aについて示している。第4図かられかるよう
にCa2A−NaVA−Aでは温度の低下に伴ないむし
ろ動力原単位が上昇しているのに対し、Na−Xでは温
度の低下に伴ない動力原単位は低下し続けた。−60℃
迄の領域でのNa−Xの動力原単位を調べたが空気の吸
着分離に関して特に問題は発生しなかった。更に、■成
分系でのNa−Xの等圧データによると、−1,00℃
程度でもその有効性は失なわれない。しかしながら、そ
れ以下の温度では、N2吸着時の02の共吸着が無視で
きなくなるので好ましくない。Other operating conditions are adsorption pressure 1.5 ata + regeneration pressure 0.2 ata, cylinder velocity IJ = 0.8 cT.
n/sec and gradually lowered the temperature from room temperature to 021 N? ? +”/ 11 The power consumption rate during manufacturing was determined. Figure 4 is a graph showing the relationship between operating temperature and power consumption rate. In Figure 4, the horizontal axis shows temperature and the vertical axis shows power consumption rate. The 0 mark is for Na-X, the e mark is for Ca2A-
It is shown for N8%-A. As can be seen from Figure 4, in Ca2A-NaVA-A, the power consumption rate increases as the temperature decreases, whereas in Na-X, the power consumption rate continues to decrease as the temperature decreases. Ta. -60℃
We investigated the power consumption of Na-X in the previous range, but no particular problems were found regarding adsorption and separation of air. Furthermore, according to the isobaric data of Na-X in the component system, -1,00℃
However, its effectiveness is not lost. However, a temperature lower than that is not preferable because the co-adsorption of 02 during N2 adsorption cannot be ignored.
冷却手段については、特にこの温度領域での問題はなく
、深冷分離装置の冷却技術が共通して使える。Regarding the cooling means, there are no particular problems in this temperature range, and the cooling technology of cryogenic separators can be commonly used.
低温領域でのNa−Xの性能の著しい向上及びCa2A
−Na l/l−Aの不適合性は、吸着塔出口の02濃
度にも表われる。第5図は温度と吸着塔出口o2濃度と
の関係を示すグラフであり、図中横軸は温度縦軸は吸着
塔出口02濃度を示し0印はNa−Xについて、・印は
Ca2/3−N8%−Aについて示している。Significant improvement in performance of Na-X and Ca2A in low temperature region
The incompatibility of -Na l/l-A is also reflected in the 02 concentration at the outlet of the adsorption tower. Figure 5 is a graph showing the relationship between temperature and O2 concentration at the outlet of the adsorption tower. -N8%-A is shown.
操作条件を吸着圧力Po−1,5a t a +脱着圧
力P+=0.2ata 、空筒速度LJ = 0.4−
0.8on7 s e cに設定し、温度をイ氏下させ
て、吸着分離を行った。第5図の曲線はU=O,Sα八
へcの場合を示している。第5図から判るように、Ca
2A−Na V3Aでは吸着塔出口02濃度が低温域で
も殆ど増加しないのに対し、Na−Xでは、温度の低下
に伴ない02濃度は急激に上昇している。更に空筒速度
0.4crn/sec 、温度−30°Cの場合は、0
2濃度がN2吸着剤による空気分離の理論的上限である
02濃度945チを超えて(残ガスアルゴン)96%に
到達した。これは、この温度領域でのNa−Xの使用に
より、アルゴンをも除去可能な高純度02製造方法を新
規に導いたものである。The operating conditions are adsorption pressure Po-1,5a ta + desorption pressure P+ = 0.2ata, cylinder speed LJ = 0.4-
The temperature was set at 0.8 on 7 sec, and the temperature was lowered to perform adsorption separation. The curve in FIG. 5 shows the case where U=O, Sα8 to c. As can be seen from Figure 5, Ca
In 2A-Na V3A, the 02 concentration at the outlet of the adsorption tower hardly increases even in the low temperature range, whereas in Na-X, the 02 concentration increases rapidly as the temperature decreases. Furthermore, when the cylinder velocity is 0.4 crn/sec and the temperature is -30°C, 0
The 02 concentration reached 96% (residual gas argon) exceeding the theoretical upper limit of air separation by N2 adsorbent, 945%. This has led to a new method for producing high-purity 02 that can also remove argon by using Na-X in this temperature range.
又、このように低温側でのN2吸着性能の改善が認めら
れる事は、スケールアップに伴なう塔内温度低下の問題
に対してもかなりの負担軽減をしている事となる。Furthermore, the fact that the N2 adsorption performance has been improved on the low-temperature side means that the problem of lowering the temperature inside the column due to scale-up is considerably alleviated.
以上述べてきた事は、主として動力費、02純度に関連
する事であるが、次に初期設備費に関連する項目につい
てのべる。第5図の操作条件即ち吸着圧力Po=1.5
aLa 、脱着圧力P+=0.2ata 、空筒速度U
=0.8副/secでの毎時IN−の02を製造する場
合の必要吸着剤量を第6図に示した。第6図は温度と上
記の吸着剤量との関係を示すグラフであり、図中横軸は
温度、縦軸は前述の毎時1−の02を製造するに必要な
吸着剤重量〔K7〕であり、0印はNa−Xについて、
・印はCa2/3−Na、A−Aについて示している。What has been described above is mainly related to power costs and 02 purity, but next we will discuss items related to initial equipment costs. Operating conditions in Figure 5, namely adsorption pressure Po=1.5
aLa, desorption pressure P+=0.2ata, cylinder velocity U
The amount of adsorbent required for producing IN-02 per hour at a rate of 0.8 sub/sec is shown in FIG. Figure 6 is a graph showing the relationship between temperature and the amount of adsorbent mentioned above, in which the horizontal axis is the temperature and the vertical axis is the adsorbent weight [K7] required to produce 1-02 per hour. Yes, 0 marks are for Na-X,
- Marks indicate Ca2/3-Na and A-A.
第6図から判るようK Ca 2A−Na 、73−A
が低部にしても吸着剤重量が室温の場合の10%程度I
〜か節約できないのに対し、Na−Xでは一30°Gで
45%程度節約できる事となり装置費のかなりの部分を
占める吸着剤の低減に極めて効果が太きい。以上詳細に
述べたように、本発明によれば、即ちNa−Xで代表さ
れる鉱物名ナトリウムファウジャサイトを使用し、吸着
工程圧力を3ata以下、脱着工程圧力を0.08〜0
.5ataの圧力領域下におき、室温以下の温度域を利
用して混合気体例えば空気の圧力スイング式吸着分離を
行えば、従来毎時INtt?の02を製造するのに要す
る動力原単位が保冷分離法で045〜0.6KW現行の
吸着分離で0.7KW以上を要していたものを、−挙K
O,25蔚近傍迄低減せしめ併せて吸着剤使用量も現
行の吸着剤法の55%に低減し得る。As can be seen from Figure 6, K Ca 2A-Na, 73-A
Even if the weight of the adsorbent is low, it is about 10% of the weight of the adsorbent at room temperature.
In contrast, with Na-X, it is possible to save about 45% at -30°G, which is extremely effective in reducing the amount of adsorbent, which accounts for a considerable portion of the equipment cost. As described above in detail, according to the present invention, the mineral name sodium faujasite represented by Na-X is used, the adsorption process pressure is 3 ata or less, and the desorption process pressure is 0.08 to 0.
.. If pressure swing type adsorption separation of a mixed gas, for example, air, is carried out under a pressure region of 5 ata and using a temperature range below room temperature, conventionally, the hourly INtt? The power unit required to produce 02 is 0.45 to 0.6 KW using the cold separation method, while 0.7 KW or more is required using the current adsorption separation method.
The amount of adsorbent used can be reduced to 55% of the current adsorbent method.
以上詳細に説明したように、本発明は所要の動力原単位
及び吸着剤量が従来の吸着剤法に比べ少なく、産業上非
常に有用な混合気体からの酸素及び窒素の分離方法を提
案するものである。As explained in detail above, the present invention proposes a method for separating oxygen and nitrogen from a mixed gas that requires less power consumption and less adsorbent than conventional adsorbent methods, and is very useful industrially. It is.
第1図は本発明の分離方法を実施するのに用いられる空
気分離装置の例示図、第2図は吸着圧力と動力原単位と
の関係を示すグラフ、第3図は脱着圧力と動力原単位と
の関係を示すグラフ、第4図は温度と動力原単位との関
係を示すグラフ、第5図は温度と吸着塔出口o2濃度と
の関係を示すグラフ、第6図は温度とI Nn1”−o
2/hを製造するに必要な吸着剤との関係を示すグラフ
である。
2・・・圧縮機、4・・・脱湿脱CO2塔、8・・・吸
着塔、13・・・製品02タンク、18・・・真空ポン
プ、2o・・圧縮式冷凍機
第27
0
暖番涯力Po (、atal
脱墨圧力 Pt (atal
第4旧
第5M
遍 度 〔0C1Figure 1 is an illustration of an air separation device used to carry out the separation method of the present invention, Figure 2 is a graph showing the relationship between adsorption pressure and power consumption, and Figure 3 is a graph showing the relationship between adsorption pressure and power consumption. Figure 4 is a graph showing the relationship between temperature and power consumption, Figure 5 is a graph showing the relationship between temperature and O2 concentration at the outlet of the adsorption tower, and Figure 6 is a graph showing the relationship between temperature and I Nn1''. -o
2/h is a graph showing the relationship with the adsorbent required to produce 2/h. 2...Compressor, 4...Dehumidification/dehumidification CO2 tower, 8...Adsorption tower, 13...Product 02 tank, 18...Vacuum pump, 2o...Compression refrigerator No. 270 Warm Banai force Po (, atal Deinking pressure Pt (atal 4th former 5th M degree [0C1
Claims (1)
トを充填した少くとも2・塔の吸着塔において、室温以
下の温度下で、酸素及び窒素を主成分とする混合気体を
大気圧以上3ata以下で吸着塔に流入させて該混合気
体に含まれる窒素を選択的に吸着せしめ、該吸着塔出口
から高純度酸素又は酸素富化ガスを流出させ、一方窒素
を吸着した吸着塔を0.08alB以上0.5ata以
下に減圧せしめて再生することを特徴とする低温、低圧
条件下での混合気体からの酸素及び窒素の分離方法。In at least 2 adsorption towers filled with the mineral name sodium faujasite represented by Na-X, a mixed gas containing oxygen and nitrogen as main components is heated to a pressure above atmospheric pressure and below 3 ata at a temperature below room temperature. The nitrogen contained in the mixed gas is selectively adsorbed by flowing into the adsorption tower, and high-purity oxygen or oxygen-enriched gas is flowed out from the outlet of the adsorption tower, while the adsorption tower that has adsorbed nitrogen is heated to 0.08 alB or more. A method for separating oxygen and nitrogen from a mixed gas under low temperature and low pressure conditions, which comprises regenerating by reducing the pressure to 0.5 ata or less.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58054626A JPS59179127A (en) | 1983-03-30 | 1983-03-30 | Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressure |
DE8484730031T DE3478401D1 (en) | 1983-03-30 | 1984-03-29 | Process for separating a mixed gas into oxygen and nitrogen under low temperature and low pressure conditions |
EP84730031A EP0122874B1 (en) | 1983-03-30 | 1984-03-29 | Process for separating a mixed gas into oxygen and nitrogen under low temperature and low pressure conditions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58054626A JPS59179127A (en) | 1983-03-30 | 1983-03-30 | Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59179127A true JPS59179127A (en) | 1984-10-11 |
Family
ID=12975952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58054626A Pending JPS59179127A (en) | 1983-03-30 | 1983-03-30 | Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressure |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0122874B1 (en) |
JP (1) | JPS59179127A (en) |
DE (1) | DE3478401D1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6418906A (en) * | 1987-07-14 | 1989-01-23 | Mitsubishi Heavy Ind Ltd | Production of nitrogen |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8812263D0 (en) * | 1988-05-24 | 1988-06-29 | Boc Group Plc | Separation of gaseous mixtures |
US5698013A (en) * | 1994-03-18 | 1997-12-16 | Uop | Nitrogen-selective zeolitic adsorbent for use in air separation process |
US5454857A (en) * | 1994-03-18 | 1995-10-03 | Uop | Air separation process |
US5487775A (en) * | 1994-05-09 | 1996-01-30 | The Boc Group, Inc. | Continuous pressure difference driven adsorption process |
FR2731918B1 (en) | 1995-03-24 | 1997-05-23 | Air Liquide | PROCESS FOR THE SEPARATION OF NITROGEN FROM LESS POLAR COMPOUNDS |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5132600A (en) * | 1974-09-12 | 1976-03-19 | Dai Ichi Kogyo Seiyaku Co Ltd | KORESUTEROORUOBUNRISURUHOHO |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3313091A (en) * | 1963-11-04 | 1967-04-11 | Exxon Research Engineering Co | Vacuum cycle adsorption |
US3973931A (en) * | 1974-10-30 | 1976-08-10 | Union Carbide Corporation | Air separation by adsorption |
-
1983
- 1983-03-30 JP JP58054626A patent/JPS59179127A/en active Pending
-
1984
- 1984-03-29 EP EP84730031A patent/EP0122874B1/en not_active Expired
- 1984-03-29 DE DE8484730031T patent/DE3478401D1/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5132600A (en) * | 1974-09-12 | 1976-03-19 | Dai Ichi Kogyo Seiyaku Co Ltd | KORESUTEROORUOBUNRISURUHOHO |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6418906A (en) * | 1987-07-14 | 1989-01-23 | Mitsubishi Heavy Ind Ltd | Production of nitrogen |
Also Published As
Publication number | Publication date |
---|---|
DE3478401D1 (en) | 1989-07-06 |
EP0122874A1 (en) | 1984-10-24 |
EP0122874B1 (en) | 1989-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0349655A1 (en) | Process for separating and recovering carbonic acid gas from gas mixture by adsorption | |
US4746332A (en) | Process for producing high purity nitrogen | |
JP3037574B2 (en) | How to recover lithium | |
CN211799895U (en) | Process system for separating mixed gas containing hydrogen chloride and hydrogen | |
JPS58128123A (en) | Separation of gas and its device | |
WO2002051524A1 (en) | Method for separating hydrogen gas | |
JPS59179127A (en) | Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressure | |
JPH0378126B2 (en) | ||
JPH0952703A (en) | Method for adsorbing nitrogen from gas mixture by using pressure pendulum adsorption with zeolite | |
JPH0530762B2 (en) | ||
JP2596952B2 (en) | Nitrogen production method | |
JPS60127202A (en) | Production of oxygen with n2 adsorption column using ca-na-a and na-x | |
JP2002079031A (en) | Pressure swing adsorbing apparatus for manufacturing highly concentrated oxygen | |
JPH0768042B2 (en) | High-purity oxygen production method | |
JPH06178933A (en) | Oxygen adsorbent and separation of oxygen and nitrogen | |
JP4119712B2 (en) | Isotope selective adsorbent, isotope separation and concentration method, and isotope separation and concentration apparatus | |
JPH06178934A (en) | Oxygen adsorbent and separation of oxygen and nitrogen | |
JPS59177131A (en) | N2-adsorbent and o2/n2 separation using the same | |
JPH0768041B2 (en) | Oxygen-enriched gas manufacturing method | |
JP2955139B2 (en) | Nitrogen adsorbent and method for separating oxygen and nitrogen | |
JP2006007004A (en) | Isotope selective adsorbent, isotope separation concentration method and isotope separation concentration apparatus | |
JPH05192528A (en) | Method for separating oxygen and nitrogen from gaseous mixture | |
JPS6161611A (en) | Separation of oxygen and nitrogen from gaseous mixture | |
JPS60231401A (en) | Production of oxygen with ca-na-a and na-x-nacl in n2 adsorption tower | |
JPS6078638A (en) | N2-adsorbent and separation of o2 and n2 thereby |