JPH06178933A - Oxygen adsorbent and separation of oxygen and nitrogen - Google Patents

Oxygen adsorbent and separation of oxygen and nitrogen

Info

Publication number
JPH06178933A
JPH06178933A JP4332940A JP33294092A JPH06178933A JP H06178933 A JPH06178933 A JP H06178933A JP 4332940 A JP4332940 A JP 4332940A JP 33294092 A JP33294092 A JP 33294092A JP H06178933 A JPH06178933 A JP H06178933A
Authority
JP
Japan
Prior art keywords
oxygen
nitrogen
adsorbent
adsorption
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4332940A
Other languages
Japanese (ja)
Inventor
Toshinobu Kobayashi
繁鋪 小林
Jun Izumi
順 泉
Akinori Yasutake
昭典 安武
Kazuaki Oshima
一晃 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP4332940A priority Critical patent/JPH06178933A/en
Publication of JPH06178933A publication Critical patent/JPH06178933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To provide an oxygen adsorbent which adsorbs a large quantity of oxygen under low temperature and low pressure adsorptive conditions and excels in oxygen selectivity and to provide a method for separating oxygen and nitrogen where oxygen of high purity is easily obtained at extremely low unit requirement of power by using the adsorbent. CONSTITUTION:(1) An oxygen adsorbent which after 3-20% of Na ions of Na-A type zeolite is given ion exchange by K ions, heat treatment is performed at atmospheric pressare and at a temperature of 600-760 deg.C to form is provided. (2) A method for separating oxygen and nitrogen where not less than two adsorbers packed with the oxygen adsorbent are kept at not more than room temperature and mixed gas of oxygen and nitrogen is fed to one a adsorption tower at a pressure of atmospheric to data to make oxygen selectively adsorbed, causing nitrogen of high purity or nitrogen-rich gas to flow out and the other adsorption tower is given pressure decrease to 0.08-0.5ata to regenerate the adsorbent, causing oxygen-rich gas to be recovered and continuous switching between the adsorption process and the regeneration process is performed is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸素と窒素を主成分と
する空気等の混合気体より低温で選択的に酸素を吸着す
る酸素吸着剤、及び、該吸着剤を用いて、酸素と窒素を
分離する方法に関する。
TECHNICAL FIELD The present invention relates to an oxygen adsorbent which selectively adsorbs oxygen at a lower temperature than a mixed gas containing oxygen and nitrogen as main components, and an oxygen adsorbent using the adsorbent. On how to separate.

【0002】[0002]

【従来の技術】酸素吸着剤を利用して空気から酸素と窒
素を吸着分離する方法は、装置が小型簡易であり、無人
運転に近いほど保守を必要としない、という利点がある
ため、酸素製造量が10〜3000Nm3 −N2 /h程
度の中小型の窒素製造装置として近年使用例が増えてき
ており、深冷分離装置で作られる液体窒素を輸送して使
用するケースについての代替も進行している。そこで
は、酸素吸着剤として活性炭系のモレキュラーシーブス
カーボン4Aが最も多く使用されている。
2. Description of the Related Art The method of adsorbing and separating oxygen and nitrogen from air using an oxygen adsorbent has the advantages that the device is small and simple and does not require maintenance as much as unmanned operation. In recent years, the number of uses has increased as a medium- and small-sized nitrogen production device with an amount of about 10 to 3000 Nm 3 -N 2 / h, and replacement of the case of transporting and using liquid nitrogen produced by a cryogenic separation device is also in progress. is doing. There, activated carbon type molecular sieves carbon 4A is most often used as an oxygen adsorbent.

【0003】上記の吸着分離方法は、空気圧縮機、2塔
以上の酸素吸着塔、場合によっては真空ポンプからなる
装置で実施される。一方の吸着塔に圧縮空気を送ると、
吸着塔に充填された酸素吸着剤により、空気中の酸素が
吸着分離され、残る高圧の窒素が吸着塔の後方より回収
される。そして、他方の吸着塔は、減圧したり、必要に
応じて製品の窒素の一部を向流で流したり、真空ポンプ
で強力に吸引することにより、酸素を脱着回収して吸着
剤を再生する。この操作を繰り返すことにより、連続的
に酸素と窒素を分離する方法てある。
The above adsorption / separation method is carried out in an apparatus comprising an air compressor, two or more oxygen adsorption towers, and in some cases a vacuum pump. Sending compressed air to one adsorption tower,
Oxygen in the air is adsorbed and separated by the oxygen adsorbent filled in the adsorption tower, and the remaining high-pressure nitrogen is recovered from the rear of the adsorption tower. Then, the other adsorption tower decompresses and recovers oxygen to regenerate the adsorbent by decompressing, if necessary countercurrently flowing a part of nitrogen of the product, or by strongly sucking with a vacuum pump. . By repeating this operation, oxygen and nitrogen are continuously separated.

【0004】上記の吸着分離方法に用いる酸素吸着剤の
代表的なものは、ベルグバウフォルシュング社により実
用化された窓径約4オングストロームを有すると推定さ
れるカーボンモレキュラーシーブスであり、酸素・窒素
2成分混合ガスから、吸着速度の差を利用して酸素を選
択的に吸着するものである。
A typical example of the oxygen adsorbent used in the above adsorption separation method is carbon molecular sieves put to practical use by Bergbau Forsung, which is estimated to have a window diameter of about 4 angstroms. Oxygen is selectively adsorbed from a binary gas mixture by utilizing the difference in adsorption rate.

【0005】上記の吸着分離方法は、中小型装置の領域
で有利であると述べたが、1Nm3の窒素を製造するの
に、99%窒素で0.45Kwh、99.9%窒素で
0.65Kwhの電力を必要とし、大容量深冷分離法の
0.28Kwhに比して消費電力が大きい。また、酸素
について上記運転条件で、1Nm3 の窒素を製造する時
に25〜30%の酸素富化空気が脱着側から3.5〜4
Nm3 で回収される。しかしながら、本方法で酸素を具
体的に回収した例は少ない。これは、得られる酸素濃度
が上記のように低濃度に止まり、他方、高圧空気を使用
するところから、消費電力が0.8kwh/Nm3 −O
2 (純酸素換算)を上回るためと考えられる。また、窒
素製造においては、装置容量の増大に対するスケールメ
リットが少なく、1000Nm3 −N2 /h以上の領域
では深冷分離法に競合できないといわれており、酸素製
造においては状況はさらに難しい。
Although the above-mentioned adsorption separation method is said to be advantageous in the area of small and medium-sized equipment, in order to produce 1 Nm 3 of nitrogen, 0.45 Kwh with 99% nitrogen and 0.15% with 99.9% nitrogen. It requires 65 Kwh of power and consumes more power than 0.28 Kwh of the large-capacity cryogenic separation method. In addition, when oxygen of 1 Nm 3 is produced under the above operating conditions for oxygen, 25 to 30% of oxygen-enriched air is 3.5 to 4 from the desorption side.
Recovered at Nm 3 . However, there are few examples in which oxygen is specifically recovered by this method. This is because the obtained oxygen concentration remains low as described above, and on the other hand, since high pressure air is used, the power consumption is 0.8 kwh / Nm 3 -O.
It is considered that this is because it exceeds 2 (pure oxygen equivalent). Further, in the nitrogen production, there is little economies of scale with respect to the increase of the apparatus capacity, and it is said that it is not possible to compete with the cryogenic separation method in the region of 1000 Nm 3 −N 2 / h or more, and the situation is even more difficult in the oxygen production.

【0006】そこで、消費電力の低減についてみると、
送風圧力を低くして低圧で吸着操作を行うことが考えら
れるが、酸素吸着量が圧力にほぼ比例して低下するた
め、装置の容量を極めて膨大にする。また、酸素製造量
(酸素富化空気量)の増大を図るためにはサイクルタイ
ムの短縮が考えられるが、バルブ、吸着剤、回転機械な
どの消耗が大きく、おのずから限度がある。
Therefore, looking at the reduction of power consumption,
It is conceivable to lower the blast pressure to perform the adsorption operation at a low pressure, but the oxygen adsorption amount decreases almost in proportion to the pressure, so the capacity of the device becomes extremely large. Further, in order to increase the oxygen production amount (oxygen-enriched air amount), it is conceivable to shorten the cycle time, but the valve, the adsorbent, the rotating machine, and the like are largely consumed, which naturally limits the cycle time.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明は、上
記の欠点を解消し、低温・低圧吸着条件下で酸素吸着量
が大きく、酸素選択性の優れた酸素吸着剤を提供し、か
つ、該吸着剤を用いて極めて少ない動力原単位で高純度
の酸素を容易に得ることができる酸素・窒素の分離方法
を提供しようとするものである。
Therefore, the present invention solves the above-mentioned drawbacks and provides an oxygen adsorbent having a large oxygen adsorption amount under low temperature and low pressure adsorption conditions and excellent oxygen selectivity, and It is an object of the present invention to provide a method for separating oxygen and nitrogen, which can easily obtain high-purity oxygen with an extremely small power unit by using the adsorbent.

【0008】[0008]

【課題を解決するための手段】本発明は、(1) Na−A
型ゼオライトの全Na中、3〜20%をKでイオン交換
した後、常圧下で温度600〜760℃で熱処理してな
る酸素吸着剤、及び、(2) 上記の酸素吸着剤を充填した
2塔以上の吸着塔を室温以下に保持し、酸素及び窒素を
主成分とする混合ガスを大気圧〜3ataの圧力で吸着
工程の吸着塔に供給して酸素を選択的に吸着させ、該吸
着塔から高純度窒素又は窒素富化ガスを流出させ、再生
工程の吸着塔を0.08〜0.5ataの圧力に減圧し
て吸着剤を再生し、酸素富化ガスを回収し、上記の吸着
工程と再生工程を連続的に切り換えることを特徴とする
酸素と窒素の分離方法である。
The present invention provides (1) Na-A
An oxygen adsorbent obtained by subjecting 3 to 20% of the total zeolite of the type zeolite to ion exchange with K and then heat-treating at a temperature of 600 to 760 ° C. under normal pressure, and (2) filling the oxygen adsorbent described above with 2 The adsorption towers above are kept at room temperature or below, and a mixed gas containing oxygen and nitrogen as main components is supplied to the adsorption tower in the adsorption step at a pressure of atmospheric pressure to 3 ata to selectively adsorb oxygen, and the adsorption tower High-purity nitrogen or nitrogen-enriched gas is discharged from the column, the adsorbent in the regeneration step is decompressed to a pressure of 0.08 to 0.5 ata to regenerate the adsorbent, and the oxygen-enriched gas is recovered. The method for separating oxygen and nitrogen is characterized in that the regeneration step and the regeneration step are continuously switched.

【0009】[0009]

【作用】本発明者等は、低温低圧吸着条件下で酸素と窒
素を効率的に分離する方法について鋭意研究する中で、
Na−A型ゼオライトの有するNaイオンの3〜20%
をKイオンでイオン交換した後、600〜760℃の温
度で熱処理して活性化した酸素吸着剤が、低温低圧吸着
条件下における酸素吸着量を増大させ、かつ、酸素選択
吸着性に優れていることを見いだし、室温領域での高圧
吸着、大気圧(真空減圧)再生に比べ、吸着塔の容量を
増大することもなく、消費電力を大幅に低減することを
可能にする酸素と窒素の分離方法を完成するに至ったも
のである。
The present inventors, while earnestly researching a method for efficiently separating oxygen and nitrogen under low temperature and low pressure adsorption conditions,
3-20% of Na ions contained in Na-A type zeolite
The oxygen adsorbent activated by heat exchange at 600 to 760 ° C. after ion exchange with K ion increases the amount of oxygen adsorbed under low temperature and low pressure adsorption conditions and is excellent in oxygen selective adsorption. Therefore, compared with high-pressure adsorption in the room temperature range and regeneration under atmospheric pressure (vacuum decompression), it is possible to significantly reduce the power consumption without increasing the capacity of the adsorption tower and to separate oxygen and nitrogen. Has been completed.

【0010】本発明に係る酸素吸着剤の製造例を以下説
明する。まず、Na−A型ゼオライトスラリー溶液に
0.1M濃度のKCl水溶液を、上記ゼオライトの有す
る全Naのうち、モル換算で3〜20%をKとイオン交
換させる。その後、ろ過水洗を行い、次いで、カオリン
及びシリカゾルをバインダーとして添加し、成形した
後、600〜760℃の高温で2時間焼成して酸素吸着
剤を得る。この酸素吸着剤を用いて図1に示す空気分離
装置で空気から酸素と窒素の分離を試みた。
A production example of the oxygen adsorbent according to the present invention will be described below. First, a 0.1 M KCl aqueous solution is added to a Na-A type zeolite slurry solution to ion-exchange 3 to 20% of all Na contained in the zeolite with K in terms of mol. Then, filtration and washing are carried out, then kaolin and silica sol are added as binders, and after molding, they are fired at a high temperature of 600 to 760 ° C. for 2 hours to obtain an oxygen adsorbent. Using this oxygen adsorbent, an attempt was made to separate oxygen and nitrogen from air using the air separation device shown in FIG.

【0011】以下、図1に基づいて空気分離操作を説明
する。空気は、入口ライン1を通じて圧縮機2に送ら
れ、1.05〜3ataに加圧され、流路3を介して脱
湿・脱二酸化炭素塔4に送られ、極めて清浄な加圧空気
となる。該加圧空気は、流路3’、バルブ5、流路6、
バルブ7を介して吸着工程にある吸着塔8に供給され、
塔内に充填されている酸素吸着剤9で酸素を吸着分離す
る。その際、塔の後方にゆくにつれて窒素濃度が上昇す
る。そして、窒素富化空気は、バルブ10、11を介し
て製品窒素タンク13に回収され、必要に応じて、バル
ブ12、製品窒素流路21を介して系外に取り出され
る。
The air separation operation will be described below with reference to FIG. The air is sent to the compressor 2 through the inlet line 1, is pressurized to 1.05 to 3 ata, is sent to the dehumidifying / decarbonizing tower 4 through the flow path 3, and becomes extremely clean pressurized air. . The pressurized air flows through the flow path 3 ′, the valve 5, the flow path 6,
It is supplied to the adsorption tower 8 in the adsorption process through the valve 7,
Oxygen is adsorbed and separated by the oxygen adsorbent 9 filled in the tower. At that time, the nitrogen concentration increases toward the rear of the tower. Then, the nitrogen-enriched air is collected in the product nitrogen tank 13 via the valves 10 and 11, and taken out of the system via the valve 12 and the product nitrogen flow passage 21 as necessary.

【0012】一方、再生工程にある吸着塔8’は、真空
ポンプ18により、バルブ16’、流路17を介して減
圧し、酸素吸着剤9’に吸着されている酸素は容易に脱
離され、短時間で再生される。吸着塔8の酸素吸着剤9
が飽和し、吸着塔8’の酸素吸着剤9’が再生される
と、入口空気の流路6を6’に切り換えて吸着塔8を吸
着工程から再生工程に、吸着塔8’を再生工程から吸着
工程に移行させる。このように、上記工程を順次切り換
えることより、製品窒素と酸素富化空気を連続的に回収
することができる。
On the other hand, the adsorption tower 8'in the regeneration step is decompressed by the vacuum pump 18 through the valve 16 'and the flow path 17, and the oxygen adsorbed on the oxygen adsorbent 9'is easily desorbed. , Will be played in a short time. Oxygen adsorbent 9 in adsorption tower 8
Are saturated and the oxygen adsorbent 9'of the adsorption tower 8'is regenerated, the inlet air flow path 6 is switched to 6 ', the adsorption tower 8 is changed from the adsorption step to the regeneration step, and the adsorption tower 8'is regenerated step. To the adsorption step. Thus, by sequentially switching the above steps, product nitrogen and oxygen-enriched air can be continuously recovered.

【0013】なお、入口の清浄な加圧空気を供給する流
路3’と、離脱酸素を主成分とするガスを排出する流路
17の間に熱交換器19を設け、また、製品窒素流路2
1と、上記の加圧空気流路3’との間にも熱交換器22
を設けて熱交換可能となっている。そして、上記の加圧
空気流路3’に圧縮式冷凍機20を設置することによ
り、極めて効率的に吸着塔を冷却し、所定の低温条件を
得ることができる。
A heat exchanger 19 is provided between the flow path 3'for supplying clean pressurized air at the inlet and the flow path 17 for discharging the gas containing desorbed oxygen as a main component. Road 2
1 and the above-mentioned pressurized air flow path 3 ′ are also connected to the heat exchanger 22.
Is provided to enable heat exchange. By installing the compression refrigerator 20 in the pressurized air flow path 3 ′, the adsorption tower can be cooled very efficiently and a predetermined low temperature condition can be obtained.

【0014】また、吸着塔の切り換えにあたっては、単
純に流路を6と6’の間で切り換えるだけでなく、切り
換え直後の昇圧に伴う入口空気の吹き抜けを防ぎ、か
つ、吸着塔の後方に残存する窒素及び前方の加圧空気の
系外への放出を最小にするために、まず、バルブ10、
10’を全開にして、吸着直後の吸着塔8の後方の残存
窒素を再生直後の吸着塔8’に一部移す。この時、吸着
塔8の圧力をPO (ata)、吸着塔8’の圧力をP1
(ata)とすると、均圧後の圧力は約(PO +P1
/2となる。この後、約(PO +P1 )/2となった吸
着塔8’はバルブ10’、11’を開いて製品窒素タン
ク13と吸着塔を均圧化して、吸着塔8’をさらに高圧
の窒素で満たす。製品タンク13の均圧時の圧力P
2 (ata)は吸着塔8,8’の死容積をV1 (リット
ル)、製品窒素タンク13の容量をV2(リットル)と
すると、均圧前の製品窒素タンク13の圧力をPO にほ
ぼ等しいとすると、均圧化圧力P2 は概略次の通りにな
る。 P2 =〔(PO +P1 )/2・V1 +PO ・V2 〕/
(V1 +V2
In addition, when switching the adsorption tower, not only is the flow path simply switched between 6 and 6 ', but also the inlet air is prevented from being blown through due to pressurization immediately after the switching, and it remains behind the adsorption tower. In order to minimize the release of nitrogen and forward pressurized air out of the system, first, the valve 10,
10 ′ is fully opened, and the residual nitrogen behind the adsorption tower 8 immediately after adsorption is partially transferred to the adsorption tower 8 ′ immediately after regeneration. At this time, the pressure of the adsorption tower 8 is P O (ata), and the pressure of the adsorption tower 8'is P 1 (ata).
(Ata), the pressure after equalization is approximately (P O + P 1 ).
/ 2. After this, the adsorption tower 8 ′ having a pressure of about (P O + P 1 ) / 2 is opened by opening the valves 10 ′ and 11 ′ to equalize the product nitrogen tank 13 and the adsorption tower so that the adsorption tower 8 ′ has a higher pressure. Fill with nitrogen. Pressure P when equalizing product tank 13
2 (ata), assuming that the dead volume of the adsorption towers 8 and 8 ′ is V 1 (liter) and the capacity of the product nitrogen tank 13 is V 2 (liter), the pressure of the product nitrogen tank 13 before pressure equalization is P O. If they are substantially equal, the pressure equalizing pressure P 2 is roughly as follows. P 2 = [(P O + P 1 ) / 2 · V 1 + P O · V 2 ] /
(V 1 + V 2 )

【0015】このように、単に塔を切り換える時の、P
1 からPO への急速な昇圧に比べ、上記の操作は、
1 、(PO +P1 )/2、P2 、PO と緩やかに昇圧
されるため、昇圧等の空気の吹き抜けが防止され、脱着
工程における残存窒素、高圧空気の系外への放出を最小
にすることができる。なお、再生工程における酸素富化
空気の回収を主題とする運転では、上記操作は製品酸素
濃度を下げるので有効でない。
Thus, when simply switching the tower, P
Compared to the rapid boosting from 1 to P O
Since the pressure is gently increased to P 1 , (P O + P 1 ) / 2, P 2 , P O , blow-through of air such as pressure increase is prevented, and residual nitrogen and high pressure air in the desorption process are released to the outside of the system. Can be minimized. It should be noted that in the operation whose main theme is the recovery of oxygen-enriched air in the regeneration process, the above operation is not effective because it lowers the product oxygen concentration.

【0016】[0016]

【実施例】図1の装置を用い、上記の操作手順で空気分
離を行った。その際の操作諸元は次の通りである。 吸着塔 直径25mm,長さ2600m
m 吸着剤充填量 1.5kg/塔 塔数 2塔 塔切り換え時間 60秒 出口製品流量 2Nリットル/切換時間 吸着塔圧力 1〜5ata 再生塔圧力 0.1〜1ata 吸着塔温度 20〜−100℃ 吸着剤の種類 Na−K−A型ゼオライト
EXAMPLE Air separation was carried out using the apparatus shown in FIG. The operation specifications at that time are as follows. Adsorption tower diameter 25mm, length 2600m
m Adsorbent filling amount 1.5 kg / tower Number of towers 2 towers Switching time 60 seconds Outlet product flow rate 2 N liter / switching time Adsorption tower pressure 1-5 ata Regeneration tower pressure 0.1-1 ata Adsorption tower temperature 20--100 ° C Adsorption Type of agent Na-KA type zeolite

【0017】図2は、Na−A型ゼオライトの有するN
aの3〜15モル%をKとイオン交換し、常圧下で60
0〜760℃で熱処理したNa−K−A型ゼオライトを
酸素吸着剤として用い、Kイオン交換率(mol%)を
変えるときに脱着ガス中の酸素濃度(vol%)の変化
を調べた結果である。なお、吸着圧力(PO )は1.2
ata、再生圧力(P1 )は0.1ata、吸着温度−
30℃、出口窒素濃度97%に設定した。
FIG. 2 shows N contained in Na-A type zeolite.
3 to 15 mol% of a is ion-exchanged with K to obtain 60 under normal pressure.
Using Na-KA type zeolite heat-treated at 0 to 760 ° C as an oxygen adsorbent, the change in oxygen concentration (vol%) in the desorbed gas was examined when changing the K ion exchange rate (mol%). is there. The adsorption pressure (P O ) is 1.2
ata, regeneration pressure (P 1 ) is 0.1 ata, adsorption temperature-
The temperature was set to 30 ° C. and the outlet nitrogen concentration was 97%.

【0018】図2から明らかなように、イオン交換率が
3〜15%の範囲で酸素富化空気濃度が通常酸素製造の
目安(膜分離等)で30vol%を上回る。なお、この
ときの動力原単位は酸素富化空気ベースで0.09kw
h/Nm3 −O2 となる。この実施例では、空気から酸
素を分離するため、製品窒素に対応する酸素が原料空気
から持ち込まれたものとし、純粋に製造された酸素は製
品中の酸素から、この持ち込み酸素を差し引いた分とす
ることで動力評価を行った。即ち、 持ち込み酸素Ci=20.6/78.5(1−CO ) 但し、CO :酸素富化空気中の酸素濃度 純酸素分Cp=CO −20.6/78.5(1−CO ) =1.26CO −0.26 酸素富化空気中の酸素濃度が最も高い48vol%では
Cp=0.34Nm3となるので、動力原単位は0.2
6kwh/Nm3 −O2 となる。
As is clear from FIG. 2, the oxygen-enriched air concentration exceeds 30 vol% as a standard for oxygen production (membrane separation, etc.) in the ion exchange ratio range of 3 to 15%. The power consumption per unit at this time is 0.09 kW on an oxygen-enriched air basis.
the h / Nm 3 -O 2. In this example, in order to separate oxygen from air, it is assumed that oxygen corresponding to product nitrogen is brought in from the raw material air, and purely produced oxygen is the amount of oxygen in the product minus this carried-in oxygen. Power evaluation was performed by doing. That is, carry-in oxygen Ci = 20.6 / 78.5 (1- CO ), where CO : oxygen concentration in oxygen-enriched air Pure oxygen content Cp = CO- 20.6 / 78.5 (1- C O) = so 1.26C O -0.26 oxygen concentration of the oxygen-enriched air is the highest 48 vol% at Cp = 0.34 nm 3, a power consumption rate 0.2
The 6kwh / Nm 3 -O 2.

【0019】ここで、従来のNa−Aの分子篩効果の説
明によると、Na−Aでは窓径が4Åであり、図3に示
したように、小さな分子である酸素(2.8×3.8
Å)も大きな分子である窒素(3.2×4.2Å)も吸
着される。一方、K−Aでは窓径が3Åに縮小して酸素
も窒素も吸着しないとされていた。この説明によると、
Naの一部をKでイオン交換しても酸素も窒素も吸着し
ない窓が増加するのみで、それ以上の効果は出現しない
ことになる。しかし、本発明では、上記のイオン交換を
施した吸着剤に対して次に説明する熱処理を行うことに
より、低温吸着操作における酸素の選択吸着性を付与す
ることに成功したのである。
Here, according to the explanation of the molecular sieve effect of conventional Na-A, the window diameter of Na-A is 4Å, and as shown in FIG. 3, oxygen (2.8 × 3. 8
Nitrogen (3.2 × 4.2Å), which is a large molecule, is also adsorbed. On the other hand, in KA, it was said that the window diameter was reduced to 3Å and neither oxygen nor nitrogen was adsorbed. According to this explanation,
Even if a part of Na is ion-exchanged with K, only a window in which neither oxygen nor nitrogen is adsorbed is increased, and no further effect appears. However, in the present invention, the adsorbent that has undergone the above-mentioned ion exchange is subjected to the heat treatment described below, thereby succeeding in imparting the selective adsorption property of oxygen in the low temperature adsorption operation.

【0020】図4は、K交換率を図2の最適条件である
12モル%にしたNa−K−Aについて、熱処理温度を
変化させて、脱着時に回収される酸素富化空気中の酸素
濃度(vol%)を調べた結果を示したものである。な
お、吸着圧力(PO )は1.2ata、再生圧力
(P1 )は0.1ata、吸着温度−30℃、出口窒素
濃度97%に設定した。図4から明らかなように、熱処
理温度が600〜760℃の範囲では酸素濃度は30v
ol%を越え、最適の熱処理温度は740℃の近傍であ
った。即ち、Na−A型ゼオライトの最適調製条件は、 i)K交換率 :3〜15%の範囲、最大値は12%の
近傍 ii)熱処理温度:600〜760℃の範囲、最大値は7
40℃の近傍。 そこで、K交換率12%、熱処理温度740℃で2時間
処理したNa−K−A酸素吸着剤を使用して、酸素と窒
素の分離について以下の特性を調べた。
FIG. 4 shows the oxygen concentration in the oxygen-enriched air recovered during desorption by changing the heat treatment temperature for Na-K-A whose K exchange rate is 12 mol% which is the optimum condition of FIG. It shows the result of examining (vol%). Incidentally, the adsorption pressure (P O) is 1.2Ata, the regeneration pressure (P 1) was set 0.1Ata, adsorption temperature -30 ° C., the outlet nitrogen concentration of 97%. As is clear from FIG. 4, the oxygen concentration is 30 v in the heat treatment temperature range of 600 to 760 ° C.
The optimum heat treatment temperature exceeded ol% and was around 740 ° C. That is, the optimal preparation conditions of Na-A type zeolite are: i) K exchange rate: in the range of 3 to 15%, maximum value is near 12% ii) Heat treatment temperature: in the range of 600 to 760 ° C, maximum value is 7
Near 40 ° C. Therefore, the following characteristics were investigated for the separation of oxygen and nitrogen using a Na-KA oxygen adsorbent that had been treated at a heat exchange temperature of 740 ° C for 2 hours with a K exchange rate of 12%.

【0021】図5は、吸着温度を−30℃、脱着圧力P
1 を0.1ata、出口窒素濃度99.9%に設定し、
吸着圧力P0 を1.05〜4.5ataの範囲で変化さ
せたときの、動力原単位(kwh/Nm3 −N2 )を調
べた結果である。図5から明らかなように、吸着圧力の
低下に伴い動力原単位が大幅に低減しており、吸着圧力
が3ata以下では、カーボン分子篩4Aの0.65k
wh/Nm3 −N2 (99.9%N2 )に対し、より小
さな動力原単位で空気から窒素及び酸素富化空気を分離
できることが分かった。
FIG. 5 shows an adsorption temperature of -30 ° C. and a desorption pressure P.
1 is set to 0.1 ata and outlet nitrogen concentration is 99.9%,
It is the result of investigating the power consumption unit (kwh / Nm 3 −N 2 ) when the adsorption pressure P 0 was changed in the range of 1.05 to 4.5 ata. As is clear from FIG. 5, the power consumption rate is drastically reduced as the adsorption pressure decreases, and when the adsorption pressure is 3 ata or less, the carbon molecular sieve 4A has 0.65 k.
It has been found that nitrogen and oxygen enriched air can be separated from air with smaller power units for wh / Nm 3 -N 2 (99.9% N 2 ).

【0022】図6は、図5の条件のうち吸着圧力PO
1.2ataとし、脱着圧力P1 のみを0.1〜0.5
ataの範囲で変化させたときの、動力原単位を調べた
結果である。図5から明らかなように、脱着圧力P1
0.1〜0.3ataの範囲が、カーボン分子篩4Aの
0.65kwh/Nm3 −N2 (99.9%N2 )より
小さな動力原単位で空気から窒素及び酸素富化空気を分
離できることが分かった。
In FIG. 6, of the conditions of FIG. 5, the adsorption pressure P O is 1.2 ata, and only the desorption pressure P 1 is 0.1 to 0.5.
It is the result of investigating the power consumption unit when changing within the range of ata. As is clear from FIG. 5, the desorption pressure P 1 =
The range of 0.1 to 0.3 ata can separate nitrogen- and oxygen-enriched air from air with a power unit smaller than 0.65 kwh / Nm 3 -N 2 (99.9% N 2 ) of carbon molecular sieve 4A. Do you get it.

【0023】図7は、図5の条件のうち吸着圧力PO
1.2ataとし、脱着圧力P1 を0.1ata、出口
窒素濃度99.9%に設定し、吸着温度を室温から−1
00℃の範囲で変化させたときの、動力原単位を調べた
結果である。これは、上記の低温条件に設定すると、吸
着量の上昇と酸素選択性の向上が一般的におこるので、
吸着時の破過帯が縮小し、装置の小型化と分離効率の向
上が期待できるためである。図7から明らかなように、
吸着温度の低下にともない、動力原単位は低下を続け
た。−60℃までは、上記の装置で動力原単位を調べた
が、空気分離に関して特に問題はなかった。さらに、小
規模の試験で−100℃まで調べたが、その有効性は失
われなかった。しかし、−70としー以下の温度では、
冷却に要する消費電力が−30℃の約4倍、−60℃の
2倍となり、設備費も割高となるため、実用上好ましく
ない。
In FIG. 7, the adsorption pressure P O is set to 1.2 ata, the desorption pressure P 1 is set to 0.1 ata, and the outlet nitrogen concentration is set to 99.9% under the conditions of FIG.
It is the result of investigating the power consumption unit when changing in the range of 00 ° C. This is because when the above low temperature conditions are set, an increase in adsorption amount and an improvement in oxygen selectivity generally occur.
This is because the breakthrough zone at the time of adsorption can be reduced, which can be expected to reduce the size of the device and improve the separation efficiency. As is clear from FIG.
The power consumption rate continued to decrease with the decrease in adsorption temperature. Up to −60 ° C., the power consumption unit was examined with the above apparatus, but there was no particular problem regarding air separation. In addition, small scale studies up to −100 ° C. did not lose their effectiveness. However, at temperatures below -70,
The power consumption required for cooling is about 4 times as high as -30 ° C and twice as high as -60 ° C, and the equipment cost is also high, which is not practically preferable.

【0024】次に、図8は、図7の条件と同様にし、空
筒速度U=0.4cm/secに設定し、吸着温度を4
0〜−100℃まで変化させたときの、吸着塔出口窒素
中の酸素濃度を調べた結果である。図8から明らかなよ
うに、吸着塔出口窒素中の酸素濃度は低温域で温度の低
下にともない大幅に減少した。以上、主として動力費、
酸素純度に関連して説明したが、次に初期設備費に関連
して述べる。
Next, in FIG. 8, the empty cylinder speed U is set to 0.4 cm / sec and the adsorption temperature is set to 4 under the same conditions as those in FIG.
It is the result of examining the oxygen concentration in the nitrogen at the outlet of the adsorption tower when the temperature was changed from 0 to -100 ° C. As is clear from FIG. 8, the oxygen concentration in the nitrogen at the outlet of the adsorption tower was significantly reduced in the low temperature region as the temperature decreased. Above, mainly power costs,
Having described in relation to oxygen purity, it will now be described in relation to initial equipment costs.

【0025】図9は、吸着圧力PO を1.2ataと
し、脱着圧力P1 を0.1ata、出口製品窒素中の酸
素濃度を0.1%になるように製品窒素採取量を調整
し、温度40℃から−100℃まで変化させて、1Nm
3 /hの窒素(酸素濃度0.1%)を採取するために必
要な吸着剤重量(kg)を評価した結果である。カーボ
ン分子篩は、室温、4〜6atmの吸着条件で毎時1N
3 の窒素を製造するのに必要な吸着剤重量が25kg
であるが、図9から明らかなように、本吸着条件下で
は、大気圧付近に低下しても−30℃の温度条件で25
kgと大差がなかった。
In FIG. 9, the adsorption pressure P O is 1.2 ata, the desorption pressure P 1 is 0.1 ata, and the product nitrogen sampling amount is adjusted so that the oxygen concentration in the outlet product nitrogen is 0.1%. Temperature is changed from 40 ℃ to -100 ℃, 1Nm
It is the result of evaluating the adsorbent weight (kg) required to collect 3 / h of nitrogen (oxygen concentration 0.1%). Carbon molecular sieve is 1N / h under adsorption conditions of room temperature and 4-6 atm
The adsorbent weight required to produce m 3 of nitrogen is 25 kg
However, as is clear from FIG. 9, under this adsorption condition, even if the pressure is reduced to around atmospheric pressure, it is 25 at the temperature condition of −30 ° C.
There was not much difference from kg.

【0026】以上のことから分かるように、Na−A型
ゼオライトの有するNaの3〜20%をKとイオン交換
し、常圧下で温度600〜760℃で熱処理したNa−
K−A型ゼオライトを使用し、吸着圧力を3ata以
下、脱着圧力を0.1〜0.3ata、吸着温度を室温
以下に設定し、圧力スィング式吸着分離法で酸素及び窒
素混合ガスを分離すると、毎時1Nm3 の窒素を製造す
るのに要する動力原単位が、従来の深冷分離法で0.4
5〜0.65kwh、現行の吸着分離法で0.65kw
h以上を要していたものを、一挙に0.25kwh近傍
まで低減することができ、吸着剤の使用量も現行の吸着
分離法と同程度に維持できるものである。
As can be seen from the above, 3-20% of Na contained in the Na-A type zeolite is ion-exchanged with K and heat-treated at a temperature of 600-760 ° C under normal pressure.
When KA type zeolite is used, the adsorption pressure is set to 3ata or less, the desorption pressure is set to 0.1 to 0.3ata, the adsorption temperature is set to room temperature or less, and the oxygen and nitrogen mixed gas is separated by the pressure swing adsorption separation method. , The power consumption required to produce 1 Nm 3 of nitrogen per hour is 0.4 by the conventional cryogenic separation method.
5 ~ 0.65kWh, 0.65kWw with current adsorption separation method
What required h or more can be reduced to around 0.25 kwh all at once, and the amount of adsorbent used can be maintained at the same level as in the current adsorption separation method.

【0027】以上、主として窒素の製造について述べた
が、次に、酸素富化空気の製造について説明する。この
場合、大気圧近傍で空気の送風が可能であるため、酸素
吸着塔の後方から流出する窒素に酸素が随伴しても、動
力原単位は上昇しない。むしろ、出口窒素中の酸素濃度
が上昇して、酸素吸着塔の酸素分圧を上げ、回収酸素濃
度を上昇させるので望ましい。
The production of nitrogen has been mainly described above. Next, the production of oxygen-enriched air will be described. In this case, since air can be blown in the vicinity of atmospheric pressure, the power consumption does not rise even if oxygen is accompanied by nitrogen flowing out from the rear of the oxygen adsorption tower. Rather, it is desirable because the oxygen concentration in the outlet nitrogen rises, the oxygen partial pressure in the oxygen adsorption tower rises, and the recovered oxygen concentration rises.

【0028】具体的には、図1の装置を用い、入口空気
量を10Nリットル/切換時間、出口窒素中の酸素濃度
を5%まで上昇させ、吸着温度を−30℃、吸着圧力を
1.1ata、再生圧力を0.1ataに設定すると、
脱着側再生ラインから約50%の酸素濃度の酸素富化空
気を4Nリットルを採取できた。更に、回収酸素の一部
を吸着終了直後の塔に空気流れと同一方向に流して残留
窒素をパージすると、約80%まで酸素濃度を上昇させ
ることができた。この条件下での物質収支に基づいて動
力原単位で計算すると、100%−O2換算値で0.2
7kwh/Nm3 −O2 となり、極めて有効な酸素富化
空気の製造法となり得る。
Specifically, using the apparatus of FIG. 1, the inlet air amount was 10 N liter / switching time, the oxygen concentration in the outlet nitrogen was raised to 5%, the adsorption temperature was -30 ° C., and the adsorption pressure was 1. When 1 ata and the regeneration pressure are set at 0.1 ata,
4N liters of oxygen-enriched air having an oxygen concentration of about 50% could be collected from the desorption side regeneration line. Furthermore, when a part of the recovered oxygen was passed through the column immediately after the adsorption in the same direction as the air flow to purge residual nitrogen, the oxygen concentration could be increased to about 80%. Calculating the power consumption rate based on the material balance under these conditions, it will be 0.2% in terms of 100% -O 2.
It becomes 7 kwh / Nm 3 —O 2 , which can be an extremely effective method for producing oxygen-enriched air.

【0029】[0029]

【発明の効果】本発明は、上記の構成を採用することに
より、脱着圧力がより低圧側で、吸着温度がより低温側
で操作するときに、酸素の選択的吸着性に優れ、大きな
酸素吸着量を備えた酸素吸着剤を提供することができ、
該吸着剤を使用した酸素と窒素の分離方法では、極めて
少ない動力原単位で高純度の窒素を容易に得ることがで
きるようになった。
EFFECTS OF THE INVENTION By adopting the above construction, the present invention is excellent in selective adsorption of oxygen when operating at a lower desorption pressure side and a lower adsorption temperature side, and a large oxygen adsorption capacity. Can provide an oxygen adsorbent with a quantity,
With the method of separating oxygen and nitrogen using the adsorbent, it has become possible to easily obtain high-purity nitrogen with an extremely small power unit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の酸素・窒素分離方法を実施するための
装置の概念図である。
FIG. 1 is a conceptual diagram of an apparatus for carrying out an oxygen / nitrogen separation method of the present invention.

【図2】実施例において、Na−A型ゼオライトのKイ
オン交換率と脱着ガス中の酸素濃度との関係を示したグ
ラフである。
FIG. 2 is a graph showing the relationship between the K ion exchange rate of Na-A type zeolite and the oxygen concentration in the desorption gas in Examples.

【図3】Na−A,Na−K−A,K−A型ゼオライト
の吸着窓径、酸素・窒素の分子形状を対比し、本発明の
ゼオライトの分子篩効果を説明するための図である。
FIG. 3 is a diagram for explaining the molecular sieving effect of the zeolite of the present invention by comparing the adsorption window diameters of Na-A, Na-KA, and KA type zeolites and the molecular shapes of oxygen and nitrogen.

【図4】実施例において、Na−K−Aの熱処理温度と
脱着ガス中の酸素濃度との関係を示したグラフである。
FIG. 4 is a graph showing the relationship between the heat treatment temperature of Na—KA and the oxygen concentration in the desorption gas in the examples.

【図5】実施例において、吸着圧力と動力原単位(kw
h/Nm3 −N2 )との関係を示したグラフである。
FIG. 5 shows the adsorption pressure and power consumption rate (kw) in the examples.
It is a graph showing the relationship between h / Nm 3 -N 2).

【図6】実施例において、脱着圧力と動力原単位(kw
h/Nm3 −N2 )との関係を示したグラフである。
FIG. 6 shows desorption pressure and power consumption rate (kw) in Examples.
It is a graph showing the relationship between h / Nm 3 -N 2).

【図7】実施例において、吸着温度と動力原単位(kw
h/Nm3 −N2 )との関係を示したグラフである。
FIG. 7 shows adsorption temperature and power consumption rate (kw) in Examples.
It is a graph showing the relationship between h / Nm 3 -N 2).

【図8】実施例において、吸着温度と吸着塔出口窒素中
の酸素濃度との関係を示したグラフである。
FIG. 8 is a graph showing the relationship between the adsorption temperature and the oxygen concentration in the nitrogen at the outlet of the adsorption tower in the examples.

【図9】実施例において、吸着温度と、1Nm3 −N2
/hの窒素を製造するのに必要な吸着剤重量との関係を
示したグラフである。
FIG. 9 shows the adsorption temperature and 1 Nm 3 —N 2 in Examples.
3 is a graph showing the relationship with the adsorbent weight necessary for producing / h nitrogen.

【符号の説明】[Explanation of symbols]

1 空気ライン、 2 圧縮機、 4 脱湿脱二酸化炭
素塔、 8 吸着塔、8’ 吸着塔、 13 製品窒素
タンク、 18 真空ポンプ、 19 熱交換器、 2
0 圧縮式冷凍機、 21 熱交換器、 22 熱交換
器。
1 air line, 2 compressor, 4 dehumidification decarbonization tower, 8 adsorption tower, 8'adsorption tower, 13 product nitrogen tank, 18 vacuum pump, 19 heat exchanger, 2
0 compression type refrigerator, 21 heat exchanger, 22 heat exchanger.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安武 昭典 長崎県長崎市深掘町5丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 大嶋 一晃 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akinori Yasutake 5-717-1, Fukagiki-cho, Nagasaki-shi, Nagasaki Sanryo Heavy Industries Co., Ltd. Nagasaki Research Institute (72) Inventor Kazuaki Oshima 1-Atsunoura-cho, Nagasaki-shi, Nagasaki Prefecture No. 1 Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Na−A型ゼオライトの全Na中、3〜
20%をKでイオン交換した後、常圧下で温度600〜
760℃で熱処理してなる酸素吸着剤。
1. The total Na of the Na-A type zeolite is 3 to 3.
After ion exchange of 20% with K, the temperature is 600 ~ under normal pressure.
An oxygen adsorbent obtained by heat treatment at 760 ° C.
【請求項2】 請求項1記載の酸素吸着剤を充填した2
塔以上の吸着塔を室温以下に保持し、酸素及び窒素を主
成分とする混合ガスを大気圧〜3ataの圧力で吸着工
程の吸着塔に供給して酸素を選択的に吸着させ、該吸着
塔から高純度窒素又は窒素富化ガスを流出させ、再生工
程の吸着塔を0.08〜0.5ataの圧力に減圧して
吸着剤を再生し、酸素富化ガスを回収し、上記の吸着工
程と再生工程を連続的に切り換えることを特徴とする酸
素と窒素の分離方法。
2. A filled with the oxygen adsorbent according to claim 1.
The adsorption towers above are kept at room temperature or below, and a mixed gas containing oxygen and nitrogen as main components is supplied to the adsorption tower in the adsorption step at a pressure of atmospheric pressure to 3 ata to selectively adsorb oxygen, and the adsorption tower High-purity nitrogen or nitrogen-enriched gas is discharged from the column, the adsorbent in the regeneration step is decompressed to a pressure of 0.08 to 0.5 ata to regenerate the adsorbent, and the oxygen-enriched gas is recovered. And a method for separating oxygen and nitrogen, characterized in that the regeneration process is continuously switched.
JP4332940A 1992-12-14 1992-12-14 Oxygen adsorbent and separation of oxygen and nitrogen Pending JPH06178933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4332940A JPH06178933A (en) 1992-12-14 1992-12-14 Oxygen adsorbent and separation of oxygen and nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4332940A JPH06178933A (en) 1992-12-14 1992-12-14 Oxygen adsorbent and separation of oxygen and nitrogen

Publications (1)

Publication Number Publication Date
JPH06178933A true JPH06178933A (en) 1994-06-28

Family

ID=18260510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4332940A Pending JPH06178933A (en) 1992-12-14 1992-12-14 Oxygen adsorbent and separation of oxygen and nitrogen

Country Status (1)

Country Link
JP (1) JPH06178933A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000040605A (en) * 1998-12-18 2000-07-05 이구택 Method for removing methane gas using activated carbon
KR20000042032A (en) * 1998-12-24 2000-07-15 이구택 Method for removing methane gas using zeolite
JP2010042331A (en) * 2008-08-11 2010-02-25 Kyuchaku Gijutsu Kogyo Kk Ballast water treatment apparatus loaded with an ozone producing device using pressure swing adsorption method
CN114602431A (en) * 2020-12-09 2022-06-10 中国科学院大连化学物理研究所 Adsorbent and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000040605A (en) * 1998-12-18 2000-07-05 이구택 Method for removing methane gas using activated carbon
KR20000042032A (en) * 1998-12-24 2000-07-15 이구택 Method for removing methane gas using zeolite
JP2010042331A (en) * 2008-08-11 2010-02-25 Kyuchaku Gijutsu Kogyo Kk Ballast water treatment apparatus loaded with an ozone producing device using pressure swing adsorption method
CN114602431A (en) * 2020-12-09 2022-06-10 中国科学院大连化学物理研究所 Adsorbent and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3197436B2 (en) Single bed pressure change adsorption method and apparatus
KR960004606B1 (en) Process for producing high purity oxygen gas from air
EP0324171B1 (en) Pressure swing adsorption process and system for gas separation
US6616732B1 (en) Zeolite adsorbents, method for obtaining them and their use for removing carbonates from a gas stream
US6468328B2 (en) Oxygen production by adsorption
EP0876994B1 (en) Ozone recovery by zeolite adsorbents
EP0791388A2 (en) VSA adsorption process with energy recovery
EP0349655A1 (en) Process for separating and recovering carbonic acid gas from gas mixture by adsorption
US6524370B2 (en) Oxygen production
JPH07265635A (en) Method for selective separation of component relatively strong in adsorbing power from component relatively weak in adsorbing power in feed material gas mixture
JP2002301329A (en) Process and apparatus for cycle type pressure swing adsorption for recovering oxygen
JP3902416B2 (en) Gas separation method
EP0276309A1 (en) Process for separation of high purity gas from mixed gas
JP2005504626A (en) PSA process for co-production of nitrogen and oxygen
JPH06178933A (en) Oxygen adsorbent and separation of oxygen and nitrogen
JPH06178934A (en) Oxygen adsorbent and separation of oxygen and nitrogen
JPH10272332A (en) Gas separation device and its operation method
JP2596952B2 (en) Nitrogen production method
JPS59179127A (en) Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressure
JPH0530762B2 (en)
JPH05228326A (en) Method for recovering dilute carbon dioxide
JPH0768042B2 (en) High-purity oxygen production method
JPH0455964B2 (en)
JPH0768041B2 (en) Oxygen-enriched gas manufacturing method
JPH05192528A (en) Method for separating oxygen and nitrogen from gaseous mixture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000718