JP2010042331A - Ballast water treatment apparatus loaded with an ozone producing device using pressure swing adsorption method - Google Patents

Ballast water treatment apparatus loaded with an ozone producing device using pressure swing adsorption method Download PDF

Info

Publication number
JP2010042331A
JP2010042331A JP2008206502A JP2008206502A JP2010042331A JP 2010042331 A JP2010042331 A JP 2010042331A JP 2008206502 A JP2008206502 A JP 2008206502A JP 2008206502 A JP2008206502 A JP 2008206502A JP 2010042331 A JP2010042331 A JP 2010042331A
Authority
JP
Japan
Prior art keywords
ozone
gas
oxygen
adsorption
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008206502A
Other languages
Japanese (ja)
Inventor
Jun Izumi
順 泉
Koko O
鴻香 王
Yoshiaki Okuwa
義昭 大桑
Taku Nagano
卓 永野
Hideki Hamamura
英樹 浜村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adsorption Technology Industries Co Ltd
SASEBO HEAVY IND CO Ltd
Original Assignee
Adsorption Technology Industries Co Ltd
SASEBO HEAVY IND CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adsorption Technology Industries Co Ltd, SASEBO HEAVY IND CO Ltd filed Critical Adsorption Technology Industries Co Ltd
Priority to JP2008206502A priority Critical patent/JP2010042331A/en
Publication of JP2010042331A publication Critical patent/JP2010042331A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing ozone used for sterilization of marine organisms in ballast water by adsorption and desorption of ozone according to pressure swing adsorption (PSA). <P>SOLUTION: A two-component gas of ozone and oxygen supplied from a silent discharge ozone generator 3, which is an ozone producing device, is subjected to ozone/oxygen separation using an ozone adsorbent 6 under a relatively high-pressure condition, and the recovered oxygen is reused as a raw material of the ozone generator. The adsorbed ozone is obtained by desorbing and recovering ozone as a two-component gas of ozone and air under a relatively low-pressure condition by using dry air as a purge gas. The low-cost two-component gas of ozone and air is used for sterilization 23 of marine organisms in the ballast water to enable provision of economical and compact marine organism sterilization in the ballast water. The ozone adsorbent is one or more kinds selected from the group consisting of pentasil zeolite, acid-treated pentasil zeolite, mesoporous silica, and acid-treated mesoporous silica. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、船舶のバラスト水に含まれるプランクトン・バクテリア・ウイルス等の海洋生物を、オゾンによって殺滅するためのバラスト水処理装置に係わり、高い吸着圧と低い脱着圧とにおけるオゾン吸着剤のオゾン吸着量の差を利用するオゾン製造・貯蔵方法に関する。詳細には、本発明は、オゾン吸着能の高い特定の吸着剤を利用して圧力スイング吸着(PSA)に従ってオゾンを吸着及び脱着させることによってオゾンを製造する方法に関する。   The present invention relates to a ballast water treatment device for killing marine organisms such as plankton, bacteria, and viruses contained in ship's ballast water by ozone, and ozone of an ozone adsorbent at a high adsorption pressure and a low desorption pressure. The present invention relates to a method for producing and storing ozone using a difference in adsorption amount. Specifically, the present invention relates to a method for producing ozone by adsorbing and desorbing ozone according to pressure swing adsorption (PSA) using a specific adsorbent having a high ozone adsorption capacity.

原油等を輸送する貨物輸送用船舶の航行において、空荷または積荷が少ない状態では、プロペラ没水深度の確保、船体の安定性確保などの必要性から、出港前にバラスト水の搭載が行われる。一方、このバラスト水は荷積み港へ入港する前に排出される。
ところで、バラスト水には一般に海水が用いられるため、その中にはそれを取水した港湾のプランクトン・バクテリア・ウイルス等の海洋生物も含まれており、バラスト水の排出時には海水と同時にこれらの海洋生物も荷積み港湾周辺へと放出されることとなる。したがって、これらの海洋生物が本来の生息区域ではない異国の港湾にて繁殖し、沿岸生態系に悪影響を及ぼすといった問題が深刻化している。
このような背景の中、IMO(国際海事機関)の国際会議において、船舶のバラスト水管理条約が採択され、2009年以降、順次、バラスト水の処理が義務付けられることとなった。
IMOが制定するバラスト水の排出基準は、バラスト水に含まれる50μm以上の生物(主に動物プランクトン)の数が1m中に10個未満、10μm以上50μm未満の生物(主に植物プランクトン)の数が1ml中に10個未満、コレラ菌の数が100ml中に1cfu未満、大腸菌の数が100ml中に250cfu未満、球腸菌の数が100ml中に100cfu未満となっている。
バラスト水の処理技術としては、現在各種の手法が研究・開発されているが、なかでも、オゾンによる処理方法は、低濃度・短時間での処理が達成できることから、極めて有効な処理方法として着目されている。ちなみに、オゾンは、非常に強い酸化力を持ち、漂白・脱臭・殺菌作用があり、例えば、脱臭においては活性炭の数百倍もの力を持っているとされ、これまで除去し難かった物質の除去も可能となることから、水・大気の浄化での応用も増大している。
しかしながら、オゾンは原料として酸素を使用した無声放電を使用することから酸化剤としては非常に高価であり、これが、オゾンの酸化剤としての普及を妨げる一因となっている。また、無声放電を使用したオゾン製造では、装置が大型化せざるを得ず、バラスト水処理装置として船舶に搭載することが困難となってしまう問題がある。
When navigating cargo ships that transport crude oil, etc., when there is little air cargo or cargo, ballast water will be installed before leaving the port due to the need to secure the depth of the propeller and ensure the stability of the hull. . On the other hand, this ballast water is discharged before entering the loading port.
By the way, since seawater is generally used for ballast water, it includes marine organisms such as plankton, bacteria, and viruses in the port where it is taken. Will also be released around the loading port. Therefore, the problem of these marine organisms breeding in foreign ports that are not their native habitat and adversely affecting coastal ecosystems has become serious.
Against this background, the Ballast Water Management Convention was adopted at the international conference of the IMO (International Maritime Organization), and since 2009, ballast water treatment has become mandatory.
The discharge standard of ballast water established by IMO is that the number of organisms (mainly zooplankton) of 50 μm or more contained in ballast water is less than 10 in 1 m 3 , and organisms (mainly phytoplankton) of 10 μm or more and less than 50 μm The number is less than 10 in 1 ml, the number of Vibrio cholerae is less than 1 cfu in 100 ml, the number of E. coli is less than 250 cfu in 100 ml, and the number of enterococci is less than 100 cfu in 100 ml.
Various methods are currently being researched and developed for ballast water treatment technology. Among them, the treatment method using ozone can achieve treatment at a low concentration and in a short time. Has been. By the way, ozone has a very strong oxidizing power and has bleaching, deodorizing, and sterilizing effects. For example, it is said that ozone has a power several hundred times that of activated carbon in deodorization, and it has been difficult to remove substances so far. Therefore, its application in water and air purification is increasing.
However, since ozone uses silent discharge using oxygen as a raw material, it is very expensive as an oxidant, which is one factor that hinders the widespread use of ozone as an oxidant. In addition, in ozone production using silent discharge, there is a problem that the apparatus has to be enlarged, and it is difficult to mount the apparatus as a ballast water treatment apparatus on a ship.

オゾン含有ガスは、一般的に低圧水銀ランプ、無声放電装置や水電解装置を用いて製造される。低圧水銀ランプは、装置が簡単であるが、0.5質量%程度の低い濃度のオゾン含有ガスしか得られず、発生量も1g/h程度と小さくかつオゾン単位当たりに要する消費電力が非常に大きく、工業的に使用するには実用的なものではない。水電解装置は、20質量%程度の高い濃度のオゾン含有ガスが得られるが、発生量は1kg/h程度と小さくかつオゾン単位当たりに要する消費電力も相当に大きく、大量のオゾンが要求される場合や経済性が要求される場合には使用するのに適していない。無声放電装置は、発生量が30kg/h程度と大量製造が可能であり、オゾン単位当たりに要する消費電力もこれらの中では一番少ないが、得られるオゾン含有ガスのオゾン濃度は3質量%程度と低いものである。これら従来技術において、オゾン発生装置として無声放電装置が最も好ましいものであるが、消費電力及び酸素製造装置を含めたオゾン製造コストの両面での改良が望まれていた。   The ozone-containing gas is generally produced using a low-pressure mercury lamp, a silent discharge device, or a water electrolysis device. The low-pressure mercury lamp has a simple device, but it can only produce ozone-containing gas with a low concentration of about 0.5% by mass, the generation amount is as small as about 1 g / h, and the power consumption per ozone unit is very high. Large and not practical for industrial use. The water electrolysis apparatus can obtain a high concentration of ozone-containing gas of about 20% by mass, but the generated amount is as small as about 1 kg / h and the power consumption required per ozone unit is considerably large, and a large amount of ozone is required. It is not suitable for use in cases or when economic efficiency is required. The silent discharge device can be mass-produced with a generated amount of about 30 kg / h and consumes the least amount of electricity per unit of ozone, but the ozone concentration of the resulting ozone-containing gas is about 3% by mass. And low. In these prior arts, the silent discharge device is the most preferable as the ozone generator, but improvement in both the power consumption and the ozone production cost including the oxygen production device has been desired.

上述した無声放電装置の欠点を改良するオゾン発生装置として、オゾン発生装置に供給するオゾン発生用原料として酸素を使用し、同じ消費電力で空気を原料として使用する場合の2倍のオゾンを発生させて省電力化を図る酸素リサイクルオゾン発生装置が提案された(例えば特許文献1参照)。この装置では、酸素原料として液体酸素を用い、この液体酸素をオゾン発生装置に導入してオゾンを発生させ、そのオゾン含有ガスを熱交換器及び冷凍機で−60℃程度まで冷却してから、シリカゲルを充填したオゾン吸着塔に導入してオゾンを吸着させている。   As an ozone generator that improves the disadvantages of the silent discharge device described above, oxygen is used as the raw material for ozone generation supplied to the ozone generator, and ozone is generated twice as much as when air is used as the raw material with the same power consumption. Thus, an oxygen recycle ozone generator for reducing power consumption has been proposed (see, for example, Patent Document 1). In this apparatus, liquid oxygen is used as an oxygen raw material, this liquid oxygen is introduced into an ozone generator to generate ozone, the ozone-containing gas is cooled to about −60 ° C. with a heat exchanger and a refrigerator, It is introduced into an ozone adsorption tower packed with silica gel to adsorb ozone.

シリカゲルは、上記のようにオゾン吸着剤として知られているが、そのオゾン吸着量はそれほど大きくなく一定のガス処理量を確保するためには多量のシリカゲルを必要とし、吸着装置も大型にせざるを得なかった。
そこで、従来技術では上記装置において、酸素原料として液体酸素を用い、かつ、パージガスを予め乾燥してから吸着塔に導入することにより、液体酸素の低温を利用してオゾン吸着量を増大させようとした。
Silica gel is known as an ozone adsorbent as described above, but its ozone adsorption amount is not so large and a large amount of silica gel is required to ensure a constant gas treatment amount, and the adsorption device must be large. I didn't get it.
Therefore, in the prior art, in the above apparatus, liquid oxygen is used as an oxygen raw material, and the purge gas is previously dried and then introduced into the adsorption tower, so that the ozone adsorption amount is increased using the low temperature of liquid oxygen. did.

しかし、シリカゲルへのオゾンの吸着量は温度が低い程大きいが、特殊な冷凍機を除いても−60℃よりも低い温度にすることは難しい。また、一般に処理ガス量を多くするためには多量の吸着剤を用いる必要があり、装置は大型化せざるを得ず、装置の製造コスト及びランニングコストが高くなる。特に、特許文献1に開示されるような装置では、装置の製造コスト及びランニングコストが極めて高くなるために、実用化に問題があった。
上述したシリカゲルを用いた酸素リサイクルオゾン発生装置の欠点を解決するために、水分の存在する系においてもオゾン吸着能が優れたSiO/Alモル比が20以上の特定の高シリカオゾン吸着剤を用い、この吸着剤をPSA装置に適用してオゾンを効率的に濃縮できる高濃度オゾン含有ガスの製造方法及びその装置が提案された(例えば特許文献2を参照)。
特開昭53−64690号公報 特開平11−292514号公報
However, the amount of ozone adsorbed on the silica gel is larger as the temperature is lower, but it is difficult to make the temperature lower than −60 ° C. even if a special refrigerator is removed. In general, in order to increase the amount of processing gas, it is necessary to use a large amount of adsorbent, and the apparatus must be increased in size, increasing the manufacturing cost and running cost of the apparatus. In particular, the apparatus disclosed in Patent Document 1 has a problem in practical use because the manufacturing cost and running cost of the apparatus are extremely high.
In order to solve the drawbacks of the oxygen recycling ozone generator using silica gel described above, a specific high silica ozone having a SiO 2 / Al 2 O 3 molar ratio of 20 or more, which has excellent ozone adsorption capacity even in a system in which moisture exists There has been proposed a method and apparatus for producing a high-concentration ozone-containing gas capable of efficiently concentrating ozone by using an adsorbent and applying the adsorbent to a PSA apparatus (see, for example, Patent Document 2).
JP-A-53-64690 JP-A-11-292514

バラスト水中の海洋生物の殺菌にオゾンを使用することは、低濃度、短時間での殺菌が達成されることから、極めて有効な殺菌法である。しかしオゾンの製造法は、最も効率の良い酸素を原料とした無声放電によるオゾンの製造においても、供給した酸素の容量比で3%程度の酸素のみがオゾンに転換し、残る97%の酸素はオゾンとともに下流に流下する、非常に効率の悪いものである。   The use of ozone for sterilization of marine organisms in ballast water is a very effective sterilization method because sterilization can be achieved in a low concentration and in a short time. However, in the ozone production method, even in the production of ozone by silent discharge using the most efficient oxygen as a raw material, only about 3% of oxygen is converted into ozone by the volume ratio of supplied oxygen, and the remaining 97% of oxygen is It is very inefficient, flowing down with ozone.

本発明者等は、上述した課題を解決すべく鋭意検討したところ、SiO/Alモル比が高い、高シリカゼオライト吸着剤として、(1)ペンタシル型ゼオライト、(2)酸処理したペンタシル型ゼオライト、(3)メソポーラスシリカ、(4)酸処理したメソポーラスシリカから選ばれた少なくとも一種は、優れたオゾン吸着能が得られかつオゾンの分解率が小さくなることを見出した。そのため、このようなオゾン吸着剤をPSAにおいてオゾン吸着剤として使用することにより、最小の原料酸素量でオゾンを製造できることを見出した。
具体的には、オゾン吸着剤として、従来技術より更にオゾン吸着能が優れた吸着剤を利用し、オゾン、酸素2成分ガスから酸素を回収してオゾン原料として再利用し、吸着したオゾンを、パージガスとして乾燥空気を用いて、オゾン、空気2成分ガスとして脱着回収する、オゾン、空気2成分ガス製造方法を使用して、低コストなオゾンを製造して、これをバラスト水に溶解して海洋生物を殺菌することで、安価でコンパクトな海洋生物殺菌方法を提供するものである。これらの知見に基づいて本発明を完成するに至った。
The present inventors have intensively studied to solve the above-mentioned problems. As a high silica zeolite adsorbent having a high SiO 2 / Al 2 O 3 molar ratio, (1) pentasil-type zeolite and (2) acid treatment were performed. It has been found that at least one selected from pentasil-type zeolite, (3) mesoporous silica, and (4) acid-treated mesoporous silica can provide an excellent ozone adsorption ability and has a low ozone decomposition rate. Therefore, it has been found that ozone can be produced with a minimum amount of raw material oxygen by using such an ozone adsorbent as an ozone adsorbent in PSA.
Specifically, as an ozone adsorbent, an adsorbent that has a better ozone adsorbing ability than the prior art is used, and oxygen is recovered from ozone and oxygen binary gas and reused as an ozone raw material. Using dry air as purge gas and desorbing and recovering as ozone and air two-component gas, ozone and air two-component gas production method is used to produce low-cost ozone, which is dissolved in ballast water and ocean By disinfecting organisms, an inexpensive and compact marine organism disinfection method is provided. The present invention has been completed based on these findings.

かくして本発明によれば、以下の1、2の発明が提供される。
1.酸素を原料とするオゾン製造装置で製造したオゾン、酸素2成分含有ガスを、オゾン吸着剤床を収容した吸着塔に導入して吸着剤にオゾンを吸着させて、流過する酸素を回収して酸素原料として再使用し、オゾン吸着が完了したらオゾン含有ガスの導入を停止し、塔後方からパージガスとして乾燥空気を第1式に従って、大気圧もしくは圧力を下げて吸着剤床に導いて、オゾンを脱着させてオゾン、空気2成分ガスとして回収するオゾンガスの製造方法であって、前記オゾン吸着剤として、(1)ペンタシル型ゼオライト、(2)メソポーラスシリカ、(3)酸処理したペンタシル型ゼオライト、(4)酸処理したメソポーラスシリカから選ばれた少なくとも一種を用いて製造されたオゾン、空気2成分ガスを使用することを特徴とするバラスト水処理装置。
Gp=k ・G0 ・Pd/Pa (第1式)
Gp:パージガスとして使用する乾燥空気量(m3N/h)、k: 向流パージ率k>1.2、
G0:入口ガス量 (m3N/h)、Pd:再生圧力(kPa)、Pa:吸着圧力(kPa)
2.吸着剤床を収容した吸着塔が並列に2以上存在し、1つの吸着塔にオゾン、酸素2成分含有ガスを導入して吸着剤にオゾンを吸着させて流過する酸素を回収してオゾン製造装置原料として再使用する吸着工程に在る間に、吸着工程を完了した別の吸着塔の後方から乾燥空気を大気圧又は減圧条件下パージガスとして向流に供給し、吸着剤床からオゾンを脱着させてオゾン、空気2成分としてオゾンガスを回収する脱着工程を施し、次いでオゾン含有ガスの導入を、吸着工程を完了した吸着塔から、脱着工程を完了した吸着塔に切り換え、上記の工程を繰り返す、オゾン、空気2成分ガスの製造であって、前記オゾン吸着剤として、(1)ペンタシル型ゼオライト、(2)酸処理したペンタシル型ゼオライト、(3)メソポーラスシリカ、(4)酸処理したメソポーラスシリカから選ばれた少なくとも一種を用いるオゾン、空気2成分ガスを使用することを特徴とするバラスト水処理装置。
Thus, according to the present invention, the following inventions 1 and 2 are provided.
1. Ozone produced by an ozone production device that uses oxygen as a raw material, and a gas containing two components of oxygen are introduced into an adsorption tower containing an ozone adsorbent bed, ozone is adsorbed by the adsorbent, and the flowing oxygen is recovered. When it is reused as an oxygen raw material and ozone adsorption is completed, the introduction of ozone-containing gas is stopped, and dry air is introduced as purge gas from the back of the tower to the adsorbent bed at a reduced atmospheric pressure or pressure according to the first formula, A method for producing ozone gas that is desorbed and recovered as ozone and air two-component gas, wherein the ozone adsorbent includes (1) pentasil-type zeolite, (2) mesoporous silica, (3) acid-treated pentasil-type zeolite, ( 4) Ballast characterized by using ozone and air binary gas produced using at least one selected from acid-treated mesoporous silica. Water treatment equipment.
Gp = k ・ G 0・ Pd / Pa (Formula 1)
Gp: amount of dry air used as purge gas (m 3 N / h), k: countercurrent purge rate k> 1.2,
G 0 : Inlet gas amount (m 3 N / h), Pd: Regeneration pressure (kPa), Pa: Adsorption pressure (kPa)
2. There are two or more adsorption towers containing the adsorbent bed in parallel, ozone is produced by introducing ozone and oxygen two-component gas into one adsorption tower and adsorbing ozone to the adsorbent to collect the flowing oxygen. While in the adsorption process to be reused as equipment raw material, dry air is supplied to the countercurrent as a purge gas under the atmospheric pressure or reduced pressure conditions from the back of another adsorption tower that has completed the adsorption process, and ozone is desorbed from the adsorbent bed. The ozone and the desorption step of recovering ozone gas as two components of air, and then introducing the ozone-containing gas from the adsorption tower that has completed the adsorption step to the adsorption column that has completed the desorption step, and repeating the above steps. Production of ozone and air two-component gas, and as the ozone adsorbent, (1) pentasil-type zeolite, (2) acid-treated pentasil-type zeolite, (3) mesoporous silica, (4 Ozone using at least one selected from acid-treated mesoporous silica, ballast water treatment system, characterized in that air is used two-component gas.

本発明のバラスト水中の海洋生物のオゾンによる殺菌方法では、使用するオゾンは、生成したオゾンの分解率が小さく、最小の原料酸素量でオゾンをオゾン、空気2成分ガスとして効率良く製造することができる。その結果、オゾンの安価な製造を可能にし、オゾン製造に必要な酸素製造装置の小型化を可能にし、かつ、オゾン製造装置の製造コスト及びランニングコストの大幅な低減を可能にする。従って、本発明は、安価でコンパクトなバラスト水中の海洋生物のオゾンによる処理装置を提供することが可能となる。   In the method of sterilizing marine organisms in the ballast water with ozone according to the present invention, the ozone to be used has a small decomposition rate of the generated ozone, and ozone can be efficiently produced as ozone and air two-component gas with a minimum amount of raw material oxygen. it can. As a result, it is possible to inexpensively manufacture ozone, to reduce the size of an oxygen production apparatus necessary for ozone production, and to significantly reduce the production cost and running cost of the ozone production apparatus. Therefore, the present invention can provide an inexpensive and compact treatment apparatus using marine organism ozone in ballast water.

本発明のオゾン/酸素分離ユニットに使用する吸着剤は、高度にオゾンを吸着し、かつオゾン分解が抑制されるものでなければならない。このような吸着剤として本発明は、(1)ペンタシル型ゼオライト、(2)酸処理したペンタシル型ゼオライト、(3)メソポーラスシリカ、(4)酸処理したメソポーラスシリカの少なくとも一種から選ばれた吸着剤を採用する。
このような吸着剤はオゾン分解が少なくかつオゾン吸着能が高いため、PSA方式で使用するにあたり、オゾン分解が少なく、オゾンを高い濃度で、又は空気と置換した低コストのオゾン含有ガスを製造し得ることを見出した。
本発明に使用するオゾン吸着剤である、(1)ペンタシル型ゼオライト、(2)酸処理したペンタシル型ゼオライト、(3)メソポーラスシリカ、(4)酸処理したメソポーラスシリカの調製法及びオゾン吸着特性については、先行出願(特願2008−144154 吸着剤を利用したオゾンの製造・貯蔵方法)を参照されたい。
The adsorbent used in the ozone / oxygen separation unit of the present invention must adsorb ozone to a high degree and suppress ozonolysis. As such an adsorbent, the present invention provides an adsorbent selected from at least one of (1) pentasil-type zeolite, (2) acid-treated pentasil-type zeolite, (3) mesoporous silica, and (4) acid-treated mesoporous silica. Is adopted.
Such adsorbents have low ozonolysis and high ozone adsorption capacity. Therefore, when used in the PSA method, there is little ozonolysis, and a low-cost ozone-containing gas is produced by replacing ozone with high concentration or air. Found to get.
Preparation method and ozone adsorption characteristics of (1) pentasil-type zeolite, (2) acid-treated pentasil-type zeolite, (3) mesoporous silica, (4) acid-treated mesoporous silica, which are ozone adsorbents used in the present invention Is referred to the prior application (Japanese Patent Application No. 2008-144154, ozone production / storage method using an adsorbent).

本発明で使用するバラスト水中海洋生物殺菌用に使用するオゾン含有ガスを発生するオゾン発生器(オゾナイザー)としては、公知の無声放電方式、紫外線ランプ方式、水電解方式などいずれの方式のものでも適用できる。好ましくは、高圧仕様の無声放電装置を用い、オゾン濃縮用PSA装置の吸着工程から流出する酸素を、前記無声放電装置の原料側に戻して酸素原料として用いることにより、酸素消費量を大幅に低減できる。再生工程では、パージガスとして乾燥空気を使用することで、脱着するオゾン含有ガスをオゾン、空気2成分ガスとして回収することができ、オゾン/酸素分離PSA装置に使用する脱着用真空ポンプの負担を軽減することができる。なお、前記無声放電オゾン発生装置に供給する酸素原料ガスとして例えば、酸素濃縮用のPSA装置等で製造した高濃度酸素ガスを用いることは、装置全体の効率化及び高性能化に有効である。   As an ozone generator (ozonizer) for generating ozone-containing gas used for ballast underwater marine organism sterilization used in the present invention, any known silent discharge method, ultraviolet lamp method, water electrolysis method, etc. can be applied. it can. Preferably, a high-pressure silent discharge device is used, and the oxygen flowing out from the adsorption process of the ozone concentration PSA device is returned to the raw material side of the silent discharge device and used as an oxygen raw material, thereby greatly reducing oxygen consumption. it can. In the regeneration process, by using dry air as the purge gas, the desorbed ozone-containing gas can be recovered as ozone and air two-component gas, reducing the burden on the desorption vacuum pump used in the ozone / oxygen separation PSA device can do. Note that the use of high-concentration oxygen gas produced by, for example, a PSA apparatus for oxygen concentration, as the oxygen source gas supplied to the silent discharge ozone generator is effective for improving the efficiency and performance of the entire apparatus.

オゾン/酸素分離用PSA装置の脱着工程に移行した吸着塔からは、例えば向流に乾燥空気をパージガスとして、大気圧又は減圧条件で、オゾン、空気2成分ガスを回収する。   From the adsorption tower transferred to the desorption process of the ozone / oxygen separation PSA apparatus, ozone and air two-component gas are recovered under atmospheric pressure or reduced pressure conditions using, for example, dry air as a purge gas in a counterflow.

吸着工程及び脱着工程の条件は、特に限定されない。吸着工程は、106〜507kPa(1.05〜5atm)の範囲の圧力及び温度−60℃〜25℃の範囲で実施するのが普通である。
また、脱着工程は、圧力4〜760kPa(0.04〜1atm)の範囲で実施し、温度は特に制限されず、吸着工程の温度に依存するのが普通である。回収したオゾン含有ガスの利用を考慮すると、脱着工程の温度は室温に近いのが好ましい。
The conditions for the adsorption process and the desorption process are not particularly limited. The adsorption step is usually carried out at a pressure in the range of 106 to 507 kPa (1.05 to 5 atm) and a temperature in the range of -60 ° C to 25 ° C.
In addition, the desorption step is carried out in a pressure range of 4 to 760 kPa (0.04 to 1 atm), and the temperature is not particularly limited, and usually depends on the temperature of the adsorption step. Considering utilization of the recovered ozone-containing gas, the temperature of the desorption process is preferably close to room temperature.

吸着工程の終了は、例えばオゾン含有ガスの流入口と反対の吸着塔出口のガスのオゾンの濃度を監視していて、オゾンのブレークスルーが見られ始めた時や切換時間、すなわちリサイクルタイムに達した時に吸着が完了したとして、吸着塔へのオゾン含有ガスの導入を停止することによって行うことができる。
脱着工程の終了は、例えば脱着圧の可能な最低圧力や切換時間、すなわちリサイクルタイムに達した時に脱着が完了したとして、吸着塔からのオゾン、空気2成分ガスの回収を停止することによって行うことができる。
When the adsorption process is completed, for example, the ozone concentration of the gas at the outlet of the adsorption tower opposite to the inlet of the ozone-containing gas is monitored, and when ozone breakthrough begins to be observed or the switching time, that is, the recycling time is reached. When the adsorption is completed, the introduction of the ozone-containing gas into the adsorption tower can be stopped.
The desorption process is terminated by, for example, stopping recovery of ozone and two-component gas from the adsorption tower, assuming that desorption is completed when the minimum desorbable pressure and switching time, that is, the recycle time is reached. Can do.

以下に、本発明を図によって説明する。
図1は、PSA酸素製造装置1で製造した酸素を原料として、配管2で無声放電オゾン発生装置3に供給して、オゾン、酸素2成分ガスを製造し、2塔式のオゾン、空気2成分ガス製造PSA装置4に供給して、オゾン、空気2成分を製造する装置の概念図である。吸着塔5a(左側の吸着塔にはaを数字の後に付番し、右側の吸着塔にはbを付番する。)及び5bに前記のオゾン吸着剤の群から選択された一種以上のオゾン吸着剤6を充填する。
Hereinafter, the present invention will be described with reference to the drawings.
FIG. 1 shows the oxygen produced by the PSA oxygen production apparatus 1 as a raw material and is supplied to a silent discharge ozone generator 3 by a pipe 2 to produce ozone and oxygen two-component gas to produce two-column ozone and two air components It is a conceptual diagram of the apparatus which supplies the gas manufacture PSA apparatus 4 and manufactures ozone and two air components. Adsorption tower 5a (the left adsorption tower is numbered after the number and the right adsorption tower is numbered b) and 5b are one or more ozone selected from the group of ozone adsorbents mentioned above The adsorbent 6 is filled.

このときのシーケンスを表1に示す。

Figure 2010042331
The sequence at this time is shown in Table 1.
Figure 2010042331

図1では、切替弁7a、8aを開け、切替弁9a、10aを閉じることにより、吸着塔5aで吸着工程が進行する。吸着塔5bは、脱着工程に保持した状態を示しており、切替弁7b、8bを閉じ、切替弁9b、10bを開けることにより、前記工程を吸着から脱着へ、切り替えることができる。オゾン発生装置3からのオゾン含有ガスは、ブロワー11で吸着圧力まで加圧して吸着工程の吸着塔5aに供給してオゾンをオゾン吸着剤に吸着させ、吸着塔5aから流出する酸素ガスは配管12でオゾン発生装置3入口に還流されて、原料酸素供給量を削減して、オゾン発生装置3の消費電力を節減する。   In FIG. 1, the adsorption process proceeds in the adsorption tower 5a by opening the switching valves 7a and 8a and closing the switching valves 9a and 10a. The adsorption tower 5b shows the state held in the desorption process, and the process can be switched from adsorption to desorption by closing the switching valves 7b and 8b and opening the switching valves 9b and 10b. The ozone-containing gas from the ozone generator 3 is pressurized to the adsorption pressure by the blower 11 and supplied to the adsorption tower 5a in the adsorption process to adsorb ozone to the ozone adsorbent. The oxygen gas flowing out from the adsorption tower 5a is pipe 12 Is recirculated to the inlet of the ozone generator 3 to reduce the supply amount of the raw material oxygen, thereby reducing the power consumption of the ozone generator 3.

他方、オゾン回収系は脱着圧に保持されており、真空ポンプ13と結んだ切替弁9bを開けることにより脱着工程の吸着塔5bから減圧脱着によりオゾンを回収する。なお、ここで乾燥空気14をパージガスとして使用しパージガス供給用導管15に設けた減圧弁16で脱着圧まで減圧して、脱着工程の吸着塔5bに供給して向流パージすることにより脱着は促進される。パージガスを多量に使用するとその分だけオゾン濃度が低下する。好ましいパージ率は1〜2の範囲、より好ましいパージ率は1.2〜1.5の範囲である。
ここでパージガスの使用量Gpは、第1式で表される。
Gp=k ・G0 ・Pd/Pa (第1式)
Gp:パージガスとして使用する乾燥空気量(m3N/h)、k: 向流パージ率k>1.2、
G0:入口ガス量 (m3N/h)、Pd:再生圧力(kPa)、Pa:吸着圧力(kPa)
なお、図1には、無声放電オゾン発生装置3の前段に酸素濃縮用のPSA装置1を付設するように記載した。この酸素濃縮用のPSA装置1は、装置全体の効率化及び高性能化を図る上で有効である。
On the other hand, the ozone recovery system is held at a desorption pressure, and ozone is recovered from the adsorption tower 5b in the desorption process by desorption under reduced pressure by opening the switching valve 9b connected to the vacuum pump 13. Here, dry air 14 is used as a purge gas, the pressure is reduced to the desorption pressure by the pressure reducing valve 16 provided in the purge gas supply conduit 15, and the desorption is accelerated by supplying it to the adsorption tower 5 b in the desorption process and performing a countercurrent purge. Is done. If a large amount of purge gas is used, the ozone concentration decreases accordingly. A preferred purge rate is in the range of 1-2, and a more preferred purge rate is in the range of 1.2-1.5.
Here, the use amount Gp of the purge gas is expressed by the first equation.
Gp = k ・ G 0・ Pd / Pa (Formula 1)
Gp: amount of dry air used as purge gas (m 3 N / h), k: countercurrent purge rate k> 1.2,
G 0 : Inlet gas amount (m 3 N / h), Pd: Regeneration pressure (kPa), Pa: Adsorption pressure (kPa)
In FIG. 1, the PSA device 1 for oxygen concentration is attached to the front stage of the silent discharge ozone generator 3. This oxygen concentration PSA device 1 is effective in improving the efficiency and performance of the entire device.

オゾン、空気2成分ガス製造PSA装置4に関連して、吸着工程の吸着塔5aから流出する酸素は、導管11を介して無声放電オゾン発生装置3の酸素原料供給用導管に戻して酸素濃縮ガスの有効利用を図ることができる。さらに、高圧仕様の無声放電オゾン発生装置を用いると、PSA装置へのオゾン含有ガスの供給用のコンプレッサーの負担を低減することができるので、装置全体の効率化及び高性能化を図る上で有効である。
本発明の吸着剤は、それぞれ使用目的に応じて単独又は混合物の形で、粒状、ペレット状、ラシヒリング状、ハニカム状など任意の形状に成形して使用できる。
In connection with the ozone / air two-component gas production PSA device 4, the oxygen flowing out from the adsorption tower 5 a in the adsorption process is returned to the oxygen raw material supply conduit of the silent discharge ozone generator 3 via the conduit 11. Can be used effectively. In addition, the use of a high-pressure silent discharge ozone generator can reduce the burden on the compressor for supplying ozone-containing gas to the PSA device, which is effective in improving the overall efficiency and performance of the device. It is.
The adsorbent of the present invention can be used by molding it into an arbitrary shape such as a granular shape, a pellet shape, a Raschig ring shape, or a honeycomb shape, either alone or in the form of a mixture depending on the purpose of use.

得られたオゾン/空気2成分ガスを真空ポンプ13の出口から導管17、オゾン散気管18で、海水貯留槽20から海水ポンプ21を経て導管22からバラスト水殺菌槽23に供給された海洋生物を含む海水にオゾン含有マイクロバブル19として供給し、海水中の海洋生物を殺菌して導管24からバラストタンクへ供給する。   The marine organisms supplied from the outlet of the vacuum pump 13 to the ballast water sterilization tank 23 from the seawater storage tank 20 through the seawater pump 21 to the ballast water sterilization tank 23 are obtained from the obtained ozone / air two-component gas through the outlet 17 of the vacuum pump 13. The seawater is supplied as ozone-containing microbubbles 19 to sterilize marine organisms in the seawater and supply them from the conduit 24 to the ballast tank.

以下に実施例を挙げて本発明を更に具体的に説明する。
本発明に使用する、(1)ペンタシル型ゼオライト、(2)酸処理したペンタシル型ゼオライト、(3)メソポーラスシリカ、(4)酸処理したメソポーラスシリカの調製法については、先行出願(特願2008−144154 吸着剤を利用したオゾンの製造・貯蔵方法)を参照されたい。
The present invention will be described more specifically with reference to the following examples.
For the preparation of (1) pentasil-type zeolite, (2) acid-treated pentasil-type zeolite, (3) mesoporous silica, and (4) acid-treated mesoporous silica used in the present invention, a prior application (Japanese Patent Application No. 2008- 144,154. Production and storage method of ozone using adsorbent).

実施例1
図1のオゾン/酸素分離ユニットで製造した、オゾン、空気2成分ガスを使用して3,000ton/hで供給されるバラスト水中の海洋生物を殺菌した時の殺菌効果、オゾン発生用酸素のためのPSA-酸素の容量、各ユニットの消費電力評価を行った。なお参照として、オゾン/酸素分離ユニットを用いずに従来のオゾン、酸素2成分ガスを直接用いたときの、オゾン発生用酸素のためのPSA-酸素の容量、各ユニットの消費電力比較も行った。
表2に、バラスト水中オゾン濃度を0.5〜15ppmまで変更したときの、(1)オゾン発生器容量、(2)オゾン発生器容量、(3)乾燥空気使用量、(4)バラスト水オゾン濃度、(5)PSA-O2消費電力、(6)PSA-O3/O2消費電力、(7)PSA-O2消費電力、(8)オゾン発生器消費電力、(9)全消費電力、(10)殺菌効果評価を示す。
表2に示すように、オゾンによる海洋生物殺菌効果は、オゾン濃度5ppm以上で有効である。次にPSA-オゾン/酸素分離ユニットを使用した場合に、実施例のPSA-オゾン/酸素分離ユニットを使用しない従来例(R−1〜R−5)と本発明を使用した実施例(S−1〜S−5)を比較すると、本発明実施例ではPSA-酸素容量が、従来の酸素容量を1/20に削減されており、これによりオゾン製造にかかわる消費電力が、従来法の47kWから21kWに減少されることとなる。
Example 1
For the sterilizing effect and oxygen for ozone generation when sterilizing marine organisms in the ballast water supplied at 3,000 ton / h using ozone and air binary gas produced by the ozone / oxygen separation unit of FIG. PSA-oxygen capacity and power consumption of each unit were evaluated. As a reference, PSA-oxygen capacity for oxygen for ozone generation when using conventional ozone and oxygen binary gas directly without using ozone / oxygen separation unit, and power consumption comparison of each unit were also performed. .
Table 2 shows (1) ozone generator capacity, (2) ozone generator capacity, (3) dry air consumption, and (4) ballast water ozone when the ozone concentration of ballast water is changed from 0.5 to 15 ppm. Concentration, (5) PSA-O 2 power consumption, (6) PSA-O 3 / O 2 power consumption, (7) PSA-O 2 power consumption, (8) Ozone generator power consumption, (9) Total power consumption (10) Evaluation of bactericidal effect.
As shown in Table 2, the marine organism sterilization effect by ozone is effective at an ozone concentration of 5 ppm or more. Next, when the PSA-ozone / oxygen separation unit is used, the conventional example (R-1 to R-5) not using the PSA-ozone / oxygen separation unit of the example and the example using the present invention (S- 1 to S-5), the PSA-oxygen capacity in the embodiment of the present invention is reduced to 1/20 of the conventional oxygen capacity, so that the power consumption for ozone production is reduced from 47 kW of the conventional method. It will be reduced to 21 kW.

Figure 2010042331
Figure 2010042331

強力な酸化剤、殺菌剤として広く使用されるオゾンの製造装置である、無声放電式オゾン発生器から供給される、オゾン、酸素2成分ガスを、相対的高圧条件でオゾン吸着剤を使用してオゾン/酸素分離を行い、回収した酸素をオゾン発生器原料として再利用する。吸着したオゾンは、相対的低圧条件で乾燥空気をパージガスとしてオゾン、空気2成分ガスとして脱着して回収することにより得られる。この低コストなオゾン、空気2成分ガスを、バラスト水中の海洋生物殺菌に使用することで、経済的でコンパクトなバラスト水処理装置が提供できる。   A ozone generator widely used as a powerful oxidizer and disinfectant, ozone and oxygen two-component gas supplied from a silent discharge ozone generator, using ozone adsorbent under relative high pressure conditions Ozone / oxygen separation is performed, and the recovered oxygen is reused as a raw material for the ozone generator. The adsorbed ozone is obtained by desorbing and collecting dry air as a purge gas using ozone and a two-component gas under relatively low pressure conditions. An economical and compact ballast water treatment apparatus can be provided by using this low-cost ozone and two-component gas of air for sterilizing marine organisms in ballast water.

本発明の第一の実施態様を示す。1 shows a first embodiment of the present invention.

符号の説明Explanation of symbols

1 PSA酸素製造装置
2、12,15、17、22,24 流路、配管
3 無声放電オゾン発生装置
4 オゾン、空気2成分ガス製造PSA装置
5a、5b オゾン吸着塔
6 オゾン吸着剤
7a,7b.8a,8b,9a,9b、10a、10b 自動弁
11 ブロワー
13 真空ポンプ
14 乾燥空気源
16 減圧弁
18 オゾン散気管
19 マイクロバブル
20 海水貯留槽
21 海水ポンプ
23 バラスト水殺菌槽
DESCRIPTION OF SYMBOLS 1 PSA oxygen production apparatus 2, 12, 15, 17, 22, 24 Flow path, piping 3 Silent discharge ozone generator 4 Ozone and air 2 component gas production PSA apparatus 5a, 5b Ozone adsorption tower 6 Ozone adsorption agent 7a, 7b. 8a, 8b, 9a, 9b, 10a, 10b Automatic valve 11 Blower 13 Vacuum pump 14 Dry air source 16 Pressure reducing valve 18 Ozone diffuser pipe 19 Microbubble 20 Seawater storage tank 21 Seawater pump 23 Ballast water sterilization tank

Claims (2)

酸素を原料とするオゾン製造装置で製造したオゾン、酸素2成分含有ガスを、オゾン吸着剤床を収容した吸着塔に導入して吸着剤にオゾンを吸着させて、流過する酸素を回収して酸素原料として再使用し、オゾン吸着が完了したらオゾン含有ガスの導入を停止し、塔後方からパージガスとして乾燥空気を第1式に従って、大気圧もしくは圧力を下げて吸着剤床に導いて、オゾンを脱着させてオゾン、空気2成分ガスとして回収するオゾンガスの製造方法であって、前記オゾン吸着剤として、(1)ペンタシル型ゼオライト、(2)メソポーラスシリカ、(3)酸処理したペンタシル型ゼオライト、(4)酸処理したメソポーラスシリカから選ばれた少なくとも一種を用いて製造されたオゾン、空気2成分ガスを使用することを特徴とするバラスト水処理装置。
Gp=k ・G0 ・Pd/Pa (第1式)
Gp:パージガスとして使用する乾燥空気量(m3N/h)、k: 向流パージ率 k>1.2、
G0:入口ガス量 (m3N/h)、Pd:再生圧力(kPa)、Pa:吸着圧力(kPa)
Ozone produced by an ozone production device that uses oxygen as a raw material, and a gas containing two components of oxygen are introduced into an adsorption tower containing an ozone adsorbent bed, ozone is adsorbed by the adsorbent, and the flowing oxygen is recovered. When it is reused as an oxygen raw material and ozone adsorption is completed, the introduction of ozone-containing gas is stopped, and dry air is introduced as purge gas from the back of the tower to the adsorbent bed at a reduced atmospheric pressure or pressure according to the first formula, A method for producing ozone gas that is desorbed and recovered as ozone and air two-component gas, wherein the ozone adsorbent includes (1) pentasil-type zeolite, (2) mesoporous silica, (3) acid-treated pentasil-type zeolite, ( 4) Ballast characterized by using ozone and air binary gas produced using at least one selected from acid-treated mesoporous silica. Water treatment equipment.
Gp = k ・ G 0・ Pd / Pa (Formula 1)
Gp: amount of dry air used as purge gas (m 3 N / h), k: countercurrent purge rate k> 1.2,
G 0 : Inlet gas amount (m 3 N / h), Pd: Regeneration pressure (kPa), Pa: Adsorption pressure (kPa)
吸着剤床を収容した吸着塔が並列に2以上存在し、1つの吸着塔にオゾン、酸素2成分含有ガスを導入して吸着剤にオゾンを吸着させて、流過する酸素を回収してオゾン製造装置原料として再使用する吸着工程に在る間に、吸着工程を完了した別の吸着塔の後方から乾燥空気を大気圧又は減圧条件下パージガスとして向流に供給し、吸着剤床からオゾンを脱着させてオゾン、空気2成分としてオゾンガスを回収する脱着工程を施し、次いでオゾン含有ガスの導入を、吸着工程を完了した吸着塔から、脱着工程を完了した吸着塔に切り換え、上記の工程を繰り返す、オゾン、空気2成分ガスの製造であって、前記オゾン吸着剤として、(1)ペンタシル型ゼオライト、(2)酸処理したペンタシル型ゼオライト、(3)メソポーラスシリカ、(4)酸処理したメソポーラスシリカから選ばれた少なくとも一種を用いるオゾン、空気2成分ガスを使用することを特徴とするバラスト水処理装置。   There are two or more adsorption towers containing the adsorbent bed in parallel, ozone and oxygen two-component gas are introduced into one adsorption tower, the adsorbent adsorbs ozone, and the flowing oxygen is recovered to generate ozone. While in the adsorption process that is reused as a raw material for manufacturing equipment, dry air is supplied to the countercurrent as a purge gas under the atmospheric pressure or reduced pressure from the back of another adsorption tower that has completed the adsorption process, and ozone is supplied from the adsorbent bed. A desorption process is performed to desorb ozone gas as two components of ozone and air, and then the introduction of the ozone-containing gas is switched from the adsorption tower that has completed the adsorption process to the adsorption tower that has completed the desorption process, and the above process is repeated. , Ozone and air two-component gas, wherein as the ozone adsorbent, (1) pentasil-type zeolite, (2) acid-treated pentasil-type zeolite, (3) mesoporous silica, ( ) Ozone to use at least one selected from acid-treated mesoporous silica, ballast water treatment system, characterized in that air is used two-component gas.
JP2008206502A 2008-08-11 2008-08-11 Ballast water treatment apparatus loaded with an ozone producing device using pressure swing adsorption method Pending JP2010042331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008206502A JP2010042331A (en) 2008-08-11 2008-08-11 Ballast water treatment apparatus loaded with an ozone producing device using pressure swing adsorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008206502A JP2010042331A (en) 2008-08-11 2008-08-11 Ballast water treatment apparatus loaded with an ozone producing device using pressure swing adsorption method

Publications (1)

Publication Number Publication Date
JP2010042331A true JP2010042331A (en) 2010-02-25

Family

ID=42014157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008206502A Pending JP2010042331A (en) 2008-08-11 2008-08-11 Ballast water treatment apparatus loaded with an ozone producing device using pressure swing adsorption method

Country Status (1)

Country Link
JP (1) JP2010042331A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146033A1 (en) * 2012-03-28 2013-10-03 栗田工業株式会社 Remote monitoring method and remote monitoring device for ballast water treatment system
CN107754555A (en) * 2017-12-04 2018-03-06 北京北大先锋科技有限公司 A kind of method and device of pressure-variable adsorption separation ozone and oxygen
CN113582139A (en) * 2021-07-01 2021-11-02 光大水务科技发展(南京)有限公司 Air and oxygen alternate purging type ozone separation pressure swing adsorption system and method thereof

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364690A (en) * 1976-11-19 1978-06-09 Mitsubishi Electric Corp Oxygen recycle ozone generator
JPS5559824A (en) * 1978-10-26 1980-05-06 Pall Corp Flow controller of falling flow or rising flow adsorptive fraction instrument
JPS60231402A (en) * 1983-12-15 1985-11-18 Mitsubishi Heavy Ind Ltd Production of oxygen with ca-na-a and na-x-alo3 in n2 adsorption tower
JPS63159202A (en) * 1986-12-24 1988-07-02 Mitsubishi Heavy Ind Ltd Low-temperature ozone generation apparatus
JPH05103938A (en) * 1991-10-11 1993-04-27 Mitsubishi Heavy Ind Ltd Separation of mixture gas by pressure-temperature swing adsorption method
JPH05238704A (en) * 1992-02-21 1993-09-17 Mitsubishi Heavy Ind Ltd Method for recovering dilute sulfur dioxide
JPH05238706A (en) * 1992-02-21 1993-09-17 Mitsubishi Heavy Ind Ltd Production of sulfuric acid from dilute hydrogen sulfide
JPH05337323A (en) * 1992-06-05 1993-12-21 Mitsubishi Heavy Ind Ltd Method for recovering solvent
JPH06178934A (en) * 1992-12-14 1994-06-28 Tokyo Electric Power Co Inc:The Oxygen adsorbent and separation of oxygen and nitrogen
JPH06178933A (en) * 1992-12-14 1994-06-28 Tokyo Electric Power Co Inc:The Oxygen adsorbent and separation of oxygen and nitrogen
JPH06304595A (en) * 1993-04-21 1994-11-01 Mitsubishi Heavy Ind Ltd Method for preventing deposition of silica scale from geothermal water
JPH09142809A (en) * 1995-11-16 1997-06-03 Ishikawajima Harima Heavy Ind Co Ltd Ozone absorption/desorption and apparatus therefor
JPH09142807A (en) * 1995-11-14 1997-06-03 Ishikawajima Harima Heavy Ind Co Ltd Ozone concentration and storage apparatus and control thereof
JPH09295806A (en) * 1996-02-29 1997-11-18 Mitsubishi Heavy Ind Ltd Production of meso porous inorganic polymer
JPH09295812A (en) * 1996-03-01 1997-11-18 Mitsubishi Heavy Ind Ltd Production of pentasil zeolite
JP2686327B2 (en) * 1989-10-20 1997-12-08 三菱重工業株式会社 Pressure swing separation and recovery method for volatile organic compounds
JPH1017319A (en) * 1996-06-27 1998-01-20 Mitsubishi Heavy Ind Ltd Preparation of mesoporous silicate
JPH1067501A (en) * 1996-08-22 1998-03-10 Nippon Sanso Kk Supply of low oxygen concentration ozone
JPH10155418A (en) * 1996-11-29 1998-06-16 Mitsubishi Heavy Ind Ltd Environment control storage method for fruit vegetables
JPH10202039A (en) * 1997-01-15 1998-08-04 Praxair Technol Inc Production of nitrogen with selective oxygen adsorbent
JPH11100202A (en) * 1997-09-29 1999-04-13 Hitachi Ltd Ozone generator and its operating method
JPH11285632A (en) * 1998-04-03 1999-10-19 Mitsubishi Heavy Ind Ltd Ozone adsorbent, ozone adsorbing molding and its production
JPH11292514A (en) * 1998-04-03 1999-10-26 Mitsubishi Heavy Ind Ltd Production of high concentration ozone gas and its device
JPH11292512A (en) * 1998-04-03 1999-10-26 Mitsubishi Heavy Ind Ltd Storing method of ozone and its device
JPH11292513A (en) * 1998-04-02 1999-10-26 Mitsubishi Heavy Ind Ltd Production of high concentration ozone gas and its device
JP2001248794A (en) * 2000-03-02 2001-09-14 Kansai Electric Power Co Inc:The Method and device for storing ozone
JP2005103335A (en) * 2003-09-26 2005-04-21 Takuma Co Ltd Thermal desorption type oxygen concentrating apparatus
JP2005342555A (en) * 2004-05-31 2005-12-15 Inst Of Research & Innovation Method for treating contaminative component-containing gas by using adsorbent
JP2006026545A (en) * 2004-07-16 2006-02-02 Ryomei Eng Corp Ltd Ozonization of ballast tank underwater creature
JP2006263563A (en) * 2005-03-23 2006-10-05 Mitsui Eng & Shipbuild Co Ltd Apparatus for sterilizing microbe or the like in ballast water
JP2006314902A (en) * 2005-05-11 2006-11-24 Nippon Kainan Boshi Kyokai Ship ballast water treatment device
JP2007105606A (en) * 2005-10-12 2007-04-26 Inst Of Research & Innovation Method for producing/storing ozone utilizing adsorbent
JP2008086892A (en) * 2006-09-29 2008-04-17 Nippon Kainan Boshi Kyokai Ship balast water treatment arrangement
JP2008093587A (en) * 2006-10-12 2008-04-24 Mitsui Eng & Shipbuild Co Ltd System for controlling apparatus for treating ballast water of ship
JP2009286683A (en) * 2008-06-02 2009-12-10 Kyuchaku Gijutsu Kogyo Kk Method for producing and storing ozone using adsorbent

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364690A (en) * 1976-11-19 1978-06-09 Mitsubishi Electric Corp Oxygen recycle ozone generator
JPS5559824A (en) * 1978-10-26 1980-05-06 Pall Corp Flow controller of falling flow or rising flow adsorptive fraction instrument
JPS60231402A (en) * 1983-12-15 1985-11-18 Mitsubishi Heavy Ind Ltd Production of oxygen with ca-na-a and na-x-alo3 in n2 adsorption tower
JPS63159202A (en) * 1986-12-24 1988-07-02 Mitsubishi Heavy Ind Ltd Low-temperature ozone generation apparatus
JP2686327B2 (en) * 1989-10-20 1997-12-08 三菱重工業株式会社 Pressure swing separation and recovery method for volatile organic compounds
JPH05103938A (en) * 1991-10-11 1993-04-27 Mitsubishi Heavy Ind Ltd Separation of mixture gas by pressure-temperature swing adsorption method
JPH05238704A (en) * 1992-02-21 1993-09-17 Mitsubishi Heavy Ind Ltd Method for recovering dilute sulfur dioxide
JPH05238706A (en) * 1992-02-21 1993-09-17 Mitsubishi Heavy Ind Ltd Production of sulfuric acid from dilute hydrogen sulfide
JPH05337323A (en) * 1992-06-05 1993-12-21 Mitsubishi Heavy Ind Ltd Method for recovering solvent
JPH06178934A (en) * 1992-12-14 1994-06-28 Tokyo Electric Power Co Inc:The Oxygen adsorbent and separation of oxygen and nitrogen
JPH06178933A (en) * 1992-12-14 1994-06-28 Tokyo Electric Power Co Inc:The Oxygen adsorbent and separation of oxygen and nitrogen
JPH06304595A (en) * 1993-04-21 1994-11-01 Mitsubishi Heavy Ind Ltd Method for preventing deposition of silica scale from geothermal water
JPH09142807A (en) * 1995-11-14 1997-06-03 Ishikawajima Harima Heavy Ind Co Ltd Ozone concentration and storage apparatus and control thereof
JPH09142809A (en) * 1995-11-16 1997-06-03 Ishikawajima Harima Heavy Ind Co Ltd Ozone absorption/desorption and apparatus therefor
JPH09295806A (en) * 1996-02-29 1997-11-18 Mitsubishi Heavy Ind Ltd Production of meso porous inorganic polymer
JPH09295812A (en) * 1996-03-01 1997-11-18 Mitsubishi Heavy Ind Ltd Production of pentasil zeolite
JPH1017319A (en) * 1996-06-27 1998-01-20 Mitsubishi Heavy Ind Ltd Preparation of mesoporous silicate
JPH1067501A (en) * 1996-08-22 1998-03-10 Nippon Sanso Kk Supply of low oxygen concentration ozone
JPH10155418A (en) * 1996-11-29 1998-06-16 Mitsubishi Heavy Ind Ltd Environment control storage method for fruit vegetables
JPH10202039A (en) * 1997-01-15 1998-08-04 Praxair Technol Inc Production of nitrogen with selective oxygen adsorbent
JPH11100202A (en) * 1997-09-29 1999-04-13 Hitachi Ltd Ozone generator and its operating method
JPH11292513A (en) * 1998-04-02 1999-10-26 Mitsubishi Heavy Ind Ltd Production of high concentration ozone gas and its device
JPH11285632A (en) * 1998-04-03 1999-10-19 Mitsubishi Heavy Ind Ltd Ozone adsorbent, ozone adsorbing molding and its production
JPH11292514A (en) * 1998-04-03 1999-10-26 Mitsubishi Heavy Ind Ltd Production of high concentration ozone gas and its device
JPH11292512A (en) * 1998-04-03 1999-10-26 Mitsubishi Heavy Ind Ltd Storing method of ozone and its device
JP2001248794A (en) * 2000-03-02 2001-09-14 Kansai Electric Power Co Inc:The Method and device for storing ozone
JP2005103335A (en) * 2003-09-26 2005-04-21 Takuma Co Ltd Thermal desorption type oxygen concentrating apparatus
JP2005342555A (en) * 2004-05-31 2005-12-15 Inst Of Research & Innovation Method for treating contaminative component-containing gas by using adsorbent
JP2006026545A (en) * 2004-07-16 2006-02-02 Ryomei Eng Corp Ltd Ozonization of ballast tank underwater creature
JP2006263563A (en) * 2005-03-23 2006-10-05 Mitsui Eng & Shipbuild Co Ltd Apparatus for sterilizing microbe or the like in ballast water
JP2006314902A (en) * 2005-05-11 2006-11-24 Nippon Kainan Boshi Kyokai Ship ballast water treatment device
JP2007105606A (en) * 2005-10-12 2007-04-26 Inst Of Research & Innovation Method for producing/storing ozone utilizing adsorbent
JP2008086892A (en) * 2006-09-29 2008-04-17 Nippon Kainan Boshi Kyokai Ship balast water treatment arrangement
JP2008093587A (en) * 2006-10-12 2008-04-24 Mitsui Eng & Shipbuild Co Ltd System for controlling apparatus for treating ballast water of ship
JP2009286683A (en) * 2008-06-02 2009-12-10 Kyuchaku Gijutsu Kogyo Kk Method for producing and storing ozone using adsorbent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146033A1 (en) * 2012-03-28 2013-10-03 栗田工業株式会社 Remote monitoring method and remote monitoring device for ballast water treatment system
CN104245494A (en) * 2012-03-28 2014-12-24 栗田工业株式会社 Remote monitoring method and remote monitoring device for ballast water treatment system
US10145832B2 (en) 2012-03-28 2018-12-04 Kurita Water Industries Ltd. Remote monitoring device for ballast water treatment system and remote monitoring method
CN107754555A (en) * 2017-12-04 2018-03-06 北京北大先锋科技有限公司 A kind of method and device of pressure-variable adsorption separation ozone and oxygen
CN107754555B (en) * 2017-12-04 2023-05-12 北京北大先锋科技股份有限公司 Method and device for separating ozone and oxygen through pressure swing adsorption
CN113582139A (en) * 2021-07-01 2021-11-02 光大水务科技发展(南京)有限公司 Air and oxygen alternate purging type ozone separation pressure swing adsorption system and method thereof
CN113582139B (en) * 2021-07-01 2023-11-21 光大水务科技发展(南京)有限公司 Air-oxygen alternate purging type ozone separation pressure swing adsorption system and method thereof

Similar Documents

Publication Publication Date Title
JP5296717B2 (en) Method and apparatus for ozone production
AU2003203922B2 (en) Ozone production processes
JP2009286683A (en) Method for producing and storing ozone using adsorbent
US9180402B2 (en) System and method for treating natural gas that contains methane
EP1733781A1 (en) Apparatus for concentrating methane gas
CN111646562A (en) Advanced wastewater treatment system and treatment method
JP2013040077A (en) Ozone/oxygen separation method and apparatus using adsorbent
CN102417258B (en) Device and method for treating pulping wastewater by catalyst and ozone
JP2010042331A (en) Ballast water treatment apparatus loaded with an ozone producing device using pressure swing adsorption method
TW200934724A (en) Ozone production by pressure swing adsorption using a protective adsorbed component
JP2005118661A (en) Method for removing siloxane
CN212425554U (en) Advanced wastewater treatment system
JP2003047950A (en) Deoxygenation and decarboxylation treatment apparatus and treatment method
JP3929723B2 (en) Methane concentrator
JP5183099B2 (en) Ozone gas concentration method
US6083464A (en) Ozone supplying apparatus with fluid purification and recycling
JP2010131478A (en) Organic fluorine compound treatment system
JP6664287B2 (en) Wastewater treatment system
JP4501354B2 (en) Ozone treatment equipment
JP2006112488A (en) Concentrating method and storing device of methane derived from sewage sludge
JP2005313095A (en) Water treatment method for effectively utilizing exhaust gas
JP3813437B2 (en) Digestion gas adsorption storage method and apparatus
JP2007029784A (en) Ammonia-containing liquid treatment method and system
KR101551804B1 (en) Oxygen regeneration apparatus for ozone treatment plant
JP7418770B2 (en) Ethylene oxide gas removal system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110805

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422