JPS60231402A - Production of oxygen with ca-na-a and na-x-alo3 in n2 adsorption tower - Google Patents

Production of oxygen with ca-na-a and na-x-alo3 in n2 adsorption tower

Info

Publication number
JPS60231402A
JPS60231402A JP58236923A JP23692383A JPS60231402A JP S60231402 A JPS60231402 A JP S60231402A JP 58236923 A JP58236923 A JP 58236923A JP 23692383 A JP23692383 A JP 23692383A JP S60231402 A JPS60231402 A JP S60231402A
Authority
JP
Japan
Prior art keywords
adsorption tower
pressure
adsorption
type zeolite
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58236923A
Other languages
Japanese (ja)
Other versions
JPH0530762B2 (en
Inventor
Jun Izumi
順 泉
Seiichi Shirakawa
白川 精一
Yuichi Fujioka
祐一 藤岡
Hiroyuki Tsutaya
博之 蔦谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58236923A priority Critical patent/JPS60231402A/en
Publication of JPS60231402A publication Critical patent/JPS60231402A/en
Publication of JPH0530762B2 publication Critical patent/JPH0530762B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To produce O2 with inexpensive adsorbents by packing the upper stream side of an adsorption tower with Ca-Na-A type zeolite and the downstream side with alumina added Na-X type zeolite so as to reduce the consumption unit of power required and the amount of the adsorbents required. CONSTITUTION:A gaseous mixture contg. O2 and N2 as principal components is introduced into an N2 adsorption tower at a temp. below room temp. under atmospheric pressure -3atm. N2 is selectively adsorbed in the tower, high purity O2 or O2 enriched gas is discharged, and the tower contg. the adsorbed N2 is evacuated to 0.045-0.55atm. to carry out regeneration. In this method, the upper stream side of the tower where the concn. of O2 does not exceed 50% is packed with Ca-Na-A type zeolite, and the downstream side is packed with alumina added Na-X type zeolite. The Ca-Na-A type zeolite adsorbs a larger amount of N2 than the Na-X type zeolite by 18-20% in the region where the concn. of O2 does not exceeds 50% while maintaining N2 selectivity comparable to that of the Na-X type zeolite, so O2 is produced with the N2 adsorption tower adsorbing a large amount of N2 and maintaining high N2 selectivity as a whole in the N2 adsorption tower.

Description

【発明の詳細な説明】 本発明は空気等のo、、 、 N2を主成分とする混合
気体より選択的KN2を吸着するN2吸着剤を使用して
の02.N2を主成分とする混合気体よ’I 02 +
N2を分離する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes an N2 adsorbent that selectively adsorbs KN2 from a mixed gas mainly composed of O, , N2, such as air. A mixed gas whose main component is N2'I 02 +
The present invention relates to a method for separating N2.

N2吸着剤を利用した空気からの02 、 N2吸着分
離法は、装置が小型簡易であシ、又無人運転に近い殆ど
保守を必要としない利点をもつ為、02製造量10〜8
,000 Nm−o、、/ h 程度の中小型装置とし
て近年使用例が増えてきており、深冷分離装置で作られ
る液体酸素を輸送して使用するケースについての代替が
進行している。
The N2 adsorption separation method from air using a N2 adsorbent has the advantage that the equipment is small and simple, and almost no maintenance is required, which is close to unmanned operation.
,000 Nm-o, ./h have been increasingly used as small and medium-sized devices in recent years, and alternatives to cases in which liquid oxygen produced in cryogenic separation devices is transported and used are progressing.

この装置の代表的なものの概要を述べると。Let me give an overview of the typical devices.

装置は空気圧縮機、及び2塔又はそれ以上のN2吸着塔
、又場合によっては真空ポンプ等から構成される。この
装置において、1塔に圧縮空気を送ると、充填されたN
2吸着、剤により空気中のN2は吸着除去されて2残る
高圧o2は吸着塔の後方に流出し回収される。一方、他
塔では吸着したN2を減圧条件で放出させ(時として製
品o2の一部を向流で流すとか、真空ポンプで強力にN
2を除去する方法もとられる)再生する。これを交互に
くり返して連続的[o、、 、 N2を分離する。
The apparatus consists of an air compressor, two or more N2 adsorption towers, and in some cases a vacuum pump. In this device, when compressed air is sent to one column, the N
2. N2 in the air is adsorbed and removed by the adsorption agent, and the remaining high pressure O2 flows out to the rear of the adsorption tower and is recovered. On the other hand, in other towers, the adsorbed N2 is released under reduced pressure conditions (sometimes a part of the product O2 is flowed in a countercurrent, or a vacuum pump is used to forcefully release the N2).
2) Regeneration. This is repeated alternately to separate continuous [o, , N2.

上記の吸着塔に充填していたN2吸着剤の代表的なもの
は、ユニオンカーバイド社により実用化されたNa−A
型ゼオライトの60〜70%C11交換体であり+02
.N22成分混合ガスからN2を選択的に吸着するもの
であって、空気条件下での02の共吸着はN2吸着の1
0%以下と推定される。
A typical N2 adsorbent packed in the adsorption tower mentioned above is Na-A, which was put into practical use by Union Carbide.
It is a 60-70% C11 exchanger of type zeolite and has +02
.. It selectively adsorbs N2 from a mixed gas containing two N2 components, and the co-adsorption of 02 under air conditions is 1 of the amount of N2 adsorption.
It is estimated to be less than 0%.

この吸着による02 、 N2分離装置は中小型領域で
有利と前述したが、lNmの02を製造するのに0.7
5〜lK、whを必要とし、大容量深冷分離法で製造さ
れる02の0.45 Kwllに比し消費電力は大きい
As mentioned above, the 02 and N2 separation equipment using this adsorption is advantageous in small and medium-sized areas, but it takes 0.7 to produce 1Nm of 02.
The power consumption is larger than 0.45 Kwll of 02, which is produced by large-capacity cryogenic separation method.

又装置容量の増大に対するスケールメリットが少(、8
,000NIT?−02/ h以上の領域では深冷分離
法に競合できないといわれている。
Also, there is little merit of scale for increasing equipment capacity (, 8
,000NIT? It is said that in the region of -02/h or higher, it cannot compete with cryogenic separation methods.

従って、これら欠点についての改善方法が種々考えられ
るが2本発明に関連して改善方法を述べると以下のよう
な障害が通常出現する。
Therefore, various methods can be considered to improve these drawbacks, but when describing the improvement methods in connection with the present invention, the following problems usually occur.

先ず、消費電力の低減については、送風圧力を低くして
低圧で吸着操作を行なう事が考えられるが、 N2吸着
量が圧力にほぼ比例して低下する為、装置の容量が極め
て増大する。次に、吸着量の増大を図る為に、低温条件
で吸着操作を行なう事が考えられるが、この場合はN2
吸着量は増大するものの吸着・脱着速度が著しく低下す
る為、同一塔長での製品02濃度が室温時よりもかえっ
て低下してしまう。又温度の低下に伴ないN2吸着時の
02共吸着量が上昇する為、動力低圧吸着条件下での高
性能なo、、 + N2の分離方法につき鋭意研究、実
験を進める過程で、低温。
First, in order to reduce power consumption, it is possible to lower the blowing pressure and perform the adsorption operation at low pressure, but since the amount of N2 adsorption decreases almost in proportion to the pressure, the capacity of the device increases significantly. Next, in order to increase the amount of adsorption, it is possible to perform the adsorption operation under low temperature conditions, but in this case, N2
Although the amount of adsorption increases, the rate of adsorption and desorption decreases significantly, so the concentration of product 02 at the same column length is actually lower than at room temperature. In addition, as the temperature decreases, the amount of O2 co-adsorbed during N2 adsorption increases, so in the process of conducting intensive research and experiments on a high-performance o, + N2 separation method under powered low-pressure adsorption conditions, we are currently conducting research and experiments at low temperatures.

低圧領域でN2吸着時の02 共成着量が著しく上昇す
る( N2選択性が低下する)為、全く実用に供し得な
いと思われたOa Na A型ゼオライト(以下Oa−
N a−Aと記す。)も、詳細に調べると少くとも50
%を超えない02濃度領域では、特願(以下Na−Xと
記す)表はぼ同程度のN2選択性を維持したま1.N2
吸着量に於いて18〜20%大きい事を見出した。すな
わち本発明は室温以下の温度下で、酸素及び窒素を主成
分とする混合気体を大気圧以上8 ata以下で、 N
2吸着塔に流入させて該混合気体に含まれる窒素を選択
的に吸着せしめ、該吸着塔出口から高純度酸素又は酸素
富化ガスを流出させ、一方窒素を吸着した吸着塔を0.
045 aha以上0.55 ata以下に減圧せしめ
て再生する低温、低圧条件下での混合気体からの酸素及
び窒素の分離に於いて、塔内o2濃度が50%を超えな
い吸着塔の上流側にOa−N a−Aを充填し、吸着塔
の下流側に少くとも5九以上のアルミン酸ナトリウム塩
とN a −Xとを混合して・ 450℃以上で他のバ
インダー(例えばカオリナイト、ハロイサイトetc 
)と共に焼成してペレット成形した吸着剤(以下、 N
 a−X−A l 203と記す)を充填する事によシ
、吸着塔全体とじては、より大きなN2吸着量と、従来
へ2選択性を維持したN2e1.着塔を使用した混合気
体からの酸素製造方法を提案するものである。
Oa Na A-type zeolite (hereinafter referred to as Oa-
It is written as N a-A. ) is also at least 50 when examined in detail.
In the 02 concentration range not exceeding 1.0%, the patent application (hereinafter referred to as Na-X) maintains approximately the same N2 selectivity. N2
It was found that the amount of adsorption was 18 to 20% greater. That is, the present invention provides a method for controlling a mixed gas containing oxygen and nitrogen as main components at a pressure of at least atmospheric pressure and at most 8 ata at a temperature below room temperature.
2. The nitrogen contained in the mixed gas is selectively adsorbed by flowing into an adsorption tower, and high-purity oxygen or oxygen-enriched gas is discharged from the outlet of the adsorption tower, while the adsorption tower that has adsorbed nitrogen is heated to 0.
In the separation of oxygen and nitrogen from a mixed gas under low temperature and low pressure conditions where the pressure is reduced to 0.45 aha or more and 0.55 ata or less and regenerated, the O2 concentration in the column does not exceed 50% on the upstream side of the adsorption tower. Oa-Na-A is packed, and at least 59 or more sodium aluminate and Na-X are mixed on the downstream side of the adsorption tower. Other binders (e.g. kaolinite, halloysite etc.
) and pelletized adsorbent (hereinafter referred to as N
By filling the adsorption tower with N2e1. This paper proposes a method for producing oxygen from a mixed gas using a deposition tower.

以下本発明の方法について実施例により詳細に説明する
The method of the present invention will be explained in detail below with reference to Examples.

実施例 本発明の有効性を実証する為第1図に示す空気分離装置
で空気からのN2吸着剤による02 + N2分離を試
みた。
EXAMPLE In order to demonstrate the effectiveness of the present invention, an attempt was made to separate 02 + N2 from air using a N2 adsorbent using the air separation apparatus shown in FIG.

以下第1図に基づいて実施した内容を説明する。The details of the implementation will be explained below based on FIG.

入口側ライン1を通じて圧縮機2で1.05〜8ata
に加圧された空気は、流路3から脱湿脱002塔4に入
り、極めて清浄な加圧空気となる。
1.05 to 8 ata in compressor 2 through inlet side line 1
The pressurized air enters the dehumidification/dehumidification 002 tower 4 through the flow path 3, and becomes extremely clean pressurized air.

流路8′の昔流に設置されたパルプ5は開となっており
、清浄な加圧空気は流路6及び開状態のパルプ7を通じ
て吸着塔8に入る。吸着塔8に入った加圧空気はN2吸
着剤9でN2が吸着除去されて後方に行くに従がい02
濃度が上昇する。この後加圧空気は開状態のバルブ10
,11.12及びノくルプ11,12の間に挿入された
製品02タンク13を通じて製品02として回収される
。一方、製品02の一部は流路14の途中にある減圧弁
15で減圧されて、開状態のバルブ10′を通じて吸着
塔8′に入る。吸着塔8′は開状態のバルブ16及び流
路17を通じて連結された真空ポンプ18で減圧されひ
かれており、この為吸着塔8′は空気流れと反対方向の
製品02の一部が負圧状態で流れ、吸着塔8′中の吸着
剤9′に吸着されていたN2は平易に離脱され吸着剤9
′は短時間で再生される。一般的には、製品02パージ
ライン14.減圧弁15は放物パージングの条件P/F
比についての記載がある。)Na−Xを充填した場合や
02濃度が50%を超えない吸着塔の吸着工程における
上流側にCa−N a−Aを充填し、その下流側1c 
N a−X−A l 203を充填した場合には、製品
02パージライン14及び減圧弁15による製品02再
循プは不用であり単に減圧だけでも再生は可能となる。
The pulp 5 installed in the upper stream of the channel 8' is open, and clean pressurized air enters the adsorption tower 8 through the channel 6 and the open pulp 7. The pressurized air that has entered the adsorption tower 8 has N2 adsorbed and removed by the N2 adsorbent 9, and the air flows backwards.
concentration increases. After this, the pressurized air is supplied to the valve 10 in the open state.
, 11, 12 and the product 02 tank 13 inserted between the nokurupu 11 and 12. On the other hand, a part of the product 02 is depressurized by the pressure reducing valve 15 located in the middle of the flow path 14, and enters the adsorption tower 8' through the open valve 10'. The adsorption tower 8' is depressurized and drawn by the vacuum pump 18 connected through the open valve 16 and flow path 17, so that part of the product 02 in the direction opposite to the air flow in the adsorption tower 8' is under negative pressure. The N2 that had been adsorbed on the adsorbent 9' in the adsorption tower 8' is easily separated from the adsorbent 9' in the adsorption tower 8'.
' is played in a short time. Generally, product 02 purge line 14. The pressure reducing valve 15 meets the parabolic purging conditions P/F.
There is a description of the ratio. ) When filled with Na-X or in the adsorption process of an adsorption tower where the 02 concentration does not exceed 50%, the upstream side is filled with Ca-Na-A, and the downstream side 1c
When filled with Na-X-A 1 203, the product 02 purge line 14 and the product 02 recirculation loop using the pressure reducing valve 15 are unnecessary, and regeneration can be performed simply by reducing the pressure.

吸着塔8のN2吸着剤9が飽和し、一方吸着塔8′のN
2吸着剤9′からN2が離脱して再生が済むと、入口空
気の流路6を6′に切り換え、今迄述べた方法を交互に
行なうと製品02が連続的に回収できる。なお。
The N2 adsorbent 9 in the adsorption tower 8 is saturated, while the N2 adsorbent 9 in the adsorption tower 8'
When N2 is removed from the adsorbent 9' and regeneration is completed, the inlet air flow path 6 is switched to 6', and the method described above is alternately performed to continuously recover the product 02. In addition.

入口の清浄な加圧空気のライン3′と離脱N2を主成分
とするガスライン17の間は熱交換器19で。
A heat exchanger 19 is provided between the clean pressurized air line 3' at the inlet and the gas line 17 whose main component is separated N2.

熱交換可能となっており、製品02ライン21と流路3
′との間も又熱交換器22で熱交換可能となっている。
Heat exchange is possible between product 02 line 21 and flow path 3.
′ can also be exchanged with the heat exchanger 22.

又流路3′には圧縮式冷凍機20が設置されている為、
極めて能率的に吸着塔8及び8′は冷却され低温条件に
設定される。なお、吸着塔の切り換えにあたっては、単
純に流路6から6′へ(又はその逆)切り換えるだけで
なく、切り換え直後の昇圧に伴なう入口空気の吹きぬけ
を防ぎかつ、吸着塔の後方に残存する02及び前方の加
圧空気の系外への放出を最小にする為、先ず、バルブ1
o、i5.to’を全開にして吸着直後の吸着塔8の後
方の残存02を再生直後の吸着塔8′に一部移す。この
時吸着塔8の圧力をPO(ata)吸着塔8′の圧力を
PH(ata)とすると、均圧後の圧力なった吸着塔8
′はバルブ10’、11’を開として製品02タンク1
3と吸着塔を均圧化して吸着塔8′を更に高圧の02で
満たす。製品02タンク13との均圧時の圧力P2(a
La)は吸着塔8,8′の死容積(吸着塔内の吸着剤で
占められていない空間の容積)をV+(1)、製品02
タンクの容量をV2(1)とし、均圧前の製品02タン
ク13の圧力をPo(ata)にほぼ等しいとすると、
均圧化圧力P2(ata)は、概略■I+v2 となり、単に塔を切り換える時のpH(ata)からP
Q(,1,a)への急速な昇圧に比べ1以上の操作では
P。
Also, since a compression refrigerator 20 is installed in the flow path 3',
Very efficiently the adsorption columns 8 and 8' are cooled and set to low temperature conditions. In addition, when switching the adsorption tower, it is necessary to not only simply switch from flow path 6 to 6' (or vice versa), but also to prevent inlet air from blowing away due to pressure increase immediately after switching, and to prevent air from remaining at the rear of the adsorption tower. In order to minimize the release of pressurized air from the
o, i5. to' is fully opened and a portion of the remaining 02 at the rear of the adsorption tower 8 immediately after adsorption is transferred to the adsorption tower 8' immediately after regeneration. At this time, if the pressure of the adsorption tower 8 is PO (ata) and the pressure of the adsorption tower 8' is PH (ata), then the pressure of the adsorption tower 8 after pressure equalization is
' is product 02 tank 1 with valves 10' and 11' open.
3 and the adsorption tower are equalized in pressure, and the adsorption tower 8' is filled with even higher pressure 02. Pressure P2 (a
La) is the dead volume of the adsorption towers 8 and 8' (volume of the space not occupied by adsorbent in the adsorption tower), V + (1), product 02
Assuming that the capacity of the tank is V2(1) and the pressure of product 02 tank 13 before pressure equalization is approximately equal to Po(ata),
The equalization pressure P2 (ata) is approximately ■I+v2, and is simply calculated from the pH (ata) at the time of switching the tower.
P for operations above 1 compared to the rapid pressure increase to Q(,1,a).

Po十P。Po ten P.

(ata) 、 (ata) 、 P2(ata) 、
 Po(ata)とゆるやかに昇圧する為、昇圧時の空
気の吹き抜けを防止しつつ、脱着工程での残存o2.高
圧空気の系外への放出を最小にする様な対策が可能とな
っている。
(ata), (ata), P2(ata),
Since the pressure is gradually increased to Po(ata), the remaining o2. Measures can be taken to minimize the release of high-pressure air outside the system.

以上の操作方法で第1図に示した空気分離装置で空気分
離を行なった。装置の操作諸元を第1表に示す。
Air separation was carried out using the air separation apparatus shown in FIG. 1 using the above operating method. The operating specifications of the device are shown in Table 1.

第1表 吸着装置諸元 第2表に充填した吸着剤の態様を示す。Table 1 Adsorption device specifications Table 2 shows the mode of the filled adsorbent.

第2表 吸着剤の充填の態様 なお、ここではN a−X 70重量部にアルミン酸ナ
トリウム15重量部、カオリナイト15重量部を混合し
450℃で1時間焼成してペレット成形したN a−X
 A l 203を使用した。
Table 2: Filling mode of adsorbent In this case, 70 parts by weight of Na-X, 15 parts by weight of sodium aluminate, and 15 parts by weight of kaolinite were mixed and fired at 450°C for 1 hour to form pellets. X
Al 203 was used.

先づ全ての実施例に先立って+CaNa−A及びNa 
Xの低温、低圧での吸着特性を把握する為に、第3表に
示すような試験条件で分離特性を調べだ。
+CaNa-A and Na prior to all Examples
In order to understand the adsorption characteristics of X at low temperature and low pressure, the separation characteristics were investigated under the test conditions shown in Table 3.

第3表 操作条件は吸着塔圧力12ata+脱着圧力0211t
a+吸着塔温度−15℃に設定し、他の条件は第1表に
等しい。この条件での実施(7た結果を第4表に示す。
Table 3 operating conditions are adsorption tower pressure 12ata + desorption pressure 0211t
a+adsorption tower temperature -15°C, other conditions are the same as in Table 1. The results obtained under these conditions are shown in Table 4.

第4表 以−ヒの結果から発明者等は+ Oa Na A及びN
a−Xの低温、低圧条件での分離特性に極めて高い02
濃度依存性のある事を見出しだ。即ち。
From the results of Table 4 to
02 with extremely high separation characteristics under low temperature and low pressure conditions of a-X
The headline is that it is concentration dependent. That is.

■ 少くとも50%前後の02濃度領域迄はCa−Na
−AとNa−Xの間にN2選択性に大差のない事が、脱
着ガス中の02濃度の比較から判る。
■ Ca-Na at least up to the 02 concentration range of around 50%
It can be seen from the comparison of the 02 concentration in the desorbed gas that there is no significant difference in N2 selectivity between -A and Na-X.

■ 少くとも50%前後の02濃度領域迄は、■の結果
を考慮すると、0a−Na−Aの方がNa −Xよシも
約20%N2吸着量が大きい分、吸着塔の設計上極めて
有利となる。
■ At least up to the 02 concentration region of around 50%, considering the results in (■), 0a-Na-A adsorbs about 20% more N2 than Na-X, so this is extremely important in terms of adsorption tower design. It will be advantageous.

■ 50%を超える02濃度域ではr Na XO方が
0a−Na−Aに比べN2選択性がかなり高い為。
■ In the 02 concentration range exceeding 50%, r Na XO has considerably higher N2 selectivity than 0a-Na-A.

製品02濃度及び物質収支のいずれでも優れている。Product 02 is excellent in both concentration and mass balance.

等に要約される。It can be summarized as follows.

これを吸着塔の経済性から考察すると、上流側にCa−
Na−A、下流側にNa−Xを設置する方法の妥当性が
更に付加きれる。
Considering this from the economical point of view of the adsorption tower, the upstream side has Ca-
This further adds to the validity of the method of installing Na-A and Na-X on the downstream side.

ここでCa−N a−AとN a −Xを比較すると。Here, when comparing Ca-Na-A and Na-X.

■ Ca −N a−Aの方が、θを用件が大きい事が
らN a −Xに比べ大量に使われており量産効果が大
きい。
■ Ca-Na-A is used in larger quantities than Na-X because the requirements for θ are larger, and the mass production effect is greater.

■ Q a−N a−Aの方がNa−xK比べ水熱合成
が容易である。
(2) Hydrothermal synthesis of Q a-N a-A is easier than that of Na-xK.

等の事から、0a−Na−AはNa−X、l:’flも
約30%程安価に供給されている。しかし添加剤として
アルミン酸ナトリウム等アルミニウム源を使用する事は
約10%の価格の上昇となる。
For these reasons, 0a-Na-A, Na-X, and l:'fl are also supplied at about 30% cheaper prices. However, using an aluminum source such as sodium aluminate as an additive increases the price by about 10%.

この為、第2表の充填態様を、吸着剤の価格で評価する
と。
For this reason, the filling modes shown in Table 2 are evaluated based on the price of the adsorbent.

Na −X ’、1/2Ca−Na A+1/2Na−
x−A1203= 1 、’ 0.9となる。
Na-X', 1/2Ca-Na A+1/2Na-
x-A1203=1,'0.9.

持しつつ吸着剤のコスト低減を実現し得だ事となる。It is advantageous to be able to reduce the cost of the adsorbent while maintaining the same properties.

これらの効果を考慮しつつ、第1表の操作条イエ から逐次Q2濃度が50%をHeも吸着塔の吸着工程に
おける上流側にCa−Na−Aをそれよりも下流側にN
 a−X −A l 203を充填した分離方法の従来
のQa Na A単独、又はN a −X単独での充填
方法に対する主たる改善点を説明する。
Taking these effects into consideration, the operating conditions listed in Table 1 are as follows: from Ye to Q2 concentration of 50%, He, Ca-Na-A on the upstream side in the adsorption process of the adsorption tower, and N on the downstream side.
The main improvements of the separation method filled with a-X-A 1 203 over the conventional method filled with Qa Na A alone or Na-X alone will be explained.

第2図は製品02濃度92%、吸着圧力12ata+脱
着圧力0.2 ata + サイクルタイム4分10秒
、温度25〜−50℃に於ける結果であり、横軸は吸着
温度、縦軸はSV値を示す。Sv値は92%の製品02
を回収する時の、入口空気量〔Nd−空気/h〕を装置
全体の吸着塔容量[、?)で除したものである。
Figure 2 shows the results for product 02 concentration 92%, adsorption pressure 12 ata + desorption pressure 0.2 ata + cycle time 4 minutes 10 seconds, and temperature 25 to -50°C, where the horizontal axis is the adsorption temperature and the vertical axis is the SV. Show value. Product 02 with Sv value of 92%
When recovering the inlet air amount [Nd-air/h], the adsorption tower capacity of the entire device [,? ).

キ 図中◎は2本発明の1/2Ca−Na−All/2Na
X−A1203の場合、0印はNa−Xの場合、・印は
Ca−Na−・Aの場合を示す。
In the diagram, ◎ indicates 2 1/2 Ca-Na-All/2Na of the present invention.
In the case of X-A1203, the 0 mark indicates the case of Na-X, and the * mark indicates the case of Ca-Na-.A.

室温付近では8者とも大差がないが、温度の降下に伴な
い1/20a−Na−A+1/2Na X Al203
が他の2者よシも約10%程度大きい3V値を示してい
る。(Sv値は、単に空気処理量を示す因子で02回収
率、02與造量と併せた評価が必要であることは言う寸
でもない。) 第3図に於いて、横軸は温度を、縦軸は製品02回収率
を示す。
There is no big difference among the eight at room temperature, but as the temperature decreases, 1/20a-Na-A + 1/2Na X Al203
However, it also shows a 3V value that is about 10% larger than the other two. (It is needless to say that the Sv value is a factor that simply indicates the amount of air processed and needs to be evaluated in conjunction with the 02 recovery rate and the 02 production amount.) In Figure 3, the horizontal axis represents the temperature; The vertical axis shows the product 02 recovery rate.

なお製品02回収率R(%)は。In addition, the recovery rate R (%) of product 02 is.

で定義してbる。Define it as .

操作条件は第2図の場合と同じである。図中の記号◎、
○、・印も第2図の場合と同じである。
The operating conditions are the same as in FIG. Symbols in the diagram ◎,
The marks ○ and ・ are also the same as in Figure 2.

第8図に於いて、温度の低下に伴ない0a−Na2L −Aでは製品今回収率は低下し、Na−Xでは上昇して
いる事は、!%願昭−58−54626の再確認である
が、ここで注目すべきは1 /20 a−N a−A+
 1 /2Na−XAl203が、Na−Xよりも数%
大きな02回収率を示している事である。第2図の結果
とあわせ考えると、l/20a−Na”A+1/2Na
−X−A1203はN a −Xと比べると数%大きな
製品02回収率を保ちなかのでるのは、−aO〜+15
℃の範囲である。)以上単位容量の02を製造するに必
要な吸着剤量として評価するとNa−Xを1とするとN
a−X : 1/2Ca−Np、−A+1/2Na−X
−A7203 =1 : 0.75とな9.Na−X単
独使用の場合に比べ吸着剤価格としては25%近いコス
ト低減となる。
In Figure 8, as the temperature decreases, the product recovery rate decreases for 0a-Na2L-A, but increases for Na-X! This is a reconfirmation of % Gansho-58-54626, but what should be noted here is 1/20 a-N a-A+
1/2Na-XAl203 is several % more than Na-X
This shows a large 02 recovery rate. Considering the results in Figure 2, l/20a-Na"A+1/2Na
-X-A1203 maintains a product 02 recovery rate that is several percent higher than Na -X, and the results are -aO~+15
℃ range. )The above is evaluated as the amount of adsorbent required to produce a unit capacity of 02, and if Na-X is 1, then N
a-X: 1/2Ca-Np, -A+1/2Na-X
-A7203 = 1: 0.759. Compared to the case of using Na-X alone, the cost of the adsorbent is reduced by nearly 25%.

次に、吸着圧力による1/20a−Na−A+1/2N
a X−Al2()lの特性を調べる為、他の操作条件
は第2図、第8図のものと同じクシ、吸着温度は−2゜
℃にして、吸着圧力のみ1〜[i aLaLa用した。
Next, 1/20a-Na-A+1/2N by adsorption pressure
In order to investigate the characteristics of a did.

その結果を第4図に示す。第4図に於いて横軸は吸着圧
力、縦軸は製品02回収率R(%)を示す。
The results are shown in FIG. In FIG. 4, the horizontal axis shows the adsorption pressure, and the vertical axis shows the product 02 recovery rate R (%).

図中◎はl/2Ca−Na−A+1/2Na−X Al
203の場合を示し、○はNu−Xの場合を示す。
◎ in the figure is l/2Ca-Na-A+1/2Na-X Al
The case of 203 is shown, and ◯ shows the case of Nu-X.

第4図から明らかなようにaa’ta迄はほぼ一定の製
品02回収率を示すのに、それ以上では低下する。これ
は、圧力の上昇に伴なうN2吸着量の上昇は鈍化するの
に対し+ 02吸着量の上昇が余り鈍化しない為のN2
選択性の低下及び、塔内残存空気量の昇圧による上昇が
効いているものと思われる。特性はNa−Xと余り異な
らない。
As is clear from FIG. 4, the product 02 recovery rate is almost constant up to aa'ta, but it decreases above that point. This is because the increase in the amount of N2 adsorption as the pressure increases slows down, but the increase in the amount of +02 adsorption does not slow down much.
It seems that the decrease in selectivity and the increase in the amount of air remaining in the column due to pressure increase are effective. The properties are not much different from Na-X.

次に脱着圧力によるl/2 CII−N a−A+ 1
 /2N a−X−A1203の特性を調べる為、他の
操作条件は第4図の場合と同じくシ、吸着圧力は1.2
aLaにして脱着圧力のみl Torrから0.5at
a迄変化させた。
Next, l/2 CII-N a-A+ 1 due to desorption pressure
/2N In order to investigate the characteristics of a-X-A1203, the other operating conditions were the same as in Figure 4, and the adsorption pressure was 1.2.
aLa and desorption pressure only from l Torr to 0.5at
Changed up to a.

第5図で、横軸は脱着圧力、縦軸は製品02回収率を示
す。又図中の記号は第4図の場合と同じである。
In FIG. 5, the horizontal axis shows the desorption pressure, and the vertical axis shows the product 02 recovery rate. Also, the symbols in the figure are the same as in FIG. 4.

第5図から明らかなように脱着圧力の低下に伴ない製品
02回収率の大巾な上昇がみられる。
As is clear from FIG. 5, the product 02 recovery rate significantly increases as the desorption pressure decreases.

これは、圧力スイング法に於いては、脱着圧力の低下匠
対し、 N2吸着量は大きく上昇するが。
This is because in the pressure swing method, while the desorption pressure decreases, the amount of N2 adsorption increases significantly.

02吸着量はあまり変化しない為、結果的には低圧にす
る程N2選択性が上昇する為と考えられる。
Since the amount of 02 adsorption does not change much, it is thought that this is because the lower the pressure is, the higher the N2 selectivity is.

(これは、第5図データを採取する時に脱着ガス量とそ
の02濃度を計測していて判明した。l/20a−Na
−A+1/2Na−x−A7.、 o3の場合の結果の
一部を第5表に示す。
(This was discovered by measuring the amount of desorbed gas and its 02 concentration when collecting data in Figure 5. l/20a-Na
-A+1/2Na-x-A7. , some of the results for o3 are shown in Table 5.

第5表 [ ル 月 ( 月 ( 月 ( 第6図は、第5図の物質収支に基づき、02製造量1.
(10(l Non/ h以上の大容量装置でのLNr
dの02を製造するに必要な消費電力を計算したもので
ある。図中の記号は第5図の場合と同じである。この領
域に於いては、モータ、回転機器間の伝達損失が無視で
きる為、入口送風機、脱着用真空ポンプとも効率は80
%を超える。この様な動力構成で02を製造すると、こ
の領域では0045〜0.55ataの領域に於いて、
消費電力が0、6 Kwh/Nhf 02を下廻り、従
来の圧力スイング法(例えば、吸着剤としてCa−N 
a−Aを使用し、吸着圧力4aむa、脱着圧力0.1 
ata r r!JL着温度25℃での消費電力065
〜I Kwh/N耐−02)を下廻る。
Table 5 [ Month ( Month ( Month ( Figure 6 is based on the material balance in Figure 5, 02 production volume 1.
(LNr in large capacity equipment of 10(l Non/h or more)
The power consumption required to manufacture 02 of d is calculated. The symbols in the figure are the same as in FIG. In this region, the efficiency of both the inlet blower and the detachable vacuum pump is 80 because the transmission loss between the motor and rotating equipment can be ignored.
Exceeds %. If 02 is manufactured with such a power configuration, in this region 0045 to 0.55 ata,
The power consumption is less than 0.6 Kwh/Nhf 02, and the conventional pressure swing method (e.g. Ca-N as adsorbent)
Using a-A, adsorption pressure 4ama, desorption pressure 0.1
ata r r! Power consumption at JL arrival temperature 25℃ 065
~ I Kwh/N resistance -02).

特に最小値近傍(01〜0.25 aha付近)では、
消費電力は0. a 5 Kwh/Nm−02達し深冷
分離法を大幅に下廻る。
Especially near the minimum value (near 01 to 0.25 aha),
Power consumption is 0. a 5 Kwh/Nm-02, which is significantly lower than the cryogenic separation method.

第7図は、第2図、第8図と同じ操作条件で。Figure 7 is under the same operating conditions as Figures 2 and 8.

脱着圧力を0.2ataに設定し、パージガス量比を変
更した時の製品02回収率の変化を示したものである。
This figure shows the change in product 02 recovery rate when the desorption pressure is set to 0.2 ata and the purge gas amount ratio is changed.

再生パージガス量比P/Fは。What is the regeneration purge gas amount ratio P/F?

で定義した。Defined by .

図中の記号は、第6図の場合と同じである。The symbols in the figure are the same as in FIG. 6.

第7図から判る様に、1/2Ca−Na−A+1/2N
a−X−A/203 、 Na−Xとも再生パージの為
に製品02ノ一部を消費する必要のない事が判る。
As can be seen from Figure 7, 1/2Ca-Na-A+1/2N
It can be seen that for both a-X-A/203 and Na-X, there is no need to consume part of the product 02 for regeneration purge.

以上詳細に説明したように2本発明は所要の動力原単位
及び吸着剤量が従来の吸着剤法に比べ少なく、かつ安価
な吸着剤の使用法で産業上非常に有用な混合気体からの
酸素製造m方法を提案するものである。
As explained in detail above, the present invention requires less power consumption and adsorbent amount than conventional adsorbent methods, and is a method of using inexpensive adsorbents that is very useful industrially for producing oxygen from mixed gases. This paper proposes a manufacturing method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の酸素製造方法を実施するのに用いられ
る空気分離装置の例示図、第2図は温度とSV値との関
係を示すグラフ、第8図は温度と製品02回収率との関
係を示すグラフ、第4図は吸着圧力と製品02回収率と
の関係を示すグラフ、第5図は脱着圧力と製品02回収
率との関係を示すグラフ、第6図は脱着圧力とIN背−
02/hの02を製造するに必要な消費電力との関係を
示すグラフである。 2・・・圧縮機、4・・・脱湿脱CO2塔、8・・吸着
塔。 13・・・製品02タンク、18・・・真空ポンプ、2
0・・圧縮式冷凍機。 燦1閏 第2図 1恩 C0C) 遍 廣 C’C) 0乃看圧力(afo) 脱塩圧力(ata ) 第6図 8凭 港 圧 力 (afaン 第7図 PIF比(−〕 手続補正書(方式) 昭和60年 6月タ日 事件の表示 昭和58年 特 許 願第 236923 号発明の名
称 CaNa A、Na−X−Al2O3を使ったN2吸着
塔による酸素製造方法 補正をする者 事件との関係 特許出願人 住 所 東京都T代+n区丸の内−1115番158名
 称(620)三菱重工業株式会拐 代 理 人 補正命令の日付(発送日) 昭和50年 5 月 28 El −+、−明細書第2
1頁第5行の1示すグラフ」の次に次の文を挿入する。
Figure 1 is an illustration of an air separation device used to carry out the oxygen production method of the present invention, Figure 2 is a graph showing the relationship between temperature and SV value, and Figure 8 is a graph showing the relationship between temperature and product 02 recovery rate. Figure 4 is a graph showing the relationship between adsorption pressure and product 02 recovery rate, Figure 5 is a graph showing the relationship between desorption pressure and product 02 recovery rate, and Figure 6 is a graph showing the relationship between desorption pressure and product 02 recovery rate. Back
It is a graph showing the relationship between the power consumption required to manufacture 02/h and the power consumption. 2... Compressor, 4... Dehumidification/dehumidification CO2 tower, 8... Adsorption tower. 13... Product 02 tank, 18... Vacuum pump, 2
0...Compression refrigerator. 1st leap Figure 2nd 1st C0C) Ben Hiroshi C'C) 0 no observation pressure (afo) Desalination pressure (ata) Figure 6 8th stage Port pressure (afan Figure 7 PIF ratio (-) Procedure correction Document (method) Indication of the June 1985 incident 1985 Patent Application No. 236923 Name of the invention CaNa A, Incident of a person amending a method for producing oxygen using a N2 adsorption tower using Na-X-Al2O3 Relationship Patent applicant address 158-1115 Marunouchi, T+N-ku, Tokyo Name (620) Mitsubishi Heavy Industries, Ltd. kidnapping agent Date of amendment order (shipment date) May 28, 1975 El -+, - Specification No. 2
Insert the following sentence next to "Graph 1 Shown" on the 5th line of page 1.

Claims (1)

【特許請求の範囲】[Claims] N2吸着剤を充填した少くとも2塔の吸着塔において、
室温以下の温度下で、酸素及び窒素を主成分とする混合
気体を大気圧以上8at’a以下で吸着塔に流入させて
該混合気体に金遣れる窒素を選択的に吸着せしめ、該吸
着塔出口から高純度酸素又は酸素富化ガスを流出させ、
一方窒素を吸着した吸着塔を0.045 ata以上0
・58□ata以下に減圧せしめて再生する低温、低圧
条件下での混合気体からN2を吸着分離するに際し、吸
着塔の吸着工穆における上流側にCa−N a−A型ゼ
オライトを、下流側にアルミナ添加Na−X型ゼオライ
トを充填したことを特徴とするO a−N a−A 、
N a−X−A1203を使ったN2吸着塔による酸素
製造方法。
In at least two adsorption towers filled with N2 adsorbent,
At a temperature below room temperature, a gas mixture containing oxygen and nitrogen as main components is caused to flow into an adsorption tower at a pressure above atmospheric pressure and below 8 at'a to selectively adsorb available nitrogen into the mixed gas, and the adsorption tower High purity oxygen or oxygen enriched gas flows out from the outlet;
On the other hand, the adsorption tower that adsorbed nitrogen was
・When adsorbing and separating N2 from a mixed gas under low-temperature, low-pressure conditions that is regenerated by reducing the pressure to 58 O a-N a-A, characterized in that it is filled with alumina-added Na-X type zeolite;
A method for producing oxygen using a N2 adsorption tower using Na-X-A1203.
JP58236923A 1983-12-15 1983-12-15 Production of oxygen with ca-na-a and na-x-alo3 in n2 adsorption tower Granted JPS60231402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58236923A JPS60231402A (en) 1983-12-15 1983-12-15 Production of oxygen with ca-na-a and na-x-alo3 in n2 adsorption tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58236923A JPS60231402A (en) 1983-12-15 1983-12-15 Production of oxygen with ca-na-a and na-x-alo3 in n2 adsorption tower

Publications (2)

Publication Number Publication Date
JPS60231402A true JPS60231402A (en) 1985-11-18
JPH0530762B2 JPH0530762B2 (en) 1993-05-10

Family

ID=17007750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58236923A Granted JPS60231402A (en) 1983-12-15 1983-12-15 Production of oxygen with ca-na-a and na-x-alo3 in n2 adsorption tower

Country Status (1)

Country Link
JP (1) JPS60231402A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454857A (en) * 1994-03-18 1995-10-03 Uop Air separation process
US5656066A (en) * 1995-05-19 1997-08-12 Bayer Aktiengesellschaft Adsorptive oxygen enrichment of air with mixtures of molecular sieve zeolites
US5698013A (en) * 1994-03-18 1997-12-16 Uop Nitrogen-selective zeolitic adsorbent for use in air separation process
US5885331A (en) * 1995-08-01 1999-03-23 Bayer Aktiengesellschaft Process for the adsorption of nitrogen from gas mixtures by means of pressure swing adsorption with zeolites
JP2010042331A (en) * 2008-08-11 2010-02-25 Kyuchaku Gijutsu Kogyo Kk Ballast water treatment apparatus loaded with an ozone producing device using pressure swing adsorption method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4337840A1 (en) * 1993-11-05 1995-05-11 Degussa Method for testing the thermal insulation effect of bodies, in particular thermal insulation bodies

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454857A (en) * 1994-03-18 1995-10-03 Uop Air separation process
US5698013A (en) * 1994-03-18 1997-12-16 Uop Nitrogen-selective zeolitic adsorbent for use in air separation process
US5656066A (en) * 1995-05-19 1997-08-12 Bayer Aktiengesellschaft Adsorptive oxygen enrichment of air with mixtures of molecular sieve zeolites
US5885331A (en) * 1995-08-01 1999-03-23 Bayer Aktiengesellschaft Process for the adsorption of nitrogen from gas mixtures by means of pressure swing adsorption with zeolites
JP2010042331A (en) * 2008-08-11 2010-02-25 Kyuchaku Gijutsu Kogyo Kk Ballast water treatment apparatus loaded with an ozone producing device using pressure swing adsorption method

Also Published As

Publication number Publication date
JPH0530762B2 (en) 1993-05-10

Similar Documents

Publication Publication Date Title
ES2115123T5 (en) SYSTEM AND PROCEDURE FOR ADSORTION TO FLUCTUANT PRESSURE OF SINGLE MILK
US3221476A (en) Adsorption-desorption method
JPS60231402A (en) Production of oxygen with ca-na-a and na-x-alo3 in n2 adsorption tower
JPH0592120A (en) Oxygen enriching method
GB2171927A (en) Method and apparatus for separating a gaseous mixture
JPH0952703A (en) Method for adsorbing nitrogen from gas mixture by using pressure pendulum adsorption with zeolite
EP0122874B1 (en) Process for separating a mixed gas into oxygen and nitrogen under low temperature and low pressure conditions
JPS63107720A (en) Method for separating and removing water content and carbon dioxide gas in air
JP2596952B2 (en) Nitrogen production method
GB2090160A (en) Process and Apparatus for Separating a Mixed Gas Such as Air
JPS60127202A (en) Production of oxygen with n2 adsorption column using ca-na-a and na-x
JPS60246205A (en) Method of dehumidification and cold heat recovery of o2 production unit
JP2960992B2 (en) Hydrogen isotope separation method
JPS60231401A (en) Production of oxygen with ca-na-a and na-x-nacl in n2 adsorption tower
JPH0768042B2 (en) High-purity oxygen production method
JPH09122432A (en) Gas separator using pressure swing adsorption process
JPH06178933A (en) Oxygen adsorbent and separation of oxygen and nitrogen
JPH06178934A (en) Oxygen adsorbent and separation of oxygen and nitrogen
JPH04310509A (en) Removal of impurity in nitrogen gas
JPH0825727B2 (en) Nitrogen production method
JPH0255202A (en) Production of gas rich in oxygen
JPH05192528A (en) Method for separating oxygen and nitrogen from gaseous mixture
JPS6126506A (en) Concentration and separation of carbon monoxide gas
JPH0141379B2 (en)
JPS6139090B2 (en)