JP2960992B2 - Hydrogen isotope separation method - Google Patents
Hydrogen isotope separation methodInfo
- Publication number
- JP2960992B2 JP2960992B2 JP3187416A JP18741691A JP2960992B2 JP 2960992 B2 JP2960992 B2 JP 2960992B2 JP 3187416 A JP3187416 A JP 3187416A JP 18741691 A JP18741691 A JP 18741691A JP 2960992 B2 JP2960992 B2 JP 2960992B2
- Authority
- JP
- Japan
- Prior art keywords
- deuterium
- hydrogen
- adsorption tower
- gas
- adsorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Separation Of Gases By Adsorption (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は水素、重水素を主成分と
する混合気体より選択的に重水素を吸着する吸着剤を用
いて、水素、重水素を主成分とする混合気体より重水素
を分離する方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorbent for selectively adsorbing deuterium from a mixed gas containing hydrogen and deuterium as a main component, and deuterium from a mixed gas containing hydrogen and deuterium as a main component. And a method for separating
【0002】[0002]
【従来の技術】水素同位体の分離方法としては、熱拡
散法(特開昭63〜205127号公報)、蒸留法
(特開昭57〜153184号公報)、吸着法、膜
分離法(特開昭59〜177120号公報)、レーザ
を用いた水素同位体分離法(特開昭58〜76130号
公報)などがあり、吸着法としては、(a)液体窒素
または水素温度と室温間の吸着量差を利用する温度スイ
ング法(PSA)(特開昭54〜38274号公報)、
(b)金属パラジウムを水素吸着剤として用い、圧力を
変化させて、水素を選択的に吸着する圧力スイング法
(PSA){「 Separation of hydrogen isotopes via
single column pressure swing adsorption」Wong.
Y.W.etc, Chem. Eng. Comnum. vol.15, No.516( p
343〜356 ) ,82}などがある。2. Description of the Related Art As a method for separating hydrogen isotopes, a thermal diffusion method (JP-A-63-205127), a distillation method (JP-A-57-153184), an adsorption method, and a membrane separation method (JP-A-57-153184) Nos. 59-177120) and a hydrogen isotope separation method using a laser (Japanese Patent Application Laid-Open No. 58-76130). Adsorption methods include (a) adsorption amount between liquid nitrogen or hydrogen temperature and room temperature. Temperature swing method (PSA) utilizing difference (JP-A-54-38274),
(B) Pressure swing method (PSA) for selectively adsorbing hydrogen by changing the pressure using metallic palladium as a hydrogen adsorbent 吸着 “Separation of hydrogen isotopes via
single column pressure swing adsorption '' Wong.
Y. W. etc., Chem. Eng. Comnum. vol.15, No.516 (p
343-356) , 82}, etc.
【0003】[0003]
【発明が解決しようとする課題】水素と重水素の分離に
関し、従来法においては、以下のような問題点がある。The separation of hydrogen and deuterium in the conventional method has the following problems.
【0004】(1)熱拡散法、蒸留法は濃縮係数が小さ
いため、設備を大型とする必要があり運転費もかかる。
レーザー法も製造コスト高である。(1) Since the heat diffusion method and the distillation method have small concentration coefficients, the equipment must be large and the operating cost is high.
The laser method is also expensive to manufacture.
【0005】(2)膜分離法は水素については、高純度
のものが得られるが、重水素の濃縮には不適である。吸
着法(PSA:パラジウム)についても同じである。(2) In the membrane separation method, high purity hydrogen can be obtained, but it is not suitable for deuterium concentration. The same applies to the adsorption method (PSA: palladium).
【0006】(3)温度スイング式の吸着法は高濃縮率
で重水素を分離することができるが、温度スイングの幅
が液体水素または窒素から室温までと大きく、温度スイ
ングに時間がかかり運転コストが高い。また、温度スイ
ングにより吸着剤の劣化が早い。(3) The adsorption method of the temperature swing type can separate deuterium at a high enrichment rate, but the temperature swing has a wide range from liquid hydrogen or nitrogen to room temperature, the temperature swing takes a long time, and the operating cost is high. Is high. In addition, the adsorbent deteriorates quickly due to the temperature swing.
【0007】本発明は上記技術水準に鑑み、従来技術に
おけるような不具合のない水素同位体の分離方法を提供
しようとするものである。The present invention has been made in view of the above-mentioned state of the art, and has as its object to provide a method for separating hydrogen isotopes which does not have a problem as in the prior art.
【0008】[0008]
【課題を解決するための手段】本発明はX型ゼオライト
を少なくとも2塔の吸着塔に充填し、室温以下の温度で
水素、重水素を主成分とする混合気体を大気圧以上3at
a 以下で吸着塔に流入させて、混合気体に含まれる重水
素を選択的に吸着させ、吸着塔出口から高純度水素また
は水素富化ガスを流出させ、一方重水素を吸着した吸着
塔を大気圧以下に減圧させて再生し、高純度の重水素ま
たは重水素富化ガスを回収することを特徴とする低温・
低圧条件下での水素の同位体分離方法である。Means for Solving the Problems The present invention is X-type zeolite DOO
It was filled in at least two tower adsorption towers, hydrogen at a temperature below room temperature, deuterium main component and the mixed gas above atmospheric pressure to 3at
a Flow into the adsorption tower below to selectively adsorb the deuterium contained in the gas mixture, and to discharge the high-purity hydrogen or hydrogen-enriched gas from the outlet of the adsorption tower. Regenerate by reducing pressure to below atmospheric pressure and recover high purity deuterium or deuterium-enriched gas.
This is a method for isotopic separation of hydrogen under low pressure conditions.
【0009】本発明で使用するX型ゼオライトはNa−
Xゼオライト(Na58Al58Si134 O384 ・240H
2 O)であって、ポアサイズは10Å以下のものであ
る。[0009] X-type zeolite that is used in the present invention Na-
X zeolite (Na 58 Al 58 Si 134 O 384 · 240H
2 O) with a pore size of 10 ° or less.
【0010】[0010]
【実施例】本発明の一実施例を図1に示す水素同位体分
離装置によって説明する。図1において、入口ライン1
を通じて圧縮機2で1.05〜3ata に加圧された水素
と重水素を主成分とする混合気体は、開状態のバルブ3
を通って吸着塔8に入る。この時、バルブ4,5は閉状
態である。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to the hydrogen isotope separation apparatus shown in FIG. In FIG. 1, the entrance line 1
The mixed gas mainly composed of hydrogen and deuterium pressurized to 1.05 to 3 ata by the compressor 2 through the compressor 2 is opened.
And enters the adsorption tower 8. At this time, the valves 4 and 5 are in the closed state.
【0011】吸着塔8に入った混合気体は吸着剤9で重
水素が吸着除去され、後方に行くに従い水素濃度が上昇
する。この後、混合気体は、バルブ6,7を通じて系外
へ排出され、製品水素として回収される。Deuterium is adsorbed and removed from the mixed gas entering the adsorption tower 8 by the adsorbent 9, and the hydrogen concentration increases toward the rear. Thereafter, the mixed gas is discharged out of the system through the valves 6 and 7, and is recovered as product hydrogen.
【0012】一方、吸着塔8′は開状態のバルブ4′を
通じて真空ポンプ10と連結されて減圧状態に引かれて
おり、このため、吸着塔8′中の吸着剤9′に吸着され
ていた重水素は容易に離脱されて製品タンク11に導入
されるとともに吸着剤が再生される。この時バルブ
3′,5′,6′は閉状態である。On the other hand, the adsorption tower 8 'is connected to a vacuum pump 10 through an open valve 4' and is drawn to a reduced pressure, so that it is adsorbed by an adsorbent 9 'in the adsorption tower 8'. Deuterium is easily separated and introduced into the product tank 11, and the adsorbent is regenerated. At this time, the valves 3 ', 5', 6 'are in the closed state.
【0013】吸着塔8の吸着剤9が飽和したら、バルブ
3を閉とし、バルブ5を開けて製品タンク11に充填さ
れた重水素ガスを吸着塔8に導入し、吸着剤9の隙間に
存在する水素ガスを吸着塔8から追い出すパージを行
う。パージが終了すると、吸着塔8内の重水素濃度は著
しく上昇しており、続いてバルブ5,6を閉とした後、
バルブ4を開とし再生に切り換える。一方、再生が終わ
った吸着塔8′はバルブ4′,5′を閉とし、バルブ
3′,6′を開として混合ガスを導入する。吸着塔8と
8′は今迄述べた操作を交互に行うと、水素、重水素が
連続的に回収できる。When the adsorbent 9 of the adsorption tower 8 is saturated, the valve 3 is closed, the valve 5 is opened, and the deuterium gas filled in the product tank 11 is introduced into the adsorption tower 8 and the deuterium gas present in the gap between the adsorbent 9 Purging is performed to drive out the generated hydrogen gas from the adsorption tower 8. When the purging is completed, the deuterium concentration in the adsorption tower 8 has risen remarkably, and after closing the valves 5 and 6,
The valve 4 is opened to switch to regeneration. On the other hand, in the adsorption tower 8 'after the regeneration, the valves 4' and 5 'are closed and the valves 3' and 6 'are opened to introduce the mixed gas. If the operations described so far are alternately performed in the adsorption towers 8 and 8 ', hydrogen and deuterium can be continuously recovered.
【0014】なお、混合気体の導入部には圧縮式冷凍機
または液体窒素蒸発器のような冷却器12が設置してあ
り、また熱交換器13により、系外へ排出される冷熱を
回収することが可能となっており、吸着条件を低温に設
定できるようにしてある。A cooler 12 such as a compression refrigerator or a liquid nitrogen evaporator is installed at the inlet of the mixed gas, and a heat exchanger 13 recovers cold heat discharged outside the system. It is possible to set the adsorption condition to a low temperature.
【0015】この装置によれば、水素50%、重水素5
0%の混合気体を導入すると、表1のように重水素ガス
が回収される。X型ゼオライトを使用した場合には、A
型ゼオライトを使用した場合に比較して著しく高濃度の
重水素が得られることがわかる。なお、入口の重水素濃
度が低い場合または高純度の重水素ガスを必要とする場
合は、このシステムを複数段にすることにより、所定の
製品ガス濃度を達成できる。According to this apparatus, 50% of hydrogen and 5 of deuterium are used.
When 0% gas mixture is introduced, deuterium gas is recovered as shown in Table 1. When X-type zeolite is used, A
Remarkably higher concentration than when using zeolite
It can be seen that deuterium is obtained. When the deuterium concentration at the inlet is low or when high-purity deuterium gas is required, a predetermined product gas concentration can be achieved by providing this system in a plurality of stages.
【表1】 [Table 1]
【0016】[0016]
【発明の効果】本発明により、以下の効果が期待でき
る。 (1)X型ゼオライトを用い、圧力スイング法により水
素と重水素を主成分とする混合気体から、重水素のみを
高濃度の製品ガスとして回収することができる。 (2)本発明方法は圧縮機、冷凍機及び真空ポンプの動
力費のみであり、低コストで重水素の製造が可能であ
る。According to the present invention, the following effects can be expected. (1) using the X-type peptidase zeolite, a mixed gas composed mainly of hydrogen and deuterium by the pressure swing method, it is possible to recover deuterium only as high density product gas. (2) The method of the present invention requires only the power costs of the compressor, the refrigerator and the vacuum pump, and can produce deuterium at low cost.
【図1】本発明の一実施例を実施する水素同位体分離装
置の説明図FIG. 1 is an explanatory diagram of a hydrogen isotope separation apparatus for implementing one embodiment of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 聡 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (56)参考文献 特開 昭55−119427(JP,A) 特公 昭36−6765(JP,B1) (58)調査した分野(Int.Cl.6,DB名) B01D 59/26 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Satoshi Uchida 1-1, Akunouramachi, Nagasaki City, Nagasaki Prefecture Inside Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (56) References JP-A-55-119427 (JP, A) 1967-6675 (JP, B1) (58) Field surveyed (Int. Cl. 6 , DB name) B01D 59/26
Claims (1)
塔に充填し、室温以下の温度で水素、重水素を主成分と
する混合気体を大気圧以上3ata 以下で吸着塔に流入さ
せて、混合気体に含まれる重水素を選択的に吸着させ、
吸着塔出口から高純度水素または水素富化ガスを流出さ
せ、一方重水素を吸着した吸着塔を大気圧以下に減圧さ
せて再生し、高純度の重水素または重水素富化ガスを回
収することを特徴とする低温・低圧条件下での水素同位
体の分離方法。1. A filled into the adsorption tower of the at least two towers of X-type zeolite preparative and caused to flow into the adsorption tower of hydrogen at a temperature below room temperature, a mixed gas mainly containing deuterium below atmospheric pressure or higher 3Ata, Selectively adsorb deuterium contained in the gas mixture,
High-purity hydrogen or hydrogen-enriched gas is discharged from the outlet of the adsorption tower, while the adsorption tower that has adsorbed deuterium is regenerated by reducing the pressure to below atmospheric pressure to recover high-purity deuterium or deuterium-enriched gas. A method for separating hydrogen isotopes under low temperature and low pressure conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3187416A JP2960992B2 (en) | 1991-07-26 | 1991-07-26 | Hydrogen isotope separation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3187416A JP2960992B2 (en) | 1991-07-26 | 1991-07-26 | Hydrogen isotope separation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0531331A JPH0531331A (en) | 1993-02-09 |
JP2960992B2 true JP2960992B2 (en) | 1999-10-12 |
Family
ID=16205664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3187416A Expired - Fee Related JP2960992B2 (en) | 1991-07-26 | 1991-07-26 | Hydrogen isotope separation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2960992B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11137969A (en) * | 1997-11-14 | 1999-05-25 | Iwatani Industrial Gases Corp | Method for separating and recovering hydrogen isotope and device therefor |
TWI664149B (en) * | 2014-08-29 | 2019-07-01 | 國立大學法人信州大學 | Method for producing deuterium reduced water, method for separating heavy water and light water and method for producing deuterium-concentrated water |
TWI682902B (en) * | 2015-03-31 | 2020-01-21 | 國立大學法人信州大學 | Method for producing deuterium depleted water, method for separating light water from heavy water, and method for producing deuterium concentrated water |
CN113105055A (en) * | 2021-04-14 | 2021-07-13 | 湖北楚儒同位素科技有限公司 | Preparation process and device for ultralow deuterium content water |
WO2023170797A1 (en) * | 2022-03-08 | 2023-09-14 | 国立大学法人東北大学 | Method for producing heavy hydrogen–containing gas, and gas separation device |
-
1991
- 1991-07-26 JP JP3187416A patent/JP2960992B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0531331A (en) | 1993-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7122073B1 (en) | Low void adsorption systems and uses thereof | |
Tondeur et al. | Gas purification by pressure swing adsorption | |
JPH1087302A (en) | Single step secondary high purity oxygen concentrator | |
US3702525A (en) | An improved gas purifying process and apparatus | |
JP2002306918A (en) | Gas separating method and device thereof | |
JP4355834B2 (en) | Method and apparatus for separating or removing gas components | |
JP2020527455A (en) | Use of V-type adsorbents and gas concentrates for CO2 adsorption and capture | |
JP2960992B2 (en) | Hydrogen isotope separation method | |
JPH01266831A (en) | Device for purifying light gas | |
JP7374925B2 (en) | Gas separation equipment and gas separation method | |
JP2644823B2 (en) | Regeneration method of helium gas purification adsorber | |
JPS60231402A (en) | Production of oxygen with ca-na-a and na-x-alo3 in n2 adsorption tower | |
JPS61127609A (en) | Purification device for helium | |
JPH0230607A (en) | Production of highly pure nitrogen | |
EP0055669A1 (en) | Repressurization for pressure swing adsorption system | |
JPS59179127A (en) | Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressure | |
JP4508716B2 (en) | Isotope selective adsorbent, isotope separation and enrichment method, and isotope separation and enrichment apparatus | |
JPH09122432A (en) | Gas separator using pressure swing adsorption process | |
JPH02283608A (en) | Method for separating and recovering carbon monoxide | |
EP0055961A2 (en) | Repressurization process for pressure swing adsorption system | |
JPH11347336A (en) | Small-size gas separation device | |
EP0055962A2 (en) | Repressurisation for pressure swing adsorption system | |
JP7502962B2 (en) | Gas purification device and gas purification method | |
JPS60127202A (en) | Production of oxygen with n2 adsorption column using ca-na-a and na-x | |
JPH08108046A (en) | Separation of hydrogen isotope and helium and device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990706 |
|
LAPS | Cancellation because of no payment of annual fees |