JPS61127609A - Purification device for helium - Google Patents

Purification device for helium

Info

Publication number
JPS61127609A
JPS61127609A JP59250726A JP25072684A JPS61127609A JP S61127609 A JPS61127609 A JP S61127609A JP 59250726 A JP59250726 A JP 59250726A JP 25072684 A JP25072684 A JP 25072684A JP S61127609 A JPS61127609 A JP S61127609A
Authority
JP
Japan
Prior art keywords
gas
section
impurities
pressure swing
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59250726A
Other languages
Japanese (ja)
Inventor
Yuji Horii
堀井 雄二
Kazuhiko Asahara
浅原 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59250726A priority Critical patent/JPS61127609A/en
Publication of JPS61127609A publication Critical patent/JPS61127609A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To obtain helium having purity with high rate of recovery and inexpensive cost without using a cryogenic solvent by purifying crude He using a gas separating membrane device and a pressure swing adsorption device in combination. CONSTITUTION:Crude gas 1 contg. He is compressed by a compressor 8a, introduced into a pretreating adsorption tower 10a where the moisture and CO2, etc. contained in the crude gas 1 are removed. Then, the pretreated cruded gas is introduced into a purifying zone (b) provided with a gas separation membrane and separated into permeable He and impermeable impurities 7; the impurities 7 are discharged out of the system. The crude gas having permeated the separating membrane 11 is compressed by a compressor 8b, and introduced into an adsorption tower 12a for purifying He in a pressure swing adsorption zone (c). Impurities remaining in the crude gas is adsorbed to active carbon, etc.; purified He is stored in a tank 13.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、常温近傍において操作することができ、しか
も高純度Heを高い回収率で得ることのできるH e精
製装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a He purification device that can be operated at around room temperature and that can obtain high purity He at a high recovery rate.

〔従来の技術〕[Conventional technology]

He精製装置の1つとして汎用されている低温吸着式H
e精製装置は、液体窒素等で冷却した吸着剤(活性炭等
)に原料Heを接触させ原料He中の不純物(空気等)
を吸着させて高純度Heを得る一方、不純物を吸着した
吸着剤については、これを加温し且つ真空引きすること
により不純物を脱着させて吸着剤を再生する装置であシ
、純度及び回収率の点で優れていることから当分野では
圧倒的な使用実績を膀っている。
Low-temperature adsorption type H that is widely used as one of the He purification devices
The e-purification device brings raw He into contact with an adsorbent (activated carbon, etc.) cooled with liquid nitrogen, etc. to remove impurities (air, etc.) in the raw He.
While adsorbing impurities to obtain high-purity He, the adsorbent that has adsorbed impurities is heated and vacuumed to desorb the impurities and regenerate the adsorbent. Because of its excellent performance, it has an overwhelming track record of use in this field.

しかるに上記低温吸着式He精製装置においては、液体
窒素等の極低温冷媒を必要とすることがらHe精製コス
トが高くつくだけでなく、これらの取扱いに伴ない凍傷
や酸素欠亡症等の事故を発生するという危険性が残され
ている。又上記He精製装置の場合には液体窒素の供給
によって吸着剤を冷却するという準備操作が完了するま
でに数時間を要することも多く、操作の煩雑性と相まっ
て処理効率の点でも問題がある。
However, the above-mentioned low-temperature adsorption type He purification equipment requires cryogenic refrigerants such as liquid nitrogen, which not only increases the cost of He purification, but also increases the risk of accidents such as frostbite and oxygen deficiency when handling these. There remains a risk that this will occur. Furthermore, in the case of the above-mentioned He purification apparatus, it often takes several hours to complete the preparatory operation of cooling the adsorbent by supplying liquid nitrogen, which, combined with the complexity of the operation, also poses a problem in terms of processing efficiency.

こうした事情に鑑み低温吸着式装置に代わり得る技術に
ついて検討が進められておシ、常温操作の可能な圧力ス
イング式吸着装置や気体分離膜装置が提案されている。
In view of these circumstances, studies are underway on technologies that can replace low-temperature adsorption devices, and pressure swing adsorption devices and gas separation membrane devices that can be operated at room temperature have been proposed.

前者は吸着剤に対する気体の吸着率が圧力によって著し
く変わるという特性を利用したHeの精製装置であシ、
加圧状態において原料Heガスを吸着剤に接触させると
不純物が優先的に吸着されて高純度ガスが得られる。一
方不純物で飽和した吸着剤を加圧状態から解放しあるい
は減圧すれば不純物が脱着され吸着剤が再生される。
The former is a He purification device that takes advantage of the characteristic that the adsorption rate of gas on an adsorbent changes significantly depending on the pressure.
When the raw material He gas is brought into contact with an adsorbent under pressure, impurities are preferentially adsorbed and a high purity gas is obtained. On the other hand, if the adsorbent saturated with impurities is released from the pressurized state or reduced in pressure, the impurities are desorbed and the adsorbent is regenerated.

一方気体分離膜装置とはモンサント社等によって開発さ
れた特殊な気体分離膜を使用してHe精製を行なう装置
であシ、分子の大きさに差があることを利用し目的とす
る小分子ガスだけを透過させ大分子の不純物は非透過側
に捕捉することによってガス精製を可能にしたものであ
る。
On the other hand, a gas separation membrane device is a device that purifies He using a special gas separation membrane developed by Monsanto and others. Gas purification is made possible by allowing only the gas to pass through and trapping large molecular impurities on the non-permeable side.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

低温吸着式装置の代替装置のうち、圧力スイング式吸着
装置については回収率が低いという問題があシ、He精
製においては最高でも70チ程度の回収率を得るのが限
度であるとされておシ、工業面への応用を展開していく
為には回収率の改善が強く望まれている。一方He精製
の為の気体分離膜装置は未だ開発段階にあって十分に完
成されたものとは言えず、回収率の面ではかなシ優れた
ものも提案されているが精製He純度が低いという難点
があシ、一層の改良研究は進められているものの前出の
他の2方法に匹適できる純度(99,999%以上)を
達成するととは困難であると考えられる。
Among alternative devices to low-temperature adsorption devices, pressure swing adsorption devices have the problem of low recovery rates, and it is said that the maximum recovery rate in He purification is about 70%. In order to develop industrial applications, it is strongly desired to improve the recovery rate. On the other hand, gas separation membrane devices for He purification are still in the development stage and cannot be said to be fully developed, and although some have been proposed that have slightly better recovery rates, the purity of purified He is said to be low. However, although further improvement research is underway, it is considered difficult to achieve a purity (99,999% or more) comparable to the other two methods mentioned above.

本発明者等は上記事態を憂慮し、常温操作が可能であシ
、しかも低温吸着式装置に匹適する高純度のHeを高回
収率で得ることのできる様なHe精製装置を提供すべく
種々検討を重ねた。
Concerned about the above-mentioned situation, the present inventors have developed various methods to provide a He purification device that can be operated at room temperature and that can obtain high-purity He at a high recovery rate, which is suitable for low-temperature adsorption devices. After much consideration.

その結果本発明者等は圧力スイング式吸着装置と気体分
離膜装置がお互いの欠点を補い得る関係にあることに着
目し、両者を組合わせることによって常温操作方式であ
ルなから低温吸着式装置の場合と同等以上の精製機能を
発揮し得る装置を提供することができるのではないかと
の着想を得るに至った。
As a result, the present inventors focused on the fact that pressure swing type adsorption devices and gas separation membrane devices have a relationship that can compensate for each other's shortcomings, and by combining the two, the present inventors realized that a low-temperature adsorption device can be operated at room temperature. We came up with the idea that it might be possible to provide a device that can perform a purification function equivalent to or better than that of the previous method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記着想を基に研究を進めた結果完成されたも
のであって、その要旨は、原料He導入部、気体分離膜
精製部、圧力スイング吸着部、圧力スイング吸着部のパ
ージガス排出部を任意方向に回る巡回路で連結し、気体
分離膜精製部には不純物排出ラインを、圧力スイング吸
着部にはHe取出ラインを夫々取付けてなる点に存在す
る。
The present invention was completed as a result of research based on the above idea, and its gist is that the raw material He introduction section, the gas separation membrane purification section, the pressure swing adsorption section, and the purge gas discharge section of the pressure swing adsorption section are They are connected by a circuit that rotates in any direction, and an impurity discharge line is attached to the gas separation membrane purification section, and a He extraction line is attached to the pressure swing adsorption section.

〔作用〕[Effect]

本発明における気体分離膜精製部と圧力スイング吸着部
の組合せ配列方式は大きく分けると2通シになる。
The combination arrangement system of the gas separation membrane purification section and the pressure swing adsorption section in the present invention can be roughly divided into two systems.

まず第1の組合せ方は原料Heをはじめに気体分離膜精
製部に供給してHe純度をある程度のレベルまで上げ、
これを圧力スイング吸着部に供給して更にHe純度を高
めるという手順を骨子とし、この方式では圧力スイング
吸着部からのパージガスを原料ガス導入部へ直接々続す
る。この方式のHe精製装置によれば原料ガス中の不純
物の大半は気体分離膜精製部を透過できずに捕捉される
為He純度がかな)高められた原料Heが圧力スイング
吸着部へ供給されることになる。その結果圧力スイング
吸着部においては不純物除去の為の負荷が減少するので
高純度のHe(製品)を相当の高回収率で得ることがで
きる。又圧力スイング吸着部の吸着剤に捕捉された不純
物は加圧解除の後パージ用Heガス(例えば上記高純度
製品Heの一部)の供給を受けて圧力スイング吸着部か
ら排出され、原料ガス送給路へ戻されて原料ガスと共に
気体分離膜精製部へ返送され、ここで捕捉され系外へ排
出される。従って上記巡回路内に不純物が蓄積すること
がなく、Heの精製操作を継続していってもHe純度の
低下といった不都合に至ることはない。一方パージ用と
して、使用された上記He及び不純物中に未回収状態で
混入していたHeは原料ガスと一緒になって気体分離膜
精製部並びに圧力スイング吸着部において精製処理を受
け、再回収される為He損失も大幅に抑制されHe回収
率は極めて高いものとなる。
First, the first combination is to first supply He as a raw material to the gas separation membrane purification section to increase He purity to a certain level.
The main procedure is to supply this to a pressure swing adsorption section to further increase He purity. In this method, the purge gas from the pressure swing adsorption section is directly connected to the source gas introduction section. According to this type of He purification device, most of the impurities in the raw material gas cannot pass through the gas separation membrane purification section and are captured, so the raw material He with increased He purity is supplied to the pressure swing adsorption section. It turns out. As a result, the load for removing impurities in the pressure swing adsorption section is reduced, so that high purity He (product) can be obtained at a considerably high recovery rate. In addition, impurities captured by the adsorbent in the pressure swing adsorption section are discharged from the pressure swing adsorption section after being supplied with purge He gas (for example, a part of the high-purity product He mentioned above) after the pressure is released, and the raw material gas is fed. It is returned to the supply path and returned to the gas separation membrane purification section together with the raw material gas, where it is captured and discharged out of the system. Therefore, impurities do not accumulate in the circuit, and even if the He purification operation is continued, there is no problem such as a decrease in He purity. On the other hand, for purging, the He used and the He mixed in the impurities in an unrecovered state are purified together with the raw material gas in the gas separation membrane purification section and the pressure swing adsorption section, and are recovered again. Therefore, He loss is also greatly suppressed and the He recovery rate is extremely high.

次に第2の組合せ方を説明する。ここではまず原料He
を加圧して圧力スイング吸着部に供給し精製を行表い高
純度Heを回収する。但しここでは回収率を高くしよう
とはせず不純物と共に相当のHeを吸着した吸着剤に対
しては加圧解決後にパージ用He(例えば上記高純度製
品He)を供給しく但し精製時とは反対方向)、不純物
及び未回収のHeを脱着させる。そして該不純物及び脱
着Heを含むパージガスを気体分離膜精製部へ供給し膜
を透過できない不純物を気体分離膜で捕捉して系外へ排
出する。一方気体分離膜を透過したHe(但し純度はそ
れ程高くない)は原料ガス送給路へ戻されて原料ガスと
共に圧力スイング吸着部へ供給され、高度精製されて高
純度製品Heとして回収される。上記の様に第2の組合
せ方式においても前記第1の組合せ方式の場合と同様に
高純度Heを高回収率で得ることができる。同第2の組
合せ方式においては、原料ガス中のHe純度が大幅に変
動した場合にその変動が直ちに圧力スイング吸着部の負
荷変動となって表われる為圧力スイング吸着部の運転を
追従させることが困難になる恐れがある。又圧力スイン
グ吸着部からのパージガスを気体分離膜精製部で処理す
る為パージ中であるときと非パージ(定常運転)中であ
るときの流量変動が大きく、気体分8M精製部における
分離精度の低下即ちHeの一部が不純物と共に系外へ排
出される危険性が大きくなる。これに対し第1の組合せ
方式においては気体分離膜精製部に対して常時原料ガス
を供給している為パージ中であるか否かによる流量変動
が小さく済む。又原料ガスのHe純度変動に伴う負荷変
動は気体分離膜精製部において難なく吸収され、圧力ス
イング吸着部へは常に高純度Heガスが供給されるので
圧力スイング吸着部における負荷変動は少なく高純度H
eを効率良く回収するととができる。
Next, the second combination method will be explained. First, the raw material He
He is pressurized and supplied to a pressure swing adsorption section for purification and recovery of high purity He. However, here, we do not aim to increase the recovery rate, and for the adsorbent that has adsorbed a considerable amount of He along with impurities, we supply He for purging (for example, the high-purity product He mentioned above) after the pressure has been resolved. However, it is the opposite of that during purification. direction), impurities and unrecovered He are desorbed. Then, the purge gas containing the impurities and desorbed He is supplied to the gas separation membrane purification section, and impurities that cannot pass through the membrane are captured by the gas separation membrane and discharged to the outside of the system. On the other hand, the He that has passed through the gas separation membrane (however, the purity is not very high) is returned to the raw material gas supply path and supplied to the pressure swing adsorption section together with the raw material gas, where it is highly purified and recovered as a high-purity He product. As described above, high purity He can be obtained at a high recovery rate in the second combination method as well as in the first combination method. In the second combination method, when the He purity in the raw material gas fluctuates significantly, the fluctuation immediately appears as a load change in the pressure swing adsorption unit, so it is not possible to follow the operation of the pressure swing adsorption unit. It may become difficult. In addition, since the purge gas from the pressure swing adsorption section is processed in the gas separation membrane purification section, the flow rate fluctuates greatly between when purging is in progress and when it is not being purged (steady operation), resulting in a decrease in separation accuracy in the gas purification section of 8M. That is, there is a greater risk that a portion of He will be discharged to the outside of the system together with impurities. On the other hand, in the first combination method, since the raw material gas is constantly supplied to the gas separation membrane purification section, the fluctuation in the flow rate depending on whether or not purging is in progress can be reduced. In addition, load fluctuations due to fluctuations in He purity of the raw material gas are easily absorbed in the gas separation membrane purification section, and high-purity He gas is always supplied to the pressure swing adsorption section, so load fluctuations in the pressure swing adsorption section are small and high purity H is absorbed.
It is possible to efficiently collect e.

尚本発明に係るHe精製装置の適用例としては液体He
製造装置を挙げることができるが、本発明装置の用途が
これに限定されるものでないことは言う迄もない。即ち
該液体Heの製造装置は、He液化装置の上流側に本発
明に係るHe精製装置を設置し、ここで得られた高純度
のHeガスをHe液化装置に供給することによって液体
Heを製造するものである。
In addition, as an application example of the He purification device according to the present invention, liquid He
Although a manufacturing device can be mentioned, it goes without saying that the application of the device of the present invention is not limited thereto. That is, the liquid He production device installs the He purification device according to the present invention on the upstream side of the He liquefaction device, and produces liquid He by supplying the high-purity He gas obtained here to the He liquefaction device. It is something to do.

〔実施例〕〔Example〕

第1図は本発明に係るHe精製装置の好ましい実施例を
示すフロー説明図で、前出の第1の組合わせ方式を示す
。Hel製装置Sは前処理部a。
FIG. 1 is a flow explanatory diagram showing a preferred embodiment of the He purification apparatus according to the present invention, and shows the above-mentioned first combination method. The device S manufactured by Hel has a pre-processing section a.

気体分離膜精製部す、圧力スイング吸着部Cから構成さ
れている。1FTe精製を行なうに当たっては各部に設
けた3方弁のうち3方弁14,17,20については図
面上左側流路を夫々開放し3方弁15゜18.19につ
いては図面上右側流路を開放しておき、原料ガス1を圧
縮機8aによって加圧した後、3方弁14を経由させて
前処理用吸着塔10aへ導入し、原料ガス中に含まれる
水分や二酸化炭素を除去する。尚3方弁14〜16を適
宜切換えることによって前処理用吸着塔10aと10b
は交互に使用することができる。又前処理用吸着剤の再
生は吸引プ四ワ9を用いて行なわれる。次いで前処理さ
れた原料ガスを3方弁16を経由して気体分離膜精製部
すへ導入し、気体分離膜11によって透過性のHeと非
透過性の不純物(主として空気)に分離し、不純物7は
適宜系外へ排出する。一方分離膜11を透過した原料ガ
ス(He純度は相当に高まっている)については、これ
を圧縮機8bによって加圧し、圧力スイング吸着部Cの
3方弁17を経由してHe吸着塔12aへ導入し、原料
ガス中に残存する不純物を塔内の吸着剤に吸着させる。
It consists of a gas separation membrane purification section and a pressure swing adsorption section C. When performing 1FTe refining, for the three-way valves 14, 17, and 20, the flow passages on the left side in the drawing are opened, and for the three-way valve 15°, 18, and 19, the flow passage on the right side in the drawing is opened. After the source gas 1 is left open and pressurized by the compressor 8a, it is introduced into the pretreatment adsorption tower 10a via the three-way valve 14 to remove moisture and carbon dioxide contained in the source gas. In addition, by appropriately switching the three-way valves 14 to 16, the pretreatment adsorption towers 10a and 10b
can be used alternately. Further, the pretreatment adsorbent is regenerated using a suction pump 9. Next, the pretreated raw material gas is introduced into the gas separation membrane purification section via the three-way valve 16, and is separated into permeable He and non-permeable impurities (mainly air) by the gas separation membrane 11. 7 is appropriately discharged from the system. On the other hand, the raw material gas that has passed through the separation membrane 11 (he purity has increased considerably) is pressurized by the compressor 8b and sent to the He adsorption tower 12a via the three-way valve 17 of the pressure swing adsorption section C. The impurities remaining in the raw material gas are adsorbed by the adsorbent in the column.

精製されたHeは3方弁20を経由してHeタンク13
に一旦貯留した役、必要に応じて製品として取出すヵ上
記の如(He精製運転を行ない、He吸着塔12a側の
不純物吸着能力が飽和に達すると、3方弁17〜20の
開放方向を夫々左右反対向きに切換える。そしてHe吸
着塔12bによって引続きHe精製を行なう一方、He
吸着塔12a内を減圧しHeタンク13から3方弁19
を経由してHe吸着塔12a内に)(−ジ用Heを導入
し吸着剤から不純物及び併行的に   ゛吸着されてい
る若干量のHeを脱着させる。そして脱着不純物及び脱
着Heを含む)(−ジガスは3方弁18を経由して圧力
スイング吸着部Cから排出され、原料ガス供給管2へ返
送合流されて原料ガス1と共に上記精製流路を巡回する
The purified He is transferred to the He tank 13 via the 3-way valve 20.
Once the helium is stored in the helium, it can be taken out as a product if necessary. (When the He purification operation is performed and the impurity adsorption capacity on the He adsorption tower 12a side reaches saturation, the opening direction of the three-way valves 17 to 20 is changed to Then, while He purification is continued by the He adsorption tower 12b, the He adsorption tower 12b
The pressure inside the adsorption tower 12a is reduced and the He tank 13 is connected to the three-way valve 19.
(into the He adsorption tower 12a) (-) to desorb impurities from the adsorbent and, in parallel, some amount of adsorbed He (including desorbed impurities and desorbed He) ( - Digas is discharged from the pressure swing adsorption section C via the three-way valve 18, is returned to the raw material gas supply pipe 2, is merged with the raw material gas 1, and circulates through the purification channel together with the raw material gas 1.

上記He精製においては、気体分離膜精製部すにおいて
He純度が高められた原料ガスが圧力スインク吸着部C
へ導入される為、圧力スイング吸着部CにおいてはHe
精製が効率良く進行し高純度のHeを高回収率で得るこ
とができる。又不純物及び未回収吸着Heはパージ用H
eと共に原料ガスと合流してHe精製装置内を巡回する
為Heの喪失は極めて少なくなシ、全体として極めて高
い回収率を得ることができる。
In the above He purification, the raw material gas with increased He purity in the gas separation membrane purification section is transferred to the pressure spink adsorption section C.
In the pressure swing adsorption section C, He
Purification proceeds efficiently and highly pure He can be obtained at a high recovery rate. In addition, impurities and unrecovered adsorbed He are removed by purge H.
Since the He gas is combined with the raw material gas together with the He gas and circulates within the He purification device, the loss of He is extremely small, and an extremely high recovery rate can be obtained as a whole.

第2図は本発明の他の実施例を示すフロー説明図で、前
出の第2の組合せ方式を示す。He精製装置S′はガス
の流れ方向に向かって前処理部a。
FIG. 2 is a flow explanatory diagram showing another embodiment of the present invention, and shows the above-mentioned second combination method. The He purifier S' includes a pretreatment section a in the gas flow direction.

圧力スイング吸着部C2気体分離膜精製部すの順に配置
して構成される。Heの精製を行なうに当たっては各部
の3方弁のうち14,16,17゜20については図面
上の左側流路を夫々開放し、15.18.19の3方弁
については図面上の右側流路を夫々開放しておく。そし
て前記と同様に加圧及び前処理された原料ガスは、圧力
スイング吸着部Cに導入されて不純物が吸着除去され、
高純度のHeがHeタンクエ3に貯留される。一方前記
と同様にして圧力スイング吸着部Cから排出されたパー
ジガスは、圧縮機8dにより加圧された後気体分離膜精
製部すへ導入され、パージガス中の不純物は気体分離M
11によ少非透過的に捕捉されて系外へ排出される。気
体分離膜11を透過したHeは原料ガス供給ライン2へ
導入され、原料ガスと共に上記流路を巡回する。
The pressure swing adsorption section C2 is configured by arranging the gas separation membrane purification section in this order. When refining He, of the three-way valves 14, 16, and 17°20, the left flow passages in the drawing are opened, and the three-way valves 15, 18, and 19 are opened in the right flow passage in the drawing. Keep all roads open. Then, the raw material gas that has been pressurized and pretreated in the same manner as above is introduced into the pressure swing adsorption section C, where impurities are adsorbed and removed.
High purity He is stored in the He tank 3. On the other hand, the purge gas discharged from the pressure swing adsorption section C in the same manner as above is pressurized by the compressor 8d and then introduced into the gas separation membrane purification section, and impurities in the purge gas are removed from the gas separation M
11 in a somewhat non-transparent manner and discharged out of the system. The He that has passed through the gas separation membrane 11 is introduced into the source gas supply line 2 and circulates through the flow path together with the source gas.

この方式において、圧力スイング吸着部Cで回収されな
かったHeはパージガスと共に気体分離膜精製部すへ供
給され不純物と分離された後原料ガスと合流してHe精
製装置S内を巡回する為Heの喪失は殆んど生じずHe
回収率を向上させることができる。一方不純物は気体分
離膜精製部において捕捉され系外へ排出されるのでHe
精製装置内に不純物が蓄積することなく不純物蓄積によ
るHe純度の低下が生じることもない。又不純物の排出
と同時にHeが排出されることも回避されるので、これ
によるHe回収率の低下も防止することができる。
In this system, He that has not been recovered in the pressure swing adsorption section C is supplied to the gas separation membrane purification section together with purge gas, and after being separated from impurities, it joins with the raw material gas and circulates within the He purification device S. There is almost no loss He
Recovery rate can be improved. On the other hand, impurities are captured in the gas separation membrane purification section and discharged outside the system, so He
Impurities do not accumulate in the purification device, and He purity does not decrease due to impurity accumulation. Furthermore, since He is also prevented from being discharged at the same time as the impurities are discharged, a decrease in the He recovery rate due to this can also be prevented.

実施例1 第1図に示すフローのHelrl1m装置に、He:8
0容i−%、空気=20容量チ(但しH,O及びCO3
は除去済)の原料ガスを供給し、これを圧縮機8aによ
、912 okg/c♂Gまで昇圧した後、気体外m膜
精製部すで精製しくこのときの透過ガス圧力は580 
torr) sさらに圧縮機8bにょル15kg/c−
Gまで昇圧した後吸着剤として活性炭を使用した圧力ス
イング吸着部Cに供給してHeを高度に精製した。He
精製用吸着塔12 a j12bにおける脱着圧力は7
30 torrであシ、塔の切替周期は1サイクル2分
とした。原料ガス供給管2.気体分離膜出口部3及び精
製ガス取出管4から夫々試料ガスを採取し、ガスクロマ
トグラフによ1)He純度(酸素及び窒素濃度から算出
)を測定すると共に、上記2及び4に積算流量計を設置
し、He純度並びに回収率を求めた。運転開始後30分
で製品Heの純度はほぼ一定となシ、その後1時間の間
の精製結果は下記の通りであった。
Example 1 He:8 was added to the Helr1m device with the flow shown in FIG.
0 volume i-%, air = 20 volume chi (however, H, O and CO3
After supplying the raw material gas (which has already been removed) and boosting the pressure to 912 kg/c♂G by the compressor 8a, the permeate gas pressure at this time is 580 kg/c♂G.
torr) sFurthermore, compressor 8b 15kg/c-
After increasing the pressure to G, the He was supplied to a pressure swing adsorption section C using activated carbon as an adsorbent to highly purify He. He
The desorption pressure in the purification adsorption tower 12a j12b is 7
The pressure was 30 torr, and the switching period of the tower was 2 minutes per cycle. Raw material gas supply pipe 2. Sample gases were collected from the gas separation membrane outlet 3 and purified gas take-off pipe 4, and 1) He purity (calculated from oxygen and nitrogen concentrations) was measured using a gas chromatograph. was installed, and the He purity and recovery rate were determined. Thirty minutes after the start of operation, the purity of the product He was almost constant, and the purification results for the next one hour were as follows.

気体分離膜出口部のHe純度(平均):97.溶量チ精
製He純度(平均):99.9993容量チ回収率(積
算):98.3チ 実施例2 実施例1において、原料ガス組成を、He:60容量チ
、空気=40容量チにステップ状に変えたところ、気体
分離膜出口部(透過ガス)のHe純度が97.3容量チ
から97.1容量優に変動しただけであシ精製ガス組成
に変化は見られなかった。
He purity (average) at the gas separation membrane outlet: 97. Solubility: Purified He purity (average): 99.9993 Volume: Recovery rate (integrated): 98.3 Example 2 In Example 1, the raw material gas composition was changed to He: 60 volumes, air: 40 volumes. When the change was made in a stepwise manner, only the He purity at the gas separation membrane outlet (permeated gas) changed from 97.3 to 97.1 by volume, but no change was observed in the purified gas composition.

気体分1aM出口部のHe純度(平均)97.1容量チ
精11He純度(平均):99.9993容量チ回収率
(積算):98.3チ 〔発明の効果〕 本発明は以上の様に構成されておシ下記の効果を得るこ
とができる。
Gas content 1aM He purity (average) at the outlet: 97.1 volumes He purity (average): 99.9993 volumes Recovery rate (integrated): 98.3 [Effects of the Invention] The present invention is as described above. With this configuration, you can obtain the following effects.

(1)液体窒素の様な極低温冷媒を使用することなく、
常温条件下に運転することができる為He精製コストは
少なくて済み、且つ上記極低温冷媒を直接取扱うことも
ないので安全性も高い。しかも運転開始に当たシ低温吸
着式の様に吸着剤を冷却する必要がない為準備時間(立
上シ時間)が少なくて済み優れた処理効率を得ることが
できる。
(1) Without using cryogenic refrigerants such as liquid nitrogen,
Since it can be operated under normal temperature conditions, the He purification cost is low, and since the above-mentioned cryogenic refrigerant is not directly handled, safety is also high. Furthermore, since there is no need to cool the adsorbent at the start of operation unlike in low-temperature adsorption systems, preparation time (start-up time) is shortened and excellent processing efficiency can be obtained.

(2)気体分離膜精製部と圧力スイング吸着部を組合わ
せて構成したので、He回収率が低いという圧力スイン
グ吸着式装置の欠点及びHe純度が低いという気体分離
膜式装置の欠点をいずれも解消することができ、結局高
純度のHeを高回収率で得ることができる。
(2) Since it is constructed by combining a gas separation membrane purification section and a pressure swing adsorption section, it eliminates both the disadvantages of pressure swing adsorption type devices such as low He recovery rate and the disadvantages of gas separation membrane type devices such as low He purity. As a result, highly pure He can be obtained with a high recovery rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明に係るHe精製装置を示すフ
ロー説明図である。 1・・・原料ガス    2・・・原料ガス供給管7・
・・不純物     8a〜8d・・・圧縮機11・・
・気体分離膜 12a、12b・・・He精製用吸着塔13・・・He
タンク   14〜20・・・3方弁a・・・前処理部
    b・・・気体分離膜精製部C・・・圧力スイン
グ吸着部
FIG. 1 and FIG. 2 are flow explanatory diagrams showing a He purification apparatus according to the present invention. 1... Raw material gas 2... Raw material gas supply pipe 7.
...Impurities 8a to 8d...Compressor 11...
・Gas separation membranes 12a, 12b...He purification adsorption tower 13...He
Tank 14-20... Three-way valve a... Pretreatment section b... Gas separation membrane purification section C... Pressure swing adsorption section

Claims (1)

【特許請求の範囲】[Claims] 原料He導入部、気体分離膜精製部、圧力スイング吸着
部、圧力スイング吸着部のパージガス排出部を任意方向
に回る巡回路で連結し、気体分離部には不純物排出ライ
ンを、圧力スイング吸着部にはHe取出ラインを夫々取
付けてなることを特徴とするHe精製装置。
The raw He introduction section, the gas separation membrane purification section, the pressure swing adsorption section, and the purge gas discharge section of the pressure swing adsorption section are connected by a circuit that rotates in any direction, and an impurity discharge line is connected to the gas separation section and to the pressure swing adsorption section. A He purification device is characterized in that it is equipped with He extraction lines.
JP59250726A 1984-11-27 1984-11-27 Purification device for helium Pending JPS61127609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59250726A JPS61127609A (en) 1984-11-27 1984-11-27 Purification device for helium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59250726A JPS61127609A (en) 1984-11-27 1984-11-27 Purification device for helium

Publications (1)

Publication Number Publication Date
JPS61127609A true JPS61127609A (en) 1986-06-14

Family

ID=17212132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59250726A Pending JPS61127609A (en) 1984-11-27 1984-11-27 Purification device for helium

Country Status (1)

Country Link
JP (1) JPS61127609A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171523A (en) * 1984-12-21 1986-08-02 エアー.プロダクツ.アンド.ケミカルス.インコーポレーテツド Separation of gas
JPS6391119A (en) * 1986-10-01 1988-04-21 ザ・ビーオーシー・グループ・インコーポレーテッド Psa method and apparatus using gas diffusion barrier
JPS63126522A (en) * 1986-11-03 1988-05-30 エア・プロダクツ・アンド・ケミカルズ・インコーポレイテツド Method of separating component of gas fluid
JPH0548919U (en) * 1991-11-28 1993-06-29 正智 山浦 Vertical self-weight towing device
JP2006043599A (en) * 2004-08-05 2006-02-16 Sumitomo Seika Chem Co Ltd Method and system for parallel separation of oxygen gas and nitrogen gas
WO2015146211A1 (en) * 2014-03-28 2015-10-01 住友精化株式会社 Method and system for purifying helium gas
RU2605593C2 (en) * 2014-10-27 2016-12-20 Юоп Ллк Method of extracting helium and device therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651223A (en) * 1979-06-18 1981-05-08 Monsanto Co Selective adsorbing method
JPS58151305A (en) * 1982-03-03 1983-09-08 Nippon Sanso Kk Production of oxygen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651223A (en) * 1979-06-18 1981-05-08 Monsanto Co Selective adsorbing method
JPS58151305A (en) * 1982-03-03 1983-09-08 Nippon Sanso Kk Production of oxygen

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171523A (en) * 1984-12-21 1986-08-02 エアー.プロダクツ.アンド.ケミカルス.インコーポレーテツド Separation of gas
JPS6391119A (en) * 1986-10-01 1988-04-21 ザ・ビーオーシー・グループ・インコーポレーテッド Psa method and apparatus using gas diffusion barrier
JPH0567327B2 (en) * 1986-10-01 1993-09-24 Boc Group Inc
JPS63126522A (en) * 1986-11-03 1988-05-30 エア・プロダクツ・アンド・ケミカルズ・インコーポレイテツド Method of separating component of gas fluid
JPH0548919U (en) * 1991-11-28 1993-06-29 正智 山浦 Vertical self-weight towing device
JP2006043599A (en) * 2004-08-05 2006-02-16 Sumitomo Seika Chem Co Ltd Method and system for parallel separation of oxygen gas and nitrogen gas
JP4538275B2 (en) * 2004-08-05 2010-09-08 住友精化株式会社 Method and system for parallel separation of oxygen gas and nitrogen gas
KR101120992B1 (en) * 2004-08-05 2012-06-13 스미토모 세이카 가부시키가이샤 Double separation method and double separation system for oxygen gas and nitrogen gas
WO2015146211A1 (en) * 2014-03-28 2015-10-01 住友精化株式会社 Method and system for purifying helium gas
KR20160138377A (en) * 2014-03-28 2016-12-05 스미또모 세이까 가부시키가이샤 Method and system for purifying helium gas
JPWO2015146211A1 (en) * 2014-03-28 2017-04-13 住友精化株式会社 Helium gas purification method and purification system
RU2605593C2 (en) * 2014-10-27 2016-12-20 Юоп Ллк Method of extracting helium and device therefor

Similar Documents

Publication Publication Date Title
US5125934A (en) Argon recovery from argon-oxygen-decarburization process waste gases
US4701187A (en) Process for separating components of a gas stream
US5220797A (en) Argon recovery from argon-oxygen-decarburization process waste gases
US4934148A (en) Dry, high purity nitrogen production process and system
FI85953C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN SYREPRODUKT MED EN RENHETSGRAD AV 95% FRAON OMGIVANDE LUFT.
US5116396A (en) Hybrid prepurifier for cryogenic air separation plants
KR910003113B1 (en) Enhanced gas seperation process
EP0213525B1 (en) Hybrid membrane/cryogenic process for hydrogen purification
US5944874A (en) Solid electrolyte ionic conductor systems for the production of high purity nitrogen
US5226931A (en) Process for supplying nitrogen from an on-site plant
US20030000385A1 (en) Gas separating and purifying method and its apparatus
US20040237789A1 (en) Helium recovery
JPH0250041B2 (en)
CA2055851A1 (en) Continuous method for removing oil vapor from feed gases containing water vapor
US20240019205A1 (en) Facility for producing gaseous methane by purifying biogas from landfill, combining membranes and cryogenic distillation for landfill biogas upgrading
JPS6272504A (en) Production of nitrogen having high purity
CN113184850B (en) High-purity carbon dioxide gas purification method and device thereof
JPS61127609A (en) Purification device for helium
JPH01266831A (en) Device for purifying light gas
JP2003062419A (en) Method for separating gas mixture and apparatus for the same
JPS5930646B2 (en) Argon gas purification method
JPH0230607A (en) Production of highly pure nitrogen
JP3841792B2 (en) Pretreatment method in air separation apparatus and apparatus used therefor
JPS6129768B2 (en)
JPS638395B2 (en)