JPH01266831A - Device for purifying light gas - Google Patents

Device for purifying light gas

Info

Publication number
JPH01266831A
JPH01266831A JP63096559A JP9655988A JPH01266831A JP H01266831 A JPH01266831 A JP H01266831A JP 63096559 A JP63096559 A JP 63096559A JP 9655988 A JP9655988 A JP 9655988A JP H01266831 A JPH01266831 A JP H01266831A
Authority
JP
Japan
Prior art keywords
gas
raw material
pressure swing
material gas
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63096559A
Other languages
Japanese (ja)
Other versions
JPH0624604B2 (en
Inventor
Kazuhiko Asahara
浅原 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63096559A priority Critical patent/JPH0624604B2/en
Publication of JPH01266831A publication Critical patent/JPH01266831A/en
Publication of JPH0624604B2 publication Critical patent/JPH0624604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To obtain a high-purity light gas by sending a raw gas to a pressure- swinging adsorbing means for adsorbing moisture, air, and CO2 through a gas separation-membrane purifying means and a fluorocarbon refrigerator, and using the waste purge gas and the permeated gas as the raw gas. CONSTITUTION:The raw gas is compressed by a compressor 10, and then branched off. About 10-40% of the raw gas is sent to the gas separation- membrane purifying means 2, the CO2 and air impermeable to the separation membrane 2 is discharged from a discharge pipe 23 and the permeated He component is returned to a raw gas supply pipe 12 through a separation pipeline 22. Meanwhile, about 90-60% of the branched raw gas is passed through the fluorocarbon refrigerator 3 wherein moisture is removed, and then sent to the pressure-swinging adsorbing means 4 wherein the moisture, CO2, and air components are selectively adsorbed and removed. The obtained He is recovered in a product tank 6. The gaseous product is used for the purging of adsorption towers 41 and 42, and the waste purge gas is returned to the raw gas supply pipe 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ヘリウム(トIc)もしくは水素(H2)
などの軽質ガスを含む混合ガスから水分く1120)、
二酸化炭素(CO2)および空気成分などの不純物を除
去して1−10もしくは1−12を精製回収する装置に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is applicable to helium (Ic) or hydrogen (H2).
Remove moisture from a mixed gas containing light gases such as 1120),
This invention relates to an apparatus for purifying and recovering 1-10 or 1-12 by removing impurities such as carbon dioxide (CO2) and air components.

〔従来の技術〕[Conventional technology]

従来、軽質ガス$5製装置としては低温吸着法による精
製装置、凝固法による精製装置、分離膜法と圧力スイン
グ吸着法との組合せによる精製装置(例えば特開昭61
−127609号公報参照)などが知られている。これ
らのうち、低温吸’fq rkによる精製装置や凝固法
による精製装置では不純物の吸着や凝固に寒冷を必要と
するために、分離膜法と圧力スイング吸着法との組合せ
による精製装置が常温操作をすることができる点で理想
的なものと考えられている。
Conventionally, as equipment for producing light gas $5, purification equipment using a low temperature adsorption method, purification equipment using a coagulation method, purification equipment using a combination of a separation membrane method and a pressure swing adsorption method (for example, JP-A-61
-127609) and the like are known. Among these, purification equipment using low-temperature absorption fq rk and purification equipment using the coagulation method require cooling for adsorption and coagulation of impurities, so purification equipment that uses a combination of separation membrane method and pressure swing adsorption method can be operated at room temperature. It is considered ideal in that it allows for

上記分離膜法と圧力スイング吸容法との組合ゼによる精
製装置は、第2図に示すように気体分離膜精製手段2a
と圧力スイング吸着手段4aとを直列接続したものであ
る。この精製装置において、原料ガス供給管路12aか
ら供給される原料ガスは原i々1ガス月f?i機1 Q
 aによって加1■され、この加圧された原料ガスを前
処理157のいずれかの吸ri塔71.72に通ずこと
により原料ガスからH20J3よびCO2成分を除去し
、残りのガスを導入?へ20aを介して気体分離膜精製
手段2a1.:導入する。この導入された原料ガスのう
ち分離膜21aに対して不透過性を示づ02やN2など
の不純成分は11出管23aから系外に放出され、透過
ヤ1を示J軽買ガス(1−1c)などからなる処理湾み
ガス(以下単に゛¥製品ガスという)は出口側の分離配
管22aに流れる。
A purification apparatus using a combination of the separation membrane method and the pressure swing absorption method is as shown in FIG.
and pressure swing adsorption means 4a are connected in series. In this refining device, the raw material gas supplied from the raw material gas supply pipe 12a is originally i1 gas month f? i machine 1 Q
H20J3 and CO2 components are removed from the raw material gas by passing this pressurized raw material gas to one of the RI towers 71 and 72 of the pretreatment 157, and the remaining gas is introduced. to gas separation membrane purification means 2a1. through 20a. :Introduce. Of this introduced raw material gas, impurity components such as 02 and N2 that are impermeable to the separation membrane 21a are released from the system from the 11 outlet pipe 23a, and the permeation layer 1 is shown as the J light purchase gas (1 -1c) and the like (hereinafter simply referred to as "product gas") flows to the separation pipe 22a on the outlet side.

上記半製品ガスは圧縮1110bによって再び加圧され
て圧力スイング吸着手段4aのいずれかの吸i′?塔4
1a、42aに供給される。この吸着塔41a、42a
では上記半製品ガス中の不純成分が活性炭などの吸着剤
に吸着され、残りのlie成分が回収管路43aを通し
て製品タンク6aに回収される。
The semi-finished product gas is again pressurized by the compression 1110b and is then sucked i'? tower 4
1a and 42a. These adsorption towers 41a, 42a
Then, the impure components in the semi-finished product gas are adsorbed by an adsorbent such as activated carbon, and the remaining lie components are recovered into the product tank 6a through the recovery pipe 43a.

吸着塔418.42a内の吸析剤の不純成分吸盾能力が
飽和に達した時には、製品タンク6a内の製品ガスをパ
ージ用ガスとしてパージ用ガス供給管路’14aから吸
γ、塔41a、42aに逆送させることによりL記不純
成分をパージし、不純成分を含むパージガス(以下単に
循環用ガスという)はパージガス循Iフ用管路45 a
を通して原料ガス供給管路12aに戻されて角刈用され
る。
When the ability of the adsorbent in the adsorption tower 418.42a to absorb impurity components reaches saturation, the product gas in the product tank 6a is used as a purge gas to adsorb from the purge gas supply pipe '14a, and the tower 41a, 42a, the impure components listed in L are purged, and the purge gas containing the impure components (hereinafter simply referred to as circulation gas) is passed through the purge gas circulation pipe 45a.
The raw material gas is returned to the raw material gas supply pipe 12a for cutting.

(発明が解決しようとする課題) 上記従来の粘′!J装買においては、気体分離膜tへ装
丁段2aからの半製品ガスと圧力スイング成層手段4a
からの循環用ガスとはいずれも常圧に近いために、上記
半製品ガスの圧力スイング+1!>−i手段4aへの供
給、循環用ガスの気体分離膜精製手段2aへの供給に際
しては、それぞれの経路に圧縮n10a、10bを設け
、これらの圧縮機1゜a、10bに通づことにより調圧
もしく(よ加圧する必要がある。また上記循環用ガスは
圧力スイング吸4手段4aから間欠的に1)1出される
ために、パージガス循環用管路4521にはガス圧を均
圧化づるための緩衝手段(図示せず)を別に設ける必要
がある。このため上記圧縮ti10a、10bや緩衝手
段などの分だけ装置の構成が複雑となる。
(Problem to be solved by the invention) The above conventional adhesive! In J-equipment, the semi-finished product gas from the binding stage 2a and the pressure swing stratification means 4a are transferred to the gas separation membrane t.
Since the circulating gas from the above is close to normal pressure, the pressure swing of the semi-finished product gas mentioned above is +1! >-i When supplying the gas for circulation to the means 4a and supplying the gas for circulation to the gas separation membrane purification means 2a, compressors 10a and 10b are provided in each route, and the gas is passed through these compressors 1°a and 10b. It is necessary to adjust the pressure or pressurize it.Also, since the above-mentioned circulating gas is intermittently discharged from the pressure swing suction means 4a, the gas pressure is equalized in the purge gas circulation pipe 4521. It is necessary to separately provide a buffer means (not shown) for the suspension. Therefore, the configuration of the apparatus becomes complicated due to the compression tires 10a, 10b, buffer means, etc.

また上記装置を連続運転させるにtよ、複数の圧縮tf
f10a、10bの入口側および出口側のガス圧を装置
全体の運転状況に合せて数多くの制御機器によって]ン
トロールしなtプればならず、複雑な制m+系ヤ)圧力
制御操作が要求されている。
In addition, if the above device is operated continuously, multiple compression tf
The gas pressure on the inlet and outlet sides of f10a and f10b must be controlled by numerous control devices according to the operating conditions of the entire device, and complex control systems and pressure control operations are required. ing.

そこで、運転操作および制御を容易化づるために、圧縮
機として原料ガス圧縮機の1つだけ用い、この原料ガス
圧縮機によって加圧される原料ガスを気体分離膜精製手
段と圧力スイング吸4手段とに分岐し−(送給されるよ
うに管路構成するとともに、気体分離膜精製手段からの
半製品ガスをI京料ガス圧縮機の入口側に循環させて原
料ガス中の軽質ガス濃度および軽質ガス吊を高めるよう
に装置を’t14成づることが考えられる。
Therefore, in order to facilitate operation and control, only one raw material gas compressor is used as a compressor, and the raw material gas pressurized by this raw material gas compressor is transferred to a gas separation membrane purification means and four pressure swing suction means. The pipe is constructed so that the semi-finished product gas from the gas separation membrane purification means is circulated to the inlet side of the gas compressor to reduce the concentration of light gas in the raw material gas and It is conceivable that the equipment will be constructed in 't14 to increase the light gas capacity.

ところが、この場合においてもト120やCO2の除去
は前処理塔で吸着させることにより行われる。したがっ
て前処理塔の2つの吸着塔について吸着および再生の2
工程に切換え運転操作する必要があるとともに、この前
処理塔の分だけ装置も複鎖化する。
However, even in this case, removal of CO120 and CO2 is carried out by adsorption in a pretreatment tower. Therefore, for the two adsorption towers of the pretreatment tower, the adsorption and regeneration
It is necessary to switch operations between processes, and the equipment is also multi-chained due to the number of pre-treatment towers.

この発明は、このような従来の欠点を解消覆るためにな
されたものであり、簡易な構成で、かつ運転操作を容易
に行うことができ、しかし従来と同様に高い純度および
回収率で精製することができる軽質ガス精製装置を提供
−することを目的としている。
This invention was made in order to overcome these conventional drawbacks, and has a simple structure and easy operation, while purifying with the same high purity and recovery rate as the conventional method. The purpose of the present invention is to provide a light gas purification device that can perform the following steps.

〔課題を解決するための手段〕[Means to solve the problem]

上記1」的を達成するために、この発明では比重ガス圧
縮機と、気体分離膜精製手段と、圧力スイング吸着手段
と、フロンガス冷凍機とを有し、上記原料ガス圧縮機の
出口側は気体分ml精製1段の人口側と、圧力スイング
吸着手段の入口側とに分岐し゛(接続され、上記気体分
離膜精製手段の透過ガスの出口側と圧力スイング吸着手
段のパージガスの排出側とは原料ガス圧縮機の入口側の
原fjlガス導入部と合流するように接続され、上記フ
ロンガス冷凍機は上記原料ガス圧縮機と圧力スイング吸
着手段との間に介在されているとともに、圧力スイング
吸着塔には水分、空気および二酸化炭素を選択的に吸着
する吸着剤が充填されているように構成した。
In order to achieve the above object 1, the present invention includes a specific gravity gas compressor, a gas separation membrane purification means, a pressure swing adsorption means, and a fluorocarbon gas refrigerator, and the outlet side of the raw material gas compressor is equipped with a gas It is branched into the input side of the first stage of minute ml purification and the inlet side of the pressure swing adsorption means. The fluorocarbon gas refrigerator is connected to the raw fjl gas introduction section on the inlet side of the gas compressor, and is interposed between the raw material gas compressor and the pressure swing adsorption means, and is connected to the pressure swing adsorption tower. was constructed so that it was filled with an adsorbent that selectively adsorbs moisture, air, and carbon dioxide.

〔作用〕[Effect]

上記構成によれば、従来装置にJ3いては前処理塔によ
って除去されていたl−120とCO2とについて、1
120はフロンガス冷凍機、CO2は上記圧力スイング
吸着手段の吸着剤によってそれぞれ除去される。これに
よって上記前処理塔を省略することができるので、装置
を簡易に構成することができるとともに、前処理塔に要
していた切換え操作を省略することができる。
According to the above configuration, 1-120 and CO2, which were removed by the pre-treatment tower in J3 in the conventional device, are removed by 1
120 is a fluorocarbon gas refrigerator, and CO2 is removed by the adsorbent of the pressure swing adsorption means. As a result, the pretreatment tower can be omitted, so that the apparatus can be configured simply and the switching operation required for the pretreatment tower can be omitted.

〔実施例〕〔Example〕

第1図において、原料ガス供給管路1には原料ガス圧縮
機10が設けられ、この原料ガス圧縮機10の出口側原
料ガス供給管路11は2つの分岐管111.112に分
岐され、一方の分岐管111は気体分離膜精製手段2の
入口側、他方の分岐管112はフロンガス冷凍機3を介
して圧力スイング吸着手段4の入口側とそれぞれ接続さ
れている。
In FIG. 1, a raw material gas supply pipe 1 is provided with a raw material gas compressor 10, and an outlet side raw material gas supply pipe 11 of this raw material gas compressor 10 is branched into two branch pipes 111 and 112, one of which is The branch pipe 111 is connected to the inlet side of the gas separation membrane purification means 2, and the other branch pipe 112 is connected to the inlet side of the pressure swing adsorption means 4 via the fluorocarbon gas refrigerator 3.

気体分離膜精製手段2の分離膜21は、l−1eを選択
的に透過し、CO2および空気成分などは透過しにくい
性質を有するもので、例えば酢酸セルロース躾、ポリイ
ミド膜もしくはポリスルフォン酸膜などによって形成さ
れている。
The separation membrane 21 of the gas separation membrane purification means 2 has a property of selectively permeating l-1e and hardly permeating CO2 and air components, such as a cellulose acetate membrane, a polyimide membrane, or a polysulfonic acid membrane. is formed by.

上記分離膜21を挟んで透過ガスの出口側は分離配管2
2によって原料ガス圧縮11110人口側の入口側原料
ガス供給管路12と合流するように接続され、これにに
って分離膜21を透過したHa酸成分らなる半製品ガス
(透過ガス)は上記分離配管22を通して入口側原料ガ
ス供給管路12内の原料ガスと合流される。また上記分
離膜21を透過しない不純成分は排出管23がら系外へ
放出されるようにしている。
Separation piping 2 is located on the exit side of the permeated gas across the separation membrane 21.
2, the raw material gas compression 11110 is connected so as to merge with the inlet side raw material gas supply pipe 12 on the population side, and the semi-finished gas (permeated gas) consisting of the Ha acid component that has permeated through the separation membrane 21 is thereby The raw material gas in the inlet side raw material gas supply pipe 12 is merged with the raw material gas through the separation pipe 22 . Further, impurity components that do not pass through the separation membrane 21 are discharged out of the system through a discharge pipe 23.

フロンガス冷凍機3は、一般のフロン系冷媒(例えばR
−12)を用いた汎用的な冷凍機であり、除去するl−
120が氷結しないように例えば5層程度の温度に調整
され、またドレンはオートドレンによって除去されるよ
うに構成している。
The fluorocarbon gas refrigerator 3 uses a general fluorocarbon refrigerant (for example, R
-12) It is a general-purpose refrigerator that uses l-
The temperature is adjusted to, for example, about 5 layers so that the water 120 does not freeze, and the drain is removed by an auto drain.

圧力スイング吸着手段4は、2堪の吸着塔41゜42か
らなり、これらの吸着塔41.42内にはト12o除去
用の第1の吸着剤51として例えば゛合成ビオライト、
CO2および空気成分除去用の第2の吸着剤52として
例えば活性炭が下部入口側から順に2層に分けて充填さ
れている。上記合成ビオライトと活性炭とは、合成ゼオ
ライトが1に対して活性炭を例えば3の割合で充填され
ている。
The pressure swing adsorption means 4 consists of two adsorption towers 41 and 42, and in these adsorption towers 41 and 42, for example, "synthetic biolite,
As the second adsorbent 52 for removing CO2 and air components, activated carbon, for example, is filled in two layers sequentially from the lower inlet side. The synthetic biolite and activated carbon are filled with activated carbon in a ratio of, for example, 3 parts to 1 part synthetic zeolite.

上記吸着塔41.42の上部出口側は回収管路43によ
って製品タンク6と接続され、これにより吸着塔41.
42で原料ガス中の不純成分が吸着除去された残りの1
10成分が製品タンク6に回収されるようにしている。
The upper outlet side of the adsorption tower 41.
The remaining 1 from which the impurity components in the raw material gas were adsorbed and removed in step 42
Ten components are collected in the product tank 6.

またこの製品タンク6と上記吸着塔41.42の上部出
口側とはパージ用ガス供給管路44によって互いに接続
され、これにより製品タンク6内の回収He  (’1
品ガス)がパージ用ガスとして吸着塔41.42に逆送
され、この製品ガスによって吸着剤51.52に吸着さ
れた不純成分が脱着されるようにしている。
Further, this product tank 6 and the upper outlet sides of the adsorption towers 41 and 42 are connected to each other by a purge gas supply pipe 44, whereby the recovered He ('1
Product gas) is sent back to the adsorption tower 41.42 as a purge gas, and impurity components adsorbed on the adsorbent 51.52 are desorbed by this product gas.

吸着塔41.42の下部入口側と入口側原料ガス供給管
路12とはパージガス循環用管路45によって互いに接
続され、これによって吸着塔41゜42内のパージガス
が上記パージガス循環用管路45を通して入口側原料ガ
ス供給管路12の原料ガスと合流するようにしている。
The lower inlet side of the adsorption towers 41 and 42 and the inlet side raw material gas supply pipe 12 are connected to each other by a purge gas circulation pipe 45, so that the purge gas in the adsorption towers 41 and 42 passes through the purge gas circulation pipe 45. He is trying to merge with the raw material gas of the inlet side raw material gas supply pipe line 12.

なお、上記吸着塔41.4.2への分岐管112からの
原料ガスの供給、回収管路43を通した製品タンク6へ
の1−10成分の回収、パージ用ガス供給管路44から
の製品ガスの供給、およびパージガス循環用管路45を
通したパージガスの1月出なトG、t4 ”) 17)
 3方弁46.47.48.49ノ#1lll操作によ
って切換え操作が行われるようにしている。
In addition, supply of the raw material gas from the branch pipe 112 to the adsorption tower 41.4.2, recovery of components 1-10 to the product tank 6 through the recovery pipe 43, and supply of the raw material gas from the purge gas supply pipe 44. Product gas supply and purge gas discharge through the purge gas circulation pipe 45 (G, t4'') 17)
The switching operation is performed by operating the three-way valve 46, 47, 48, and 49 #1llll.

また原料ガス圧縮機10によって加圧された原石ガスは
、気体分離膜精製手段2側の分岐管111に対して例え
ば10〜40%程度、圧力スイング吸着手段4側の分岐
管112に対して例えば90〜60%程度の供給比率と
なるように分配される。この分配調節をするには、圧力
調整、流量調整および濃度調整などにより自動制御を行
えばよく、第1図に示す装置では気体分離膜精製手段2
側に製電調整、圧力スイング吸着手段4側に流M調整、
原料ガス11縮機10側に圧力調整の自動詞t111T
′、段(図示せず)がそれぞれ設けられ、これらの自動
aI制御により分配調節が行なわれている。
Further, the raw gas compressed by the raw material gas compressor 10 is, for example, about 10 to 40% of the branch pipe 111 on the gas separation membrane purification means 2 side, and about 10% to 40%, for example, relative to the branch pipe 112 on the pressure swing adsorption means 4 side. It is distributed at a supply ratio of about 90 to 60%. In order to adjust this distribution, automatic control such as pressure adjustment, flow rate adjustment, concentration adjustment, etc. can be performed.In the apparatus shown in FIG.
Electricity adjustment on the side, flow M adjustment on the pressure swing adsorption means 4 side,
Pressure adjustment intransitive t111T on the raw material gas 11 compressor 10 side
', stages (not shown) are provided, and distribution adjustment is performed by automatic aI control of these stages.

」1記構成の軽質ガス精製装置にJ3いて、原料ガス圧
縮機10によって加圧された原料ガスが所定の供給比率
で2つの分岐管111,112に分配され、この原r1
ガスは分岐管111を通して気体分離膜精製手段2、分
岐管112を通してフロンガス冷凍)幾3および圧力ス
イング吸着手段4にそれぞれ供給される。
In the light gas purification apparatus J3 having the configuration described in 1 above, the raw material gas pressurized by the raw material gas compressor 10 is distributed to two branch pipes 111 and 112 at a predetermined supply ratio, and this raw material r1
The gas is supplied through a branch pipe 111 to the gas separation membrane purification means 2, through a branch pipe 112 to a fluorocarbon gas refrigeration system 3, and a pressure swing adsorption means 4, respectively.

気体分離膜精製手段2に供給された原料ガスのうら分離
膜21を透過しないCO2や空気成分はII出管23を
通して放出され、上記分111膜21を透過するl」e
成分(よ分離配管22を通して入口側原石ガス供給管路
12に戻される。これによってIjrj石ガス圧縮11
0に取入れられる原料ガスの11Cガス1IIIQやH
eガス量が元の原料ガスよりも増1:+1 する。
CO2 and air components that do not pass through the separation membrane 21 from the raw material gas supplied to the gas separation membrane purification means 2 are released through the II outlet pipe 23, and the above-mentioned portions 111 pass through the membrane 21.
The components (return to the inlet gas supply pipe 12 through the separation pipe 22.
11C gas 1IIIQ and H of raw material gas introduced into 0
The amount of e-gas increases by 1:+1 compared to the original raw material gas.

分岐管112を通してフロンガス冷凍機3に供給された
I):li $1ガスは、その1」;(料ガス中の11
20が凝縮除去され、所定量になればオートドレンによ
り抽出される。このフロンガス冷凍機3を通ることによ
り1120が除去された原料ガスは圧力スイング吸る手
段4の吸着jハ41,42にその下部入E]側から導入
され、この吸着塔41.42では第1の吸着剤にJ、っ
て上記1京料ガス中の1120がさらに吸着除去される
とともに、第2の吸4剤ににつて002や空気成分が吸
着除去される。これにより導入された原ねガスは不fi
”T!物澗度が(,1ぼ1000m以下、露skiがは
ば一70℃以下になるように精製され、吸着されずに残
った1−10成分が回収管lt8/13を通して製品タ
ンク6に回収される。この製品タンク6内の製品ガスは
製品ガス取出し管61を通して取出され、例、えば超゛
市導1i?Ti冷fJI用のHc液化冷凍装置などに循
環されて使用される。
The I):li $1 gas supplied to the fluorocarbon gas refrigerator 3 through the branch pipe 112 is
20 is condensed and removed, and when a predetermined amount is reached, it is extracted by an auto drain. The raw material gas from which 1120 has been removed by passing through this fluorocarbon gas refrigerator 3 is introduced into the adsorption chambers 41 and 42 of the pressure swing suction means 4 from the lower inlet side, and in this adsorption column 41 and 42, the first The 1120 in the above-mentioned gas is further adsorbed and removed by the adsorbent J, and 002 and air components are adsorbed and removed by the second adsorbent. The raw gas introduced by this is non-fi
The product is purified so that the concentration is less than 1,000m and the dew ski is less than 70°C, and the components 1-10 that remain unadsorbed are passed through the recovery pipe lt8/13 to the product tank 6. The product gas in the product tank 6 is taken out through a product gas take-out pipe 61, and is circulated and used, for example, in a Hc liquefaction refrigeration system for ultra-high-quality commercial 1i?Ti refrigerated FJI.

吸着剤51.52の不純物吸着能力が飽和に達した時に
tま、製品タンク6の製品ガスがパージ用ガス供給管路
44を通して吸着塔/11.42に逆送され、この製品
ガスによって上記不純物がバージされる。このバルジガ
スはパージガス循環用管路45を通して入ロ側1京料ガ
ス供給管路12に戻されてli:j F+ガスの一部と
して再利用される。
When the impurity adsorption capacity of the adsorbent 51.52 reaches saturation, the product gas in the product tank 6 is sent back to the adsorption tower/11.42 through the purge gas supply pipe 44, and the product gas removes the impurities. is barged. This bulge gas is returned to the inlet gas supply pipe 12 through the purge gas circulation pipe 45 and reused as part of the li:j F+ gas.

なお上記パージエ稈は間欠的に行なわれるので、入口側
原料ガス供給管路12内を流通するガス耐に変動を生じ
ることになる。ところが、この人[J側原料ガス供給管
路12には一定量で供給される原料ガスと、気体分離膜
精製手段2から戻される半製品ガスとによつ゛C比較的
多吊のガスが定常的に供給されるので、ト記パージガス
によるガス量変動tよ比較的小さく、原料ガス圧縮機1
00汀線能力に大きな影響を与えることはない。
Note that since the above-mentioned purge is performed intermittently, the flow rate of the gas flowing through the inlet side raw material gas supply pipe 12 will vary. However, due to the raw material gas supplied in a fixed amount to the J-side raw material gas supply pipe 12 and the semi-finished product gas returned from the gas separation membrane purification means 2, a relatively large amount of gas is constantly present. Since the gas amount fluctuation t due to the purge gas mentioned above is relatively small, the raw material gas compressor 1
00 shoreline capability will not be significantly affected.

このように第1図に示す軽質ガス精WA装置では、原料
ガス中のト120がフロンガス冷凍)蔑3と圧力スイン
グ吸着手段4の吸着塔41.42内の第1の吸着剤によ
って、またCO2が上記吸着塔41゜42内の第2の吸
着剤によってそれぞれ確実に除去されるために、第2図
に示す従来装置における前処理塔7を省略することがで
きる。またフロンガス冷凍機3には原litガスを単に
通すだけでの操作でよく、しかしこのフロンガス冷凍機
3は汎用的くgものぐ構成りることができるために、精
製装置を従来装置と比べて簡易に構成することができ、
その操作も上記前処理塔7の操作が省略される分だt」
従来装置に比べて容易に行うことができる。
In this way, in the light gas purification WA apparatus shown in FIG. are reliably removed by the second adsorbents in the adsorption towers 41 and 42, so that the pretreatment tower 7 in the conventional apparatus shown in FIG. 2 can be omitted. In addition, the fluorocarbon gas refrigerator 3 only needs to be operated by simply passing raw lit gas through it, but since the fluorocarbon gas refrigerator 3 can be constructed in many general-purpose configurations, the purification equipment is not as good as the conventional equipment. Can be easily configured,
This operation also omits the operation of the pretreatment tower 7.
This can be done more easily than with conventional equipment.

しかし得られる製品ガスは従来装置と同様の1−(e純
度および回収率を維持づることができる。
However, the resulting product gas can maintain the same 1-(e purity and recovery rate as the conventional device).

原11ガスとして1−10が98容M%、空気成分、1
」20.CO2などの不純物の合計が2容51%のa合
ガスを用いて第1図に示す軽質ガス精製装置により精製
試験を行った結果、1leI11!度99.999%、
露点−75℃の110ガスを99.5%の回収率で11
することができた。
1-10 as raw 11 gas 98 volume M%, air component, 1
”20. A purification test was conducted using the light gas purification apparatus shown in Fig. 1 using a mixture gas containing a total of 2 volumes and 51% of impurities such as CO2, and the result was 1leI11! degree 99.999%,
110 gas with a dew point of -75℃ with a recovery rate of 99.5%
We were able to.

なお上記実施例ではフロンガス冷凍機3を分岐管112
上に設けているが、このフロンガス冷凍n3を設ける位
買は原料ガス圧縮機10と圧力スイング吸着手段4との
間であればよく、例えば上記フロンガス冷凍機3を分岐
11すの出口側原料ガス供給管路11上に設けてもよい
In the above embodiment, the fluorocarbon gas refrigerator 3 is connected to the branch pipe 112.
Although this fluorocarbon gas refrigerator n3 is provided above, it is only necessary to provide it between the raw material gas compressor 10 and the pressure swing adsorption means 4. For example, the fluorocarbon gas refrigerator 3 is connected to the raw material gas on the outlet side of the branch 11. It may also be provided on the supply pipe line 11.

また上記実施例においては、第1の吸着剤と第2の吸着
剤とが2層に分(Jて吸着塔41.42内に充填されて
いるが、これに限らず、例えば上記第1の吸着剤と第2
の吸着剤とを互いに混合し、この混合された2種類の吸
着剤を上記吸着塔41゜42内に充填してもJ:い。さ
らに2種類の吸着剤を用いずに、1種類の吸着剤(例え
ば合成ゼオライト)を吸着塔41.42内に充填し、こ
の1種類の吸着剤によって[]20、CO2および空気
成分の吸着を行なわすようにしてもよい。
Further, in the above embodiment, the first adsorbent and the second adsorbent are divided into two layers (J and filled in the adsorption tower 41 and 42, but the invention is not limited to this. For example, the first adsorbent adsorbent and second
It is also possible to mix these adsorbents with each other and fill the adsorption towers 41 and 42 with the two mixed adsorbents. Furthermore, instead of using two types of adsorbents, one type of adsorbent (for example, synthetic zeolite) is filled into the adsorption tower 41, 42, and this one type of adsorbent can adsorb []20, CO2, and air components. You may also do so.

また上記実施例では1−18を含む混合ガスからト1e
を精製する場合について説明したが、Heの他にH2も
Heと同様の性状を有するために、ト12を含む混合ガ
スから!−12を精製する場合にもこの発明の精製装置
を適用することができる。
Further, in the above embodiment, from the mixed gas containing 1-18 to 1e
Although we have explained the case of refining H2 in addition to He, since H2 also has properties similar to He, from a mixed gas containing G12! The purification apparatus of the present invention can also be applied to purification of -12.

〔発明の効果〕〔Effect of the invention〕

この発明の!1質ガス精製装置によれば、従来装四では
前処理塔によって除去されていたl−120とCO2と
について、H2Oは汎用機器であるフロンガス冷凍機お
よび圧力スイング吸着手段の吸む剤、CO2は上記圧力
スイング吸着手段の吸着剤によってそれぞれ確実に除去
することができるので、上記前処理塔を省略することが
でき、これによって装置を簡易に構成することができる
とともに、前処理塔の切換え操作などを省略することが
でき、運転操作を容易に行うことができる。しかも従来
と同様に高い純度および回収率で精製することができる
This invention! According to the primary gas purification system, with respect to l-120 and CO2, which were removed by the pretreatment tower in the conventional system, H2O is used as a suction agent for the fluorocarbon gas refrigerator and pressure swing adsorption means, which are general-purpose equipment, and CO2 is Since each can be reliably removed by the adsorbent of the pressure swing adsorption means, the pretreatment tower can be omitted, and this allows for a simple configuration of the device, as well as switching operations for the pretreatment tower. can be omitted, making driving operations easier. Moreover, it can be purified with high purity and recovery rate as in the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の詳細な説明図、第2図は従来の軽質
ガス精製装置の説明図である。 2・・・気体分−1膜精製手段、3・・・フロンガス冷
凍機、4・・・圧力スイング吸着手段、10・・・原れ
ガス圧縮機、12・・・入口側原石ガス供給管路(原料
ガス導入部>、51.52・・・吸着剤。
FIG. 1 is a detailed explanatory diagram of the present invention, and FIG. 2 is an explanatory diagram of a conventional light gas purification apparatus. 2... Gas component-1 membrane purification means, 3... Freon gas refrigerator, 4... Pressure swing adsorption means, 10... Raw gas compressor, 12... Raw ore gas supply pipe on the inlet side (Raw material gas introduction section>, 51.52...adsorbent.

Claims (1)

【特許請求の範囲】[Claims] 1、原料ガス圧縮機と、気体分離膜精製手段と、圧力ス
イング吸着手段と、フロンガス冷凍機とを有し、上記原
料ガス圧縮機の出口側は気体分離膜精製手段の入口側と
、圧力スイング吸着手段の入口側とに分岐して接続され
、上記気体分離膜精製手段の透過ガスの出口側と圧力ス
イング吸着手段のパージガスの排出側とは原料ガス圧縮
機の入口側の原料ガス導入部と合流するように接続され
、上記フロンガス冷凍機は上記原料ガス圧縮機と圧力ス
イング吸着手段との間に介在されているとともに、圧力
スイング吸着塔には水分、空気および二酸化炭素を選択
的に吸着する吸着剤が充填されていることを特徴とする
軽質ガス精製装置。
1. It has a raw material gas compressor, a gas separation membrane purification means, a pressure swing adsorption means, and a freon gas refrigerator, and the outlet side of the raw material gas compressor is connected to the inlet side of the gas separation membrane purification means, and the pressure swing The permeate gas outlet side of the gas separation membrane purification means and the purge gas discharge side of the pressure swing adsorption means are branched and connected to the inlet side of the adsorption means, and the raw material gas introduction part on the inlet side of the raw gas compressor The fluorocarbon gas refrigerator is interposed between the raw material gas compressor and the pressure swing adsorption means, and the pressure swing adsorption tower selectively adsorbs moisture, air, and carbon dioxide. A light gas purification device characterized by being filled with an adsorbent.
JP63096559A 1988-04-18 1988-04-18 Light gas purification equipment Expired - Lifetime JPH0624604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63096559A JPH0624604B2 (en) 1988-04-18 1988-04-18 Light gas purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63096559A JPH0624604B2 (en) 1988-04-18 1988-04-18 Light gas purification equipment

Publications (2)

Publication Number Publication Date
JPH01266831A true JPH01266831A (en) 1989-10-24
JPH0624604B2 JPH0624604B2 (en) 1994-04-06

Family

ID=14168405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63096559A Expired - Lifetime JPH0624604B2 (en) 1988-04-18 1988-04-18 Light gas purification equipment

Country Status (1)

Country Link
JP (1) JPH0624604B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308605A (en) * 2001-04-11 2002-10-23 Japan Pionics Co Ltd Method for refining gaseous hydrogen
JP2003068630A (en) * 2001-08-29 2003-03-07 Kyocera Corp Aligner
US7294172B2 (en) * 2001-07-31 2007-11-13 Praxair Technology, Inc. Helium recovery
JP4721575B2 (en) * 2001-08-29 2011-07-13 京セラ株式会社 Exposure equipment
WO2015146211A1 (en) * 2014-03-28 2015-10-01 住友精化株式会社 Method and system for purifying helium gas
JP2020523548A (en) * 2017-06-08 2020-08-06 サウジ アラビアン オイル カンパニー Helium recovery from gaseous streams
CN113828103A (en) * 2021-08-19 2021-12-24 大连海奥膜技术有限公司 Process and equipment for recovering light hydrocarbon and carbon dioxide associated with oil field flooding gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283324A (en) * 1985-06-05 1986-12-13 Mitsubishi Electric Corp Apparatus for removing carbon dioxide
JPS6365930A (en) * 1986-09-04 1988-03-24 Kobe Steel Ltd Light gas purifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283324A (en) * 1985-06-05 1986-12-13 Mitsubishi Electric Corp Apparatus for removing carbon dioxide
JPS6365930A (en) * 1986-09-04 1988-03-24 Kobe Steel Ltd Light gas purifier

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308605A (en) * 2001-04-11 2002-10-23 Japan Pionics Co Ltd Method for refining gaseous hydrogen
US7294172B2 (en) * 2001-07-31 2007-11-13 Praxair Technology, Inc. Helium recovery
JP2003068630A (en) * 2001-08-29 2003-03-07 Kyocera Corp Aligner
JP4721575B2 (en) * 2001-08-29 2011-07-13 京セラ株式会社 Exposure equipment
WO2015146211A1 (en) * 2014-03-28 2015-10-01 住友精化株式会社 Method and system for purifying helium gas
CN105939960A (en) * 2014-03-28 2016-09-14 住友精化株式会社 Method and system for purifying helium gas
KR20160138377A (en) * 2014-03-28 2016-12-05 스미또모 세이까 가부시키가이샤 Method and system for purifying helium gas
JPWO2015146211A1 (en) * 2014-03-28 2017-04-13 住友精化株式会社 Helium gas purification method and purification system
JP2020523548A (en) * 2017-06-08 2020-08-06 サウジ アラビアン オイル カンパニー Helium recovery from gaseous streams
CN113828103A (en) * 2021-08-19 2021-12-24 大连海奥膜技术有限公司 Process and equipment for recovering light hydrocarbon and carbon dioxide associated with oil field flooding gas
CN113828103B (en) * 2021-08-19 2023-11-10 大连海奥膜技术有限公司 Process and equipment for recycling light hydrocarbon and carbon dioxide in oilfield flooding companion gas

Also Published As

Publication number Publication date
JPH0624604B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
US5125934A (en) Argon recovery from argon-oxygen-decarburization process waste gases
US5220797A (en) Argon recovery from argon-oxygen-decarburization process waste gases
FI85953C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN SYREPRODUKT MED EN RENHETSGRAD AV 95% FRAON OMGIVANDE LUFT.
US4701187A (en) Process for separating components of a gas stream
KR20020062979A (en) Gas separating and purifying method and its apparatus
CA2456011A1 (en) Helium recovery
CA2055851A1 (en) Continuous method for removing oil vapor from feed gases containing water vapor
JP3921203B2 (en) Gas separation method and apparatus
JPH06171B2 (en) Improved adsorption purification method
JPS6391120A (en) Pressure change-over apparatus
JPH01266831A (en) Device for purifying light gas
KR20080021245A (en) Method and apparatus for recovery and recycling of used helium gas
CN113184850A (en) Method and device for purifying high-purity carbon dioxide gas
JP7374925B2 (en) Gas separation equipment and gas separation method
JP2644823B2 (en) Regeneration method of helium gas purification adsorber
JPH01288313A (en) Gas separation process
JP4817560B2 (en) Carbon dioxide recovery method from carbon dioxide dry cleaning equipment
JPS6129768B2 (en)
JP3172886B2 (en) Helium gas purification apparatus and operating method thereof
JPH0230607A (en) Production of highly pure nitrogen
EP0055669A1 (en) Repressurization for pressure swing adsorption system
JPS60231402A (en) Production of oxygen with ca-na-a and na-x-alo3 in n2 adsorption tower
JP3841792B2 (en) Pretreatment method in air separation apparatus and apparatus used therefor
JPS60127202A (en) Production of oxygen with n2 adsorption column using ca-na-a and na-x
JP7148748B1 (en) gas purifier