JPH05238706A - Production of sulfuric acid from dilute hydrogen sulfide - Google Patents

Production of sulfuric acid from dilute hydrogen sulfide

Info

Publication number
JPH05238706A
JPH05238706A JP3507692A JP3507692A JPH05238706A JP H05238706 A JPH05238706 A JP H05238706A JP 3507692 A JP3507692 A JP 3507692A JP 3507692 A JP3507692 A JP 3507692A JP H05238706 A JPH05238706 A JP H05238706A
Authority
JP
Japan
Prior art keywords
gas
hydrogen sulfide
adsorption
sulfuric acid
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3507692A
Other languages
Japanese (ja)
Other versions
JP2941546B2 (en
Inventor
Jun Izumi
順 泉
Takashi Morimoto
敬 森本
Hiroyuki Tsutaya
博之 蔦谷
Koichi Araki
公一 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4035076A priority Critical patent/JP2941546B2/en
Publication of JPH05238706A publication Critical patent/JPH05238706A/en
Application granted granted Critical
Publication of JP2941546B2 publication Critical patent/JP2941546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To improve production efficiency by alternately applying the selective adsorption of an H2S-contg. gas and the vacuum reducing concentration by countercurrent contact with a purge gas to recover H2S, burning the H2S to SO2, then catalytically oxidizing the SO2 to SO3 and bringing the SO3 into contact with water. CONSTITUTION:A gaseous mixture 1 contg. H2S is supplied to the adsorption tower 4a between the adsorption towers 4a and 4b packed with an adsorbent 5 such as synthesized phosphate-treated gamma-alumina, untreated-alumina or silicalite. The H2S is selectively adsorbed by the adsorbent 5, and the unadsorbed gaseous component is discharged from a passage. After the adsorption of H2S is finished in the tower 4a, a part of the unadsorbed gaseous component is countercurrently passed through the tower 4b through a pressure reducing valve 10 and purged, and the gaseous HS reduced in volume and concentrated is recovered. The recovered gas is sent to a combustion chamber 13, mixed with an auxiliary fuel 14, burned and converted to SO2, and the gas is passed through a passage 15, cooled and then supplied to a reactor 18 packed with an oxidation catalyst. Here, SO2 is catalytically oxidized to SO3 in the reactor, the SO2-contg. gas is cooled and then supplied to a water absorption tower 20 to absorb SO3 in the circulating water, and dil. sulfuric acid is obtained at a high recovery rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低濃度硫化水素混合ガ
スを原料とする硫酸の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing sulfuric acid using a low concentration hydrogen sulfide mixed gas as a raw material.

【0002】[0002]

【従来の技術】図3は、硫化水素を原料とする従来の硫
酸製造方法のフローシートである。この方法では、低濃
度の硫化水素の濃縮方法として液相吸収装置24が用い
られている。低濃度の硫化水素含有ガス25を吸収塔2
6に導入し、アミン吸収液と向流接触させて硫化水素を
吸収し、非吸収成分ガスを流路27から系外に放出す
る。アミン吸収液はポンプ28で放散塔29に送られ、
昇温することにより吸収液から硫化水素を離脱する。再
生された吸収液はポンプ30により吸収塔26に循環し
て再度使用される。一方、濃縮された硫化水素は、流路
31を介して燃焼器32に送られ、プロパン等の補助燃
料33と混合されて燃焼され、10〜20vol%(乾
燥ガスベース)の亜硫酸ガスを得る。これをアフターク
ーラ34で冷却し、温度400℃、O2 /SO2 モル比
1.2、SV値500で酸化バナジウム触媒層35に通
すことにより、95%以上のSO2 がSO3 に転換す
る。その後、水スクラッバー36でSO3 を吸収して希
硫酸37を得る。
2. Description of the Related Art FIG. 3 is a flow sheet of a conventional method for producing sulfuric acid using hydrogen sulfide as a raw material. In this method, the liquid phase absorption device 24 is used as a method for concentrating low-concentration hydrogen sulfide. Gas 25 containing a low concentration of hydrogen sulfide is absorbed in the absorption tower 2
Introduced in 6, and countercurrently contacted with the amine absorbing solution to absorb hydrogen sulfide, and release the non-absorbed component gas from the flow path 27 to the outside of the system. The amine absorbing liquid is sent to the stripping tower 29 by the pump 28,
Hydrogen sulfide is released from the absorbing solution by raising the temperature. The regenerated absorption liquid is circulated to the absorption tower 26 by the pump 30 and used again. On the other hand, the concentrated hydrogen sulfide is sent to the combustor 32 via the flow path 31, mixed with the auxiliary fuel 33 such as propane and burned to obtain a sulfurous acid gas of 10 to 20 vol% (dry gas base). 95% or more of SO 2 is converted to SO 3 by cooling it with an aftercooler 34 and passing it through a vanadium oxide catalyst layer 35 at a temperature of 400 ° C., an O 2 / SO 2 molar ratio of 1.2, and an SV value of 500. .. Then, the water scrubber 36 absorbs SO 3 to obtain dilute sulfuric acid 37.

【0003】[0003]

【発明が解決しようとする課題】従来の低濃度の硫化水
素の減容濃縮には、アミン吸収法、熱アルカリ吸収法等
の液相吸収法が用いられてきたが、ユーティリティコ
ストが高く、随伴する炭酸ガスによる吸収能の低下、
吸収液のメークアップ廃液処理による二次汚染等の問
題を有していた。そこで、本発明は、上記問題点を解消
し、低濃度の硫化水素を、酸化バナジウム等の酸化触媒
の接触酸化に適した濃度まで減容濃縮し、効率良く希硫
酸を製造する方法を提供しようとするものである。
Liquid phase absorption methods such as amine absorption method and thermal alkali absorption method have been used for the conventional volumetric concentration and reduction of low concentration hydrogen sulfide, but the utility cost is high and it is accompanied by Decrease in absorption capacity due to carbon dioxide,
There was a problem such as secondary contamination due to treatment of the make-up waste liquid of the absorbing liquid. Therefore, the present invention solves the above problems and provides a method for efficiently producing diluted sulfuric acid by reducing the concentration of low-concentration hydrogen sulfide to a concentration suitable for catalytic oxidation of an oxidation catalyst such as vanadium oxide. It is what

【0004】[0004]

【課題を解決するための手段】本発明は、重合リン酸で
処理したγアルミナ、未処理のγアルミナ又はシリカラ
イトを充填した吸着塔に、硫化水素を含む混合ガスを、
相対的に高圧で供給し、硫化水素を選択的に吸着する吸
着工程と、吸着工程終了後の吸着塔を前方部から減圧
し、次いで、吸着工程から放出される非吸着成分ガスの
一部をパージガスとして向流に流して硫化水素を減容濃
縮して回収する工程とを、交互に切り換えて連続的に硫
化水素濃縮ガスを回収し、この濃縮ガスに補助燃料を混
合して燃焼して硫化水素を二酸化硫黄に転換し、さら
に、酸化触媒で接触酸化して三酸化硫黄を生成し、該三
酸化硫黄を水と接触させて希硫酸を製造することを特徴
とする硫酸製造方法である。
According to the present invention, a mixed gas containing hydrogen sulfide is introduced into an adsorption column filled with γ-alumina treated with polymerized phosphoric acid, untreated γ-alumina or silicalite,
The adsorption step of supplying hydrogen sulfide selectively at a relatively high pressure and the adsorption tower after the adsorption step are decompressed from the front part, and then part of the non-adsorbed component gas released from the adsorption step is removed. The process of flowing countercurrently as purge gas to reduce the volume of hydrogen sulfide and then recovering it is alternately switched, and the hydrogen sulfide concentrated gas is continuously recovered, and this concentrated gas is mixed with auxiliary fuel and burned to produce sulfurized gas. A method for producing sulfuric acid, which comprises converting hydrogen into sulfur dioxide, further catalytically oxidizing it with an oxidation catalyst to produce sulfur trioxide, and bringing the sulfur trioxide into contact with water to produce dilute sulfuric acid.

【0005】[0005]

【作用】本発明では、低濃度の硫化水素の減容濃縮法と
して乾式の圧力スィング吸着法を採用することにより、
非常に広い濃度範囲の硫化水素含有ガスを原料にして希
硫酸を効率的に製造することを可能にした。図1は、本
発明の方法を実施するための希硫酸製造装置のフローシ
ートの1例を示したものである。この装置の基本構成
は、吸着塔4a,4b、燃焼器13、触媒反応装置1
8、水吸収塔20からなる。吸着塔4には、重合リン酸
処理したγアルミナ、未処理のγアルミナ、シリカライ
ト等の硫化水素吸着剤5が充填されている。硫化水素、
窒素、酸素を含有する原料ガス1は、ブロア2で圧縮さ
れ、吸着工程にある吸着塔4aに供給される。吸着塔4
aのバルブ3a,6aは開放されており、原料ガス1か
ら硫化水素を吸着剤5に吸着し、窒素・酸素からなる浄
化ガスを流路7から放出する。硫化水素の吸着帯が吸着
塔4aの後方に移動した時点で吸着工程を終了する。吸
着工程を終了した吸着塔4bは、バルブ8bを開放し、
真空ポンプ9で減圧した後、バルブ11bを開放して減
圧弁10を介して上記の浄化ガスの一部を吸着塔4bに
向流に流してパージし、減容濃縮された硫化水素ガスを
回収する。
In the present invention, by adopting the dry pressure swing adsorption method as the volume reduction concentration method of low concentration hydrogen sulfide,
It has become possible to efficiently produce dilute sulfuric acid using hydrogen sulfide-containing gas in a very wide concentration range as a raw material. FIG. 1 shows an example of a flow sheet of a dilute sulfuric acid production apparatus for carrying out the method of the present invention. The basic configuration of this device is as follows: adsorption towers 4a, 4b, combustor 13, catalytic reaction device 1
8 and a water absorption tower 20. The adsorption tower 4 is filled with hydrogen sulfide adsorbent 5 such as γ-alumina treated with polymerized phosphoric acid, γ-alumina not treated, and silicalite. Hydrogen sulfide,
The raw material gas 1 containing nitrogen and oxygen is compressed by the blower 2 and supplied to the adsorption tower 4a in the adsorption step. Adsorption tower 4
The valves 3a and 6a of a are opened, and hydrogen sulfide is adsorbed on the adsorbent 5 from the raw material gas 1 and the purified gas composed of nitrogen and oxygen is discharged from the flow path 7. The adsorption process ends when the hydrogen sulfide adsorption zone moves to the rear of the adsorption tower 4a. After the adsorption process, the adsorption tower 4b opens the valve 8b,
After depressurizing with the vacuum pump 9, the valve 11b is opened and a part of the above-mentioned purified gas is caused to flow countercurrently to the adsorption tower 4b through the depressurizing valve 10 for purging to recover the volume-reduced concentrated hydrogen sulfide gas. To do.

【0006】この回収ガスは、流路12を介して燃焼器
13に送られ、補助燃料14と混合して燃焼され、亜硫
酸ガスに転換され、流路15を経てアフタークーラ16
で冷却し、水分17を分離した後、酸化バナジウム触媒
を充填した反応装置18に供給される。この触媒反応装
置18で亜硫酸ガスの大半が無水硫酸まで転換され、熱
交換器19で冷却してから水吸収塔20に送られ、循環
する水に吸収されて希硫酸21を得る。水吸収塔20か
ら放出されるガスは流路22を経て脱硫装置23に送
り、十分に浄化してから大気中に放出する。
The recovered gas is sent to the combustor 13 via the flow path 12, mixed with the auxiliary fuel 14 and burned, converted into sulfurous acid gas, and passed through the flow path 15 to the aftercooler 16.
After cooling with water to separate the water 17, the water is supplied to the reactor 18 filled with the vanadium oxide catalyst. Most of the sulfurous acid gas is converted to anhydrous sulfuric acid in the catalytic reaction device 18, cooled in the heat exchanger 19 and then sent to the water absorption tower 20, and absorbed in the circulating water to obtain dilute sulfuric acid 21. The gas released from the water absorption tower 20 is sent to the desulfurization device 23 through the flow path 22 and sufficiently purified before being released into the atmosphere.

【0007】以上の構成において、硫化水素の減容濃縮
工程のPSAユニットのシーケンスは図2に示すとおり
である。この減容濃縮法によれば、非常に広い濃度範囲
の硫化水素含有ガスを、酸化バナジウム触媒の酸化工程
に適した濃度まで容易に濃縮することができ、希硫酸製
造の効率を向上させることが可能となる。上記の減容濃
縮法における物質収支は、入口ガス、出口ガス、パージ
ガス、脱着ガスの添字を0、1、P、2とし、そのガス
量をG(Nm3 /h)、濃度をC(mol/mol)と
すると、パージガス量Gpは、Skarstrom則に
したがって次式として表される。 Gp=kGoPd/Pa (kは定数で1.2程度) ・・・ ここで、Co>>C1 とすると、CoGo=C2 2 又G
p ≒G2 なので次式が導かれる。 C2 =(CoPa/kPd) ・・・ 即ち、吸着圧力Pa高く、再生圧力Pdが低いほど高い
濃縮率を得ることができる。したがって、原料ガスの濃
度に対し、吸着圧力Pa及び再生圧力Pdを選択するこ
とにより、後段の接触酸化工程に容易に対応することが
でき、硫酸製造の効率的なシステムを構成することが可
能になる。
In the above structure, the sequence of the PSA unit in the hydrogen sulfide volume reduction concentration step is as shown in FIG. According to this volume reduction concentration method, the hydrogen sulfide-containing gas in a very wide concentration range can be easily concentrated to a concentration suitable for the oxidation step of the vanadium oxide catalyst, and the efficiency of dilute sulfuric acid production can be improved. It will be possible. The mass balance in the above-mentioned volume reduction concentration method is such that the subscripts of the inlet gas, the outlet gas, the purge gas and the desorption gas are 0, 1, P and 2, the gas amount is G (Nm 3 / h) and the concentration is C (mol / Mol), the purge gas amount Gp is represented by the following equation according to the Skarstrom rule. Gp = kGoPd / Pa (k is a constant of about 1.2) Here, if Co >> C 1 , then CoGo = C 2 G 2 or G
Since p ≈ G 2, the following equation is derived. C 2 = (CoPa / kPd) ... That is, the higher the adsorption pressure Pa and the lower the regeneration pressure Pd, the higher the concentration rate can be obtained. Therefore, by selecting the adsorption pressure Pa and the regeneration pressure Pd with respect to the concentration of the raw material gas, it is possible to easily cope with the catalytic oxidation step in the subsequent stage, and to configure an efficient system for sulfuric acid production. Become.

【0008】この減容濃縮工程に使用する吸着剤として
は、γアルミナ、重合リン酸を0.5〜1wt%含有す
るγアルミナ、及び、高シリカゼオライト系のシリカラ
イト(シリカ/アルミナ≧100)を挙げることができ
る。なお、硫化水素に酸素が共存する系では、クラウス
反応(H 2S+1/2 O2 →S↓+H 2O)により吸着剤
表面に硫黄が析出するおそれがあるので、これを防止す
るために、重合リン酸を0.5〜1wt%含有するγア
ルミナ、又は、高シリカゼオライト系のシリカライト
(シリカ/アルミナ≧100)を使用することが好まし
い。但し、40℃以下で吸着操作を行う場合は、上記の
硫黄の析出のおそれがないので、γアルミナも使用する
ことができる。
As the adsorbent used in this volume reduction concentration step, γ-alumina, γ-alumina containing 0.5 to 1 wt% of polymerized phosphoric acid, and silicalite of high silica zeolite type (silica / alumina ≧ 100) Can be mentioned. In a system in which oxygen coexists with hydrogen sulfide, sulfur may precipitate on the surface of the adsorbent due to the Claus reaction (H 2 S + 1/2 O 2 → S ↓ + H 2 O). It is preferable to use γ-alumina containing 0.5 to 1 wt% of polymerized phosphoric acid or high silica zeolite-based silicalite (silica / alumina ≧ 100). However, when the adsorption operation is performed at 40 ° C. or lower, γ-alumina can be used since there is no fear of the above-mentioned precipitation of sulfur.

【0009】[0009]

【実施例】硫化水素を1vol%含有する窒素ガスを用
い、図1のフローシートにしたがって希硫酸を製造し
た。吸着塔には硫化水素吸着剤として、重合リン酸を
0.5wt%含有するγアルミナ500kgを充填し、
触媒反応装置には、酸化バナジウム触媒800kgを充
填した。硫化水素を1vol%含有する窒素ガス150
0Nm3 /hをブロアで1.1atmに圧縮し、吸着温
度35℃で吸着塔に供給し、吸着剤に硫化水素を吸着
し、硫化水素濃度50ppm以下の窒素ガスを系外に放
出した。吸着工程を終了した吸着塔の前方部を真空ポン
プに連通し、0.03atmまで減圧した後、吸着工程
の吸着塔から放出される上記窒素ガスの一部を18Nm
3 /hで、減圧弁を介して上記減圧工程を終了した吸着
塔に向流で流し、硫化水素濃度20vol%のガスを2
5Nm3 /hで回収した。この回収ガスにプロパンガス
を4Nm3 /hで混合して燃焼し、SO2 4vol%、
CO2 8vol%、及び、H2 O 14vol%含有す
る窒素ガスを160Nm3 /hで回収し、アフタークー
ラで一旦40℃まで降温して水分を除去した後、再び4
00℃に昇温して酸化バナジウム触媒層に供給し、SO
2 の98%以上をSO3 に転換し、その後、熱交換器で
40℃に冷却してから水吸収塔に導入して希硫酸を得
た。硫酸の回収率は98%であった。なお、水吸収塔の
塔頂ガスは460ppmのSO2 を含有するため脱硫装
置を用いて浄化してから大気に放出した。
Example A dilute sulfuric acid was produced according to the flow sheet of FIG. 1 using nitrogen gas containing 1 vol% of hydrogen sulfide. The adsorption tower was filled with 500 kg of γ-alumina containing 0.5 wt% of polymerized phosphoric acid as a hydrogen sulfide adsorbent,
The catalytic reactor was filled with 800 kg of vanadium oxide catalyst. Nitrogen gas containing 1 vol% hydrogen sulfide 150
0 Nm 3 / h was compressed to 1.1 atm with a blower, supplied to an adsorption tower at an adsorption temperature of 35 ° C., hydrogen sulfide was adsorbed on the adsorbent, and nitrogen gas having a hydrogen sulfide concentration of 50 ppm or less was released to the outside of the system. The front part of the adsorption tower that completed the adsorption step was connected to a vacuum pump to reduce the pressure to 0.03 atm, and then a part of the nitrogen gas released from the adsorption tower in the adsorption step was set to 18 Nm.
At a flow rate of 3 / h, a gas having a hydrogen sulfide concentration of 20 vol% was flowed in a countercurrent manner through a pressure reducing valve to the adsorption tower which had completed the pressure reducing step.
It was recovered at 5 Nm 3 / h. Propane gas was mixed with this recovered gas at 4 Nm 3 / h and burned to obtain SO 2 4 vol%,
Nitrogen gas containing 8 vol% of CO 2 and 14 vol% of H 2 O was recovered at 160 Nm 3 / h, the temperature was once lowered to 40 ° C. in an aftercooler to remove water, and then 4 again.
The temperature is raised to 00 ° C. and supplied to the vanadium oxide catalyst layer, and SO
98% or more of 2 was converted to SO 3 , then cooled to 40 ° C. by a heat exchanger and then introduced into a water absorption tower to obtain dilute sulfuric acid. The recovery rate of sulfuric acid was 98%. Since the top gas of the water absorption tower contained 460 ppm of SO 2 , it was purified using a desulfurizer and then released into the atmosphere.

【0010】[0010]

【発明の効果】本発明は、上記の構成を採用することに
より、低濃度の広い濃度範囲にある硫化水素含有ガス
を、酸化バナジウム等の酸化触媒の接触酸化に適した濃
度まで容易に減容濃縮することができ、極めて効率的に
硫酸を製造することが可能になった。
According to the present invention, by adopting the above constitution, the hydrogen sulfide-containing gas in a wide concentration range of low concentration can be easily reduced to a concentration suitable for catalytic oxidation of an oxidation catalyst such as vanadium oxide. It was possible to concentrate, and it became possible to produce sulfuric acid extremely efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための希硫酸装置のフローシ
ートを示した図である。
FIG. 1 is a diagram showing a flow sheet of a dilute sulfuric acid apparatus for carrying out the present invention.

【図2】図1の硫化水素減容濃縮工程のPSAのシーケ
ンスを示した図である。
FIG. 2 is a diagram showing a PSA sequence in a hydrogen sulfide volume reduction concentration step of FIG.

【図3】従来の希硫酸装置のフローシートである。FIG. 3 is a flow sheet of a conventional dilute sulfuric acid device.

フロントページの続き (72)発明者 荒木 公一 長崎県長崎市飽の浦1番1号 三菱重工業 株式会社長崎造船所内Front Page Continuation (72) Inventor Koichi Araki 1-1 No. 1 Satinoura, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重合リン酸で処理したγアルミナ、未処
理のγアルミナ又はシリカライトを充填した吸着塔に、
硫化水素を含む混合ガスを、相対的に高圧で供給し、硫
化水素を選択的に吸着する吸着工程と、吸着工程終了後
の吸着塔を前方部から減圧し、次いで、吸着工程から放
出される非吸着成分ガスの一部をパージガスとして向流
に流して硫化水素を減容濃縮して回収する工程とを、交
互に切り換えて連続的に硫化水素濃縮ガスを回収し、こ
の濃縮ガスに補助燃料を混合して燃焼して硫化水素を二
酸化硫黄に転換し、さらに、酸化触媒で接触酸化して三
酸化硫黄を生成し、該三酸化硫黄を水と接触させて希硫
酸を製造することを特徴とする硫酸製造方法。
1. An adsorption tower filled with γ-alumina treated with polymerized phosphoric acid, untreated γ-alumina or silicalite,
A mixed gas containing hydrogen sulfide is supplied at a relatively high pressure to selectively adsorb hydrogen sulfide, and the adsorption tower after the adsorption step is decompressed from the front part and then released from the adsorption step. The non-adsorbed component gas is partially flowed as a purge gas in a countercurrent to reduce the volume of hydrogen sulfide and concentrate it to be recovered alternately to continuously collect the hydrogen sulfide concentrated gas, and this concentrated gas is used as an auxiliary fuel. Is mixed and burned to convert hydrogen sulfide to sulfur dioxide, and further catalytically oxidized by an oxidation catalyst to produce sulfur trioxide, and the sulfur trioxide is contacted with water to produce dilute sulfuric acid. And a method for producing sulfuric acid.
JP4035076A 1992-02-21 1992-02-21 Method for producing sulfuric acid from low concentration hydrogen sulfide Expired - Fee Related JP2941546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4035076A JP2941546B2 (en) 1992-02-21 1992-02-21 Method for producing sulfuric acid from low concentration hydrogen sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4035076A JP2941546B2 (en) 1992-02-21 1992-02-21 Method for producing sulfuric acid from low concentration hydrogen sulfide

Publications (2)

Publication Number Publication Date
JPH05238706A true JPH05238706A (en) 1993-09-17
JP2941546B2 JP2941546B2 (en) 1999-08-25

Family

ID=12431907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4035076A Expired - Fee Related JP2941546B2 (en) 1992-02-21 1992-02-21 Method for producing sulfuric acid from low concentration hydrogen sulfide

Country Status (1)

Country Link
JP (1) JP2941546B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042331A (en) * 2008-08-11 2010-02-25 Kyuchaku Gijutsu Kogyo Kk Ballast water treatment apparatus loaded with an ozone producing device using pressure swing adsorption method
CN109943375A (en) * 2019-03-07 2019-06-28 四川迅升油气工程技术有限公司 A kind of device and its technique for sulfur-containing gas individual well desulfurization relieving haperacidity
JP2021031305A (en) * 2019-08-14 2021-03-01 日本管機工業株式会社 Diluted sulfuric acid production device and diluted sulfuric acid production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042331A (en) * 2008-08-11 2010-02-25 Kyuchaku Gijutsu Kogyo Kk Ballast water treatment apparatus loaded with an ozone producing device using pressure swing adsorption method
CN109943375A (en) * 2019-03-07 2019-06-28 四川迅升油气工程技术有限公司 A kind of device and its technique for sulfur-containing gas individual well desulfurization relieving haperacidity
JP2021031305A (en) * 2019-08-14 2021-03-01 日本管機工業株式会社 Diluted sulfuric acid production device and diluted sulfuric acid production method

Also Published As

Publication number Publication date
JP2941546B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
CA2747166C (en) A method and apparatus for treating a sour gas
CA2746899C (en) A method and apparatus for adjustably treating a sour gas
JP4845438B2 (en) Method for removing sulfur compounds from natural gas
US7311891B2 (en) Process for the recovery of sulfur from Claus tail gas streams
US4001386A (en) Process for H2 S removal employing a regenerable polyalkanolamine adsorbent
JPH0230290B2 (en)
JP4652399B2 (en) Composition and method for treatment of exhaust gas
US8501135B1 (en) Process for the removal of sulfur compounds from gas streams
KR20200092360A (en) Process for recovery of sulfur from acid gas streams without catalytic cloth reactor
JPS6317488B2 (en)
US3637352A (en) Process of purifying sulfur-containing exhaust gases and of recovering sulfur
NZ211553A (en) Removal of sulphur compounds from off-gases
JPH02180614A (en) Process for refining high temperature reducing gas
JPH1028837A (en) Method and apparatus for removing sulfur compound contained in natural gas, etc.
JPH05238706A (en) Production of sulfuric acid from dilute hydrogen sulfide
JP3244855B2 (en) Prevention of silica scale precipitation from geothermal hot water
CA1296508C (en) Removal of water vapor diluent after regeneration of metal oxide absorbent to reduce recycle stream
EP0514941A1 (en) Process for the separation of sulphur oxides from offgases
CN114159950A (en) Flue gas desulfurization and decarburization coupled treatment system and method
JPH05228326A (en) Method for recovering dilute carbon dioxide
JPH0776348B2 (en) Refining method for high temperature reducing gas
JP2999050B2 (en) Recovery method of low concentration hydrogen sulfide
JPH0428038B2 (en)
JPS61245819A (en) Method for purifying high temperature reductive gas
KR20240084224A (en) A device for producing high-purity hydrogen from coke oven gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990525

LAPS Cancellation because of no payment of annual fees