JPS61245819A - Method for purifying high temperature reductive gas - Google Patents

Method for purifying high temperature reductive gas

Info

Publication number
JPS61245819A
JPS61245819A JP60085412A JP8541285A JPS61245819A JP S61245819 A JPS61245819 A JP S61245819A JP 60085412 A JP60085412 A JP 60085412A JP 8541285 A JP8541285 A JP 8541285A JP S61245819 A JPS61245819 A JP S61245819A
Authority
JP
Japan
Prior art keywords
gas
absorbent
reaction
absorption
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60085412A
Other languages
Japanese (ja)
Other versions
JPH0659377B2 (en
Inventor
Toshikuni Sera
世良 俊邦
Toru Seto
徹 瀬戸
Yoshiaki Obayashi
良昭 尾林
Junji Fujiki
藤木 淳次
Mitsugi Suehiro
末広 貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60085412A priority Critical patent/JPH0659377B2/en
Publication of JPS61245819A publication Critical patent/JPS61245819A/en
Publication of JPH0659377B2 publication Critical patent/JPH0659377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the concns. of CO and H2, by absorbing a S-compound with an absorbent based on metal oxide and regenerating said absorbent by O2-gas and subsequently reducing the absorbent until the concn. of reducing gas before absorption becomes same to that after absorption and repeating this operation. CONSTITUTION:Gas 1 based on H2 and CO from a gasifying process receives dust removal treatment and is flowed to an absorbing regeneration tower 6 packed with an absorbent 9 comprising oxide of a metal such as Fe, Zn, Mo, Mn, Cu or W to remove a S-compound. O2-containing gas 2 is passed through an absorbing regeneration tower 7 to regenerate the absorbent and SO2-gas 5 is obtained. Further, part of the gas from the gasifying process is flowed to an absorbing tower 8 to reduce the absorbent until the concns. of H2 and CO in the purified gas 3 become constant and the treated gas is returned to the gas 1 of the gasifying process through a valve 24. These processes are successively changed over to stabilize the concns. of H2 and CO and the purified gas is continuously supplied.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温還元性ガスの精製方法に関し、たとえば
石炭ガス化プロセスの生成ガスのようh高温の#資性ガ
ス混合物中忙含憧れる硫化水素を最も合理的に除去する
高温還元性ガスの精製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for purifying high-temperature reducing gases, such as the product gas of a coal gasification process. This invention relates to a method for purifying high-temperature reducing gas that most rationally removes hydrogen.

(従来の技術) 近年1石油費源の枯渇、価格の高騰から、燃料(又は原
料)の多様化が叫ばれ、石炭や粗悪重質油(タールサン
ド油、オイルシェール油、大慶重油、マヤ原油、或いは
減圧残油など)の利用技術の開発が進められている。石
炭や重質油をガス化して発送や燃料及び合成原料とする
方法はその代表的な一例である。
(Conventional technology) In recent years, diversification of fuels (or raw materials) has been called for due to the depletion of petroleum sources and soaring prices. , vacuum residual oil, etc.) is being developed. A typical example is the method of gasifying coal or heavy oil to be used as shipping, fuel, or synthetic raw material.

しかし、このガス化生成ガスには原料の石炭や重質油に
よって違うが数100〜数11000pp o硫化水素
を含み、これは公害防止上、或いは後流機器の腐食や触
媒の被毒防止のため。
However, this gasification product gas contains hydrogen sulfide of several hundred to several thousand ppo, depending on the raw material coal or heavy oil, and this is used to prevent pollution, or to prevent corrosion of downstream equipment and poisoning of catalysts. .

是非、除去が必要である。It is necessary to remove it.

この除去方法としては湿式法と乾式法があるが、湿式法
は処理ガスを冷却しなければならず熱経済上不利であり
、かつ共存成分(タール、ナフタリン、ハ四ゲン、NH
s、 HON、 008媒じんなど)の除去あるいは吸
収液の汚染、劣化防止のための前処理や廃水処理のため
の設備が必要となり、プロセスが複雑になる。
There are wet and dry methods for this removal, but the wet method requires cooling the process gas, which is disadvantageous in terms of thermoeconomics, and coexisting components (tar, naphthalene, hydrogen, NH,
The process becomes complicated because pretreatment and wastewater treatment equipment are required to remove contaminants such as HON, HON, 008 dust, etc., or to prevent contamination and deterioration of the absorption liquid.

一方乾式法は熱経済的にも有利で、プロセス構成も簡素
なことから金属酸化物を主成分とする吸着剤により高温
で硫化物として吸着除去する方法が一般的罠なっている
。吸着剤としてはFa、 Zn、 Mo、 Mn、 C
u、 Wなどの金属酸化物が使用され、2505450
℃でH2Sと反応させるが、Fa  の場合の吸着反応
は(11〜(3)式に示すように進むとされている。
On the other hand, the dry method is thermoeconomically advantageous and has a simple process configuration, so it has become a common practice to adsorb and remove sulfides at high temperatures using an adsorbent containing metal oxides as the main component. Adsorbents include Fa, Zn, Mo, Mn, and C.
Metal oxides such as u, W are used, and 2505450
The adsorption reaction in the case of Fa is said to proceed as shown in equations (11 to (3)).

Fe2O,+ H2→2FaO+ H2O・・曲(1)
Fe203 + Go →2FaO+ Co2−−−−
−−(2)FsO+ H2S 4 F@S + H2O
曲” (3)次いで吸着反応後の吸着剤は酸素含有ガス
で(4)式に示すように金属酸化物に再生され、この吸
着、再生反応の繰返しで高温還元ガス中のイオウ化合物
は亜硫酸ガスとして回収除去される。
Fe2O, + H2 → 2FaO+ H2O...Song (1)
Fe203 + Go →2FaO+ Co2---
--(2) FsO+ H2S 4 F@S + H2O
(3) Next, the adsorbent after the adsorption reaction is regenerated into metal oxide with oxygen-containing gas as shown in equation (4), and by repeating this adsorption and regeneration reaction, the sulfur compound in the high-temperature reducing gas is converted to sulfur dioxide gas. It will be collected and removed as such.

4Fe8 + 702−+ 2Fe20. + 4H2
0”” (4)このプロセスで使用される吸着剤は前述
の金属酸化物を単独あるいは耐熱性の多孔買物質に担持
したものを、移動床方式の場合は球状あるいは円柱状に
成形したものが、固定床方式の場合はハニカム状に成形
したものが従来より使用されてきた。
4Fe8 + 702-+ 2Fe20. +4H2
(4) The adsorbent used in this process is the above-mentioned metal oxide alone or supported on a heat-resistant porous material, and in the case of a moving bed method, it is formed into a spherical or cylindrical shape. In the case of fixed bed systems, honeycomb-shaped materials have traditionally been used.

吸着反応はFe2O3がFeOt−経由して逐次的KF
agに進むことと、Fe2O3からFeOへの反応は化
学反応律速で、FaOからFe8への反応は反応生成物
層内拡散律速で進むこと、さらKF・0からFeSへの
反応速度はF6□03からFeOへの反応速度に比較し
て使用温度域では40倍程度遅いとされている。また移
動床方式で使用される球状の吸着剤はダスト閉塞を防止
する観点から実用上は粒子径5〜10鵬程度のものが使
用され。
In the adsorption reaction, Fe2O3 is sequentially converted to KF via FeOt-.
ag, the reaction from Fe2O3 to FeO is rate-determined by a chemical reaction, the reaction from FaO to Fe8 is rate-determined by diffusion within the reaction product layer, and the reaction rate from KF・0 to FeS is F6□03 It is said that the reaction rate from FeO to FeO is about 40 times slower in the operating temperature range. In addition, the spherical adsorbent used in the moving bed system has a particle size of about 5 to 10 mm in practical use from the viewpoint of preventing dust clogging.

11)(2)式と(31式の反応速度の差から(11(
21式は吸収剤内部まで進行するのに対し、(3)式は
吸収剤表層1謡程度しか利用されず、吸着破過に達する
ので再生層1iK移さざるを得ない。石炭ガス化ガスの
如き還元ガスからイオウ化合物を除去して精製されたガ
スはエネルギー源として利用されるので、Go、 H2
濃度を安定して製造するプロセスにするのが好ましく、
[1) 12)式の反応を極力抑制しなければならない
。移動床方式では吸着工程と再生工程が連続的に繰返さ
れるので上記の技術的lll!題は克服しやすいが、固
定床方式では吸着工程と再生層aを断続的に繰返すので
11) From the difference in reaction rate between equation (2) and equation (31), (11(
In formula 21, the adsorption proceeds to the inside of the absorbent, whereas in formula (3), only about one layer of the surface layer of the absorbent is used, and adsorption breakthrough is reached, so the regeneration layer 1iK must be transferred. Gas purified by removing sulfur compounds from reducing gas such as coal gasification gas is used as an energy source, so Go, H2
It is preferable to use a process that produces a stable concentration;
[1] The reaction of formula 12) must be suppressed as much as possible. In the moving bed method, the adsorption process and regeneration process are repeated continuously, so the above technical problems are met! This problem is easy to overcome because in the fixed bed method, the adsorption process and regeneration layer a are repeated intermittently.

吸着層と再生層の切替では、精製ガス中のCO。In switching between the adsorption layer and the regeneration layer, CO in the purified gas.

828度が吸着反応開始時低下するので、高温還元性ガ
スの精製方法としては実用上好ましくない。
Since the temperature drops to 828 degrees at the start of the adsorption reaction, it is not practically preferred as a method for purifying high-temperature reducing gases.

(発明が解決しようとする問題点) 本発明は、これら従来の固定床方式がかかえている欠点
を克服するためになされたものであり、高温還元性ガス
中のイオウ化合物を吸着除去するプロセスにおいてN製
ガス中のGo、 H2濃度を安定して後流設備に供給す
る手段を提供するものである。
(Problems to be Solved by the Invention) The present invention has been made in order to overcome the drawbacks of these conventional fixed bed systems. This provides a means for stably supplying Go and H2 concentrations in N gas to downstream equipment.

(問題点を解決する次めの手段) 本発明は、石炭や重質油などのガス化によって得られる
高温還元性ガス中に含まれるイオウ化合物を、金属酸化
物を主成分とする吸着剤で吸着除去する方法において、
該イオウ化合物を吸着した吸着剤を酸素含有ガスで再生
する工程。
(Next means for solving the problem) The present invention uses an adsorbent mainly composed of metal oxides to remove sulfur compounds contained in high-temperature reducing gas obtained by gasifying coal, heavy oil, etc. In the adsorption removal method,
A step of regenerating the adsorbent that has adsorbed the sulfur compound with an oxygen-containing gas.

次いで再生されて金属酸化物に戻った該吸着剤前後の精
製対象の還元ガス濃度が同一になるまで還元する工S、
次いで該高温還元性ガスを通気して該吸着剤で該イオウ
化合物を吸着除去する工程を連続的に繰り返すことによ
シ精製ガス中の還元性ガス濃度を安定化させることを特
徴とする高温還元性ガスの精製法に関するものである。
Next, a process S of reducing the reducing gas concentration of the purified target before and after the adsorbent, which has been regenerated and returned to the metal oxide, becomes the same;
A high-temperature reduction characterized in that the concentration of the reducing gas in the purified gas is stabilized by continuously repeating the step of aerating the high-temperature reducing gas and adsorbing and removing the sulfur compound with the adsorbent. This paper relates to a method for purifying sexual gases.

以下実施態様を示す第1図により本発明方法を詳述する
。ガス化炉で部分燃焼ガス化されたH2及びcod主成
分とするガス化ガス1は除じんされてイオウ化合物を除
去する工程に導かれる。この除じん後のガス化ガス1は
石炭の糧類やガス化条件によって異なるが、数10〜数
1000 ppm0H28や00B、 NH,、DON
などを含んでおシ、ガス温度はガス化炉出口のスチーム
ヒータ等による熱回収で250〜500℃、圧力はガス
化炉の形式によって異なるが常圧〜25 ataである
The method of the present invention will be explained in detail below with reference to FIG. 1 showing an embodiment. The gasified gas 1, which is mainly composed of H2 and COD and which has been partially combusted and gasified in the gasifier, is subjected to dust removal and guided to a step of removing sulfur compounds. The gasified gas 1 after this dust removal varies depending on the type of coal and gasification conditions, but it ranges from several tens to several thousand ppm 0H28, 00B, NH,, DON.
The gas temperature is 250 to 500°C due to heat recovery by a steam heater or the like at the outlet of the gasifier, and the pressure is normal pressure to 25 ata, although it varies depending on the type of gasifier.

本発明では除じん後のガス化ガス1tsye*Zn、 
Mo、 Mn、 Cu、 W4%の金属酸化物からなる
吸収剤9を充填した41吸収再生塔6に流路切替パルプ
10を介して通気することでガス化ガス1中のイオウ化
合物は硫化物として吸着除去される。吸収剤9は粒状、
円柱状、ハニカム状、板状などのいずれの形状でも良く
、アルばす。
In the present invention, the gasified gas 1tsye*Zn after dust removal,
The sulfur compounds in the gasification gas 1 are converted into sulfides by venting through the flow path switching pulp 10 to the 41 absorption regeneration tower 6 filled with an absorbent 9 made of metal oxides containing 4% of Mo, Mn, Cu, and W. Removed by adsorption. The absorbent 9 is granular,
It can be of any shape such as cylindrical, honeycomb, or plate-like.

チタニア、シリカ、ゼオライトなどの多孔質の耐熱性基
材に上述の金属酸化物を担持し友ものが使用される。
A porous heat-resistant base material such as titania, silica, or zeolite is used to support the above-mentioned metal oxide.

Fe2O3を吸収剤成分とした場合の反応式は前述の(
11(21(3)式に示すとおシであシカガス化ガス1
に共存する微量のIONやcoSも次式に示す反応で一
部除去される。
The reaction formula when Fe2O3 is used as an absorbent component is the above-mentioned (
11 (21 (3) shows that the gasification gas 1
Trace amounts of ION and coS coexisting in the ion are also partially removed by the reaction shown in the following equation.

HGN + H20→NH,+ C0 003+HO→C02+H2S 反応温度は250S450℃、SU値(ガス流量Nm’
、/h /吸収剤容量m3)は1,000〜20.00
07  程度で、ガス中のH2Sの90%以上が除去さ
れ、流路切替パルプ25を介して精製ガス3が得られる
。この時流路切替バルブ13.16.19.22は閉に
なっている。
HGN + H20→NH, + C0 003+HO→C02+H2S Reaction temperature is 250S450℃, SU value (gas flow rate Nm'
, /h/absorbent capacity m3) is 1,000 to 20.00
At about 0.07 hr, more than 90% of H2S in the gas is removed, and purified gas 3 is obtained through the flow path switching pulp 25. At this time, the flow path switching valves 13.16.19.22 are closed.

一方42吸収再生塔7では41吸収再生塔6と同一の吸
収剤9が充填されており、イオウ化合物の吸着によシ破
過に達した吸収剤に流路切替パルプ17を介して酸素含
有ガス2を通気して、次式に示すような焙焼反応によシ
吸収剤を再生させると同時に流路切替パルプ20を介し
て濃厚なS02ガス5を得る。この時流路切替バルブ1
1,14,23.26は閉になっている。
On the other hand, the 42 absorption and regeneration tower 7 is filled with the same absorbent 9 as the 41 absorption and regeneration tower 6, and oxygen-containing gas is passed through the flow path switching pulp 17 to the absorbent that has reached breakthrough by adsorption of sulfur compounds. 2 is aerated to regenerate the absorbent by a roasting reaction as shown in the following equation, and at the same time, a rich S02 gas 5 is obtained via the flow path switching pulp 20. At this time, flow path switching valve 1
1, 14, 23, and 26 are closed.

4Fa8 + 70−+ 2Fe20s+4802上記
反応は発熱反応であり、酸素含有ガス29通気と同時に
急激に起るので、A2吸収再生塔7の出口ガスを循環ラ
イン4で循環させながら、再生反応に必要なtR素を低
濃度で全体に均一に供給するなどにより、m度をコント
ロールすることが好ましい。この再生温度は250S6
00℃で行われ、吸収剤9から放散された濃厚なSO2
ガス5は硫酸製造原料として利用するか、あるいは単体
硫黄や固体の硫黄化合物として回収される工程に導かれ
る。
4Fa8 + 70-+ 2Fe20s+4802 The above reaction is exothermic and occurs rapidly at the same time as the oxygen-containing gas 29 is vented. It is preferable to control the m degree by uniformly supplying the element at a low concentration throughout. This playback temperature is 250S6
Concentrated SO2 dissipated from absorbent 9, carried out at 00 °C
The gas 5 is used as a raw material for producing sulfuric acid, or is led to a process where it is recovered as elemental sulfur or solid sulfur compounds.

さらにA3吸収再生塔では41吸収再生塔6゜A2吸収
再生塔7と同一の吸収剤9が充填されており、再生処理
で金属酸化物の状態にされ九吸収剤9に除じん後のガス
化ガス1の一部を流路切替パルプ15を介して通気させ
て、主として+11 +21式の還元反応を行わせる。
In addition, the A3 absorption and regeneration tower is filled with the same absorbent 9 as the 41 absorption and regeneration tower 6゜A2 absorption and regeneration tower 7, which is converted into a metal oxide state through regeneration treatment and gasified after removal of dust into the 9 absorbent 9. A part of the gas 1 is vented through the flow path switching pulp 15 to mainly perform a +11 +21 type reduction reaction.

この還元反応はA1吸収再生塔6で行われている還元反
応と同じであるが、精製ガス3中のA2.CO濃度が一
定になるまでの予備還元反応であシ、流路切替パルプ2
4を介して除じん後のガス化ガス1に戻される。この時
流路切替バルブ12 、18゜21.27は閉になって
いる。
This reduction reaction is the same as the reduction reaction performed in the A1 absorption regeneration tower 6, but the A2. Pre-reduction reaction until CO concentration becomes constant, flow path switching pulp 2
4 and is returned to the gasified gas 1 after dust removal. At this time, the flow path switching valve 12, 18°21.27 is closed.

このような予備還元反応の段階では(3)式のH2Sの
吸着反応も同時に起るが、(1)+21式の万石が(3
)式の反応より早いので予備還元反応終了後は除しん後
のガス化ガス1の通気を停止して、次工程の吸着反応開
始のために待期させておく。
At the stage of such preliminary reduction reaction, the H2S adsorption reaction of equation (3) also occurs simultaneously, but the mangoku of equation (1) + 21 is
) Since the reaction is faster than the reaction of the formula (2), after the preliminary reduction reaction is completed, the ventilation of the gasified gas 1 after removal is stopped and the reaction is waited for the start of the adsorption reaction in the next step.

また予備還元反応工程での処理ガス量を吸着反応工程の
処理ガス量に対して精製ガス3中のH2,Co 濃度の
変動が許容できる範囲で少なくすれば、第1図に示した
ようにAs吸収再生塔8出口のガスは点線部を介して精
製ガス3のラインに流すことも考えられる。いずれ圧し
ても予備還元反応工程終了後においてもイオウ化合物の
吸着反応を生じさせる作用は、実用上問題にならない程
十分に備えておシ、次段階のイオウ化合物の吸着除去反
応開始と同時に、精製ガス3に含有されるH2. co
 mtxt一定にする運転を可能にする。従って後工程
の精製ガス3をガスタービン燃料や合成ガス燃料として
使用する時に、H2,Go 濃度を安定させて連続供給
することが可能となる。
Furthermore, if the amount of gas to be treated in the pre-reduction reaction step is made smaller than the amount of gas to be treated in the adsorption reaction step within a range that allows variation in the concentration of H2 and Co in the purified gas 3, As shown in FIG. It is also conceivable that the gas at the outlet of the absorption regeneration tower 8 is allowed to flow into the purified gas line 3 via the dotted line. The effect of causing the adsorption reaction of sulfur compounds even after the completion of the pre-reduction reaction process at any pressure must be sufficiently prepared to the extent that it does not pose a practical problem. H2 contained in gas 3. co
Enables operation with constant mtxt. Therefore, when the purified gas 3 in the subsequent process is used as gas turbine fuel or synthesis gas fuel, it is possible to stabilize the H2 and Go concentrations and continuously supply it.

このようにこれらsNi類の吸着反応、再生反応、予備
還元反応t−各吸収再生塔で連続的に繰シ返すことによ
シ精製ガス中のH2,Co  などの燃料源として使用
される還元性ガス濃度を安定化させることが可能となる
In this way, these sNi adsorption reactions, regeneration reactions, and pre-reduction reactions are continuously repeated in each absorption and regeneration tower to reduce H2, Co, etc. in the purified gas, which can be used as a fuel source. It becomes possible to stabilize the gas concentration.

なお各吸収再生塔の前後についている流路切替バルブの
開閉状況をまとめると下表のようになる。
The table below summarizes the opening and closing status of the flow path switching valves installed before and after each absorption regeneration tower.

流路切替バルブ10,11,12,25゜26.27は
除しん後のガス化ガス1から精製ガス3を得るための流
路切替用であり、吸着反応を行っている吸収再生塔前後
のバルブが開き。
The flow path switching valves 10, 11, 12, 25゜26.27 are for changing the flow path to obtain the purified gas 3 from the gasified gas 1 after removal, and are used before and after the absorption regeneration tower performing the adsorption reaction. The valve opens.

それ以外は閉になっている。また流路切替パルプ13,
14,15,22,23.24は再生後の吸収剤を予備
還元するために除じん後のガス化ガス1の一部を導入し
、予備還元後にガス化ガスに戻すための流路切替用であ
り、予備還元反応を行っている吸収再生塔前後のバルブ
が開き、それ以外は閉に々つている。さらに流路切替パ
ルプ16,17,18,19,20゜21は再生反応に
必要な酸素含有ガス2を通気循環させてSO,濃厚ガス
を得るための流路切替用であシ、再生反応を行っている
吸収再生塔前後のバルブが開き、それ以外は閉になって
いる。
Otherwise it is closed. In addition, the flow path switching pulp 13,
14, 15, 22, 23, and 24 are for flow path switching to introduce a part of the gasified gas 1 after dust removal in order to pre-reduce the regenerated absorbent and return it to the gasified gas after the pre-reduction. The valves before and after the absorption and regeneration tower performing the preliminary reduction reaction are open, and the rest are closed. Further, the flow path switching pulps 16, 17, 18, 19, 20゜21 are used to switch the flow paths for obtaining SO and rich gas by ventilating and circulating the oxygen-containing gas 2 necessary for the regeneration reaction. The valves before and after the absorption and regeneration tower are open, and the rest are closed.

(効果) 以上述べたように本発明方法によhば精製処理しようと
する高温還元性ガス中のH2,Co  などの燃料#を
一時的に減少させることなく、安定させて次工程に供給
できるイオウ化合物の除去精製法である。
(Effects) As described above, according to the method of the present invention, fuels such as H2 and Co in the high-temperature reducing gas to be purified can be stabilized and supplied to the next process without temporarily reducing them. This is a purification method for removing sulfur compounds.

(実施例) 市販の粒径5s+sのアナターゼ型酸化チタン担体に硝
酸第2鉄水溶液の含浸、乾燥(110℃x1ohr)操
作を繰シ返すことで、  丁102.76.01量%、
F・20.24.0重1に%を含有する脱硫剤を調製し
、450℃で5時間焼成後、表1に示す試験条件で吸収
反応時の脱硫剤出口ガス中のco、 H2,Co2. 
H2fJ  濃度の経時変化を求めた。
(Example) By repeatedly impregnating a commercially available anatase-type titanium oxide carrier with a particle size of 5s+s with an aqueous ferric nitrate solution and drying (110°C x 1ohr), 102.76.01% by weight,
A desulfurizing agent containing F.20.24.0% by weight was prepared, and after firing at 450°C for 5 hours, CO, H2, Co2 in the desulfurizing agent outlet gas during absorption reaction under the test conditions shown in Table 1. ..
Changes in H2fJ concentration over time were determined.

その結果を第2図に示す。The results are shown in FIG.

表1  吸収反応試験条件 第2図かられかるように吸着反応開始当初は吸収剤出口
のH2,Go fi度が低く、吸着時間が10分位まで
漸増し、10分以後は安定した濃度になっている。この
ことは吸着反応開始時にH2,Go  が吸収剤に吸着
される反応が起っていることを示すものであシ、再生反
応終了後ただちに吸着反応を行うと本実施例の試験条件
下では約10分間Go、 H2濃度の低い精製ガスが発
生することになる。またH2Sの欲情破過時間は20〜
30分であり、本発明のように予備還元工程を再゛生工
程と吸着工程の間に設ける効果は大きい。なお142図
でCO濃度が20%で定常になっているのは下記反応が
併発しているためと推定される。
Table 1 Absorption reaction test conditions As can be seen from Figure 2, at the beginning of the adsorption reaction, the H2 and Go fi degrees at the absorbent outlet were low, the adsorption time gradually increased until about 10 minutes, and after 10 minutes, the concentration became stable. ing. This indicates that a reaction in which H2 and Go are adsorbed by the absorbent occurs at the start of the adsorption reaction.If the adsorption reaction is performed immediately after the regeneration reaction is completed, under the test conditions of this example, approximately Go for 10 minutes, purified gas with low H2 concentration will be generated. Also, H2S's lust breakthrough time is 20 ~
30 minutes, and the effect of providing a preliminary reduction step between the regeneration step and the adsorption step as in the present invention is significant. It should be noted that the reason why the CO concentration is steady at 20% in Figure 142 is presumed to be due to the simultaneous occurrence of the following reactions.

00 + HO−+ Co2+ 8200 + HO-+ Co2+ 82

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施例を説明するための図であシ
、第2図は本発明の実施例の結果を示す図である。 1・・・除じ′ん後のガス化ガス 2・・・酸素含有ガス 3・・・精製ガス 4・・・循環ライン 5・・・so2ガス 6・・・ム1吸収再生塔 7・・・雇2吸収再生塔 8・・・Ii5吸収再生塔 9・・・吸収剤 10へ27・・・流路切替バルブ 復代理人  内 1)  明 復代理人  萩 原 亮 − 第1図
FIG. 1 is a diagram for explaining an example of the method of the present invention, and FIG. 2 is a diagram showing the results of an example of the present invention. 1...Gasified gas after removal 2...Oxygen-containing gas 3...Purified gas 4...Circulation line 5...SO2 gas 6...Mu1 Absorption and regeneration tower 7...・Hire 2 absorption regeneration tower 8...Ii5 absorption regeneration tower 9...To absorbent 10 27...Flow path switching valve agent 1) Meifu agent Ryo Hagiwara - Figure 1

Claims (1)

【特許請求の範囲】[Claims] 高温還元性ガス中に含まれるイオウ化合物を、金属酸化
物を主成分とする吸収剤で吸着除去する方法において、
該イオウ化合物を吸着した吸収剤を酸素含有ガスで再生
する工程、次いで再生された吸収剤を高温還元性ガスで
該吸収剤前後の精製の対象となる還元ガス濃度が同一に
なるまで還元する工程、次いで該高温還元性ガスを通気
して該吸収剤で該イオウ化合物を吸着除去する工程を連
続的に繰り返すことにより精製ガス中の還元性ガス濃度
を安定化させることを特徴とする高温還元性ガスの精製
法。
In a method of adsorbing and removing sulfur compounds contained in high-temperature reducing gases with an absorbent mainly composed of metal oxides,
A step of regenerating the absorbent that has adsorbed the sulfur compound with an oxygen-containing gas, and then reducing the regenerated absorbent with a high-temperature reducing gas until the concentration of the reducing gas to be purified before and after the absorbent becomes the same. , and then continuously repeating the steps of aerating the high-temperature reducing gas and adsorbing and removing the sulfur compound with the absorbent, thereby stabilizing the reducing gas concentration in the purified gas. Gas purification method.
JP60085412A 1985-04-23 1985-04-23 Refining method for high temperature reducing gas Expired - Lifetime JPH0659377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60085412A JPH0659377B2 (en) 1985-04-23 1985-04-23 Refining method for high temperature reducing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60085412A JPH0659377B2 (en) 1985-04-23 1985-04-23 Refining method for high temperature reducing gas

Publications (2)

Publication Number Publication Date
JPS61245819A true JPS61245819A (en) 1986-11-01
JPH0659377B2 JPH0659377B2 (en) 1994-08-10

Family

ID=13858087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60085412A Expired - Lifetime JPH0659377B2 (en) 1985-04-23 1985-04-23 Refining method for high temperature reducing gas

Country Status (1)

Country Link
JP (1) JPH0659377B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203020A (en) * 1988-02-10 1989-08-15 Central Res Inst Of Electric Power Ind Refining process for high temperature reducing gas
JPH0275320A (en) * 1988-09-13 1990-03-15 Central Res Inst Of Electric Power Ind Refining of high temperature reducing gas
US5427752A (en) * 1990-10-08 1995-06-27 Mitsubishi Jukogyo Kabushiki Kaisha Process for purifying high-temperature reducing gases
CN102580344A (en) * 2012-02-13 2012-07-18 云南昆钢煤焦化有限公司 Stabilizer waste gas recycling device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225621A (en) * 1984-04-24 1985-11-09 Babcock Hitachi Kk Desulfurization of high temperature gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225621A (en) * 1984-04-24 1985-11-09 Babcock Hitachi Kk Desulfurization of high temperature gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203020A (en) * 1988-02-10 1989-08-15 Central Res Inst Of Electric Power Ind Refining process for high temperature reducing gas
JPH0275320A (en) * 1988-09-13 1990-03-15 Central Res Inst Of Electric Power Ind Refining of high temperature reducing gas
US5427752A (en) * 1990-10-08 1995-06-27 Mitsubishi Jukogyo Kabushiki Kaisha Process for purifying high-temperature reducing gases
CN102580344A (en) * 2012-02-13 2012-07-18 云南昆钢煤焦化有限公司 Stabilizer waste gas recycling device

Also Published As

Publication number Publication date
JPH0659377B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
EP2355918B1 (en) Multiple fixed-fluidized beds for contaminant removal
GB2202546A (en) Desulfurizing agent, process for treating hydrogen sulfide-containing gas, coal gasification system and power generation system
US4251495A (en) Process for purifying a hydrogen sulfide containing gas
JPS5845101A (en) Method of reducing total sulfur content of charge gas having high carbon dioxide content
CA2782944C (en) Process for the removal of sulfur compounds from gas streams
JPS6317488B2 (en)
US5252528A (en) Hot gas, regenerative, supported H2 S sorbents
JPH02180614A (en) Process for refining high temperature reducing gas
JPS61245819A (en) Method for purifying high temperature reductive gas
JPS63291986A (en) Purification of high-temperature reducing gas
JP2633886B2 (en) Desulfurizing agent and method for treating hydrogen sulfide-containing gas using it
SU1582975A3 (en) Method of purifying gases from mercaptanes
JPS63122790A (en) Purification of high-temperature reducing gas
JPH01254226A (en) Purification of high temperature reductive gas
JPS6039417B2 (en) Method for regenerating solid reactants
JP2575771B2 (en) Dry and wet desulfurization method for high-temperature gas
EP0256741A2 (en) Sulphur recovery process using metal oxide absorbent with reducing gas purge
JPS59184291A (en) Refining of high-temperature reducing gas
JPH0790137B2 (en) Refining method for high temperature reducing gas
JPS61190592A (en) Purification of high-temperature reducing gas
AU2009311624B9 (en) Multiple fixed-fluidized beds for contaminant removal
JPH0214714A (en) Removal of organic sulfur compound in gas by dry process
JPS61252290A (en) Method of refining high-temperature reducing gas
JPH0443688B2 (en)
Dorchak et al. Elemental sulfur recovery from desulfurization sorbents in advanced power systems

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term