JPS63291986A - Purification of high-temperature reducing gas - Google Patents

Purification of high-temperature reducing gas

Info

Publication number
JPS63291986A
JPS63291986A JP62127236A JP12723687A JPS63291986A JP S63291986 A JPS63291986 A JP S63291986A JP 62127236 A JP62127236 A JP 62127236A JP 12723687 A JP12723687 A JP 12723687A JP S63291986 A JPS63291986 A JP S63291986A
Authority
JP
Japan
Prior art keywords
gas
regeneration
reducing gas
temperature reducing
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62127236A
Other languages
Japanese (ja)
Other versions
JPH0776348B2 (en
Inventor
Yoshitaka Nitta
新田 義孝
Toshio Nakayama
中山 稔夫
Yuzo Shirai
裕三 白井
Hiromitsu Matsuda
裕光 松田
Toru Seto
徹 瀬戸
Toshikuni Sera
世良 俊邦
Mitsugi Suehiro
末弘 貢
Junji Fujiki
藤木 淳次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Mitsubishi Heavy Industries Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Mitsubishi Heavy Industries Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP62127236A priority Critical patent/JPH0776348B2/en
Publication of JPS63291986A publication Critical patent/JPS63291986A/en
Publication of JPH0776348B2 publication Critical patent/JPH0776348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To stably purify the titled gas without decreasing fuel source, by regenerating an adsorbent containing adsorbed sulfur compound with an oxygen-containing gas, reducing the adsorbent with a part of a high-temperature reducing gas and removing sulfur compound in the high-temperature reducing gas using the adsorbent. CONSTITUTION:A high-temperature reducing gas 1 partially burnt and gasified in a gasification furnace is introduced through a change-over valve 10 into an adsorption column 6 which is a first reactor filled with an adsorbent 9. After removing sulfur compound in the reducing gas by the above treatment, the pressure of the gas is reduced using a gas vent and the gas is passed through a gas cooler 31 and stored in a gas holder 33. An oxygen-containing gas 2 is introduced through a valve 16 into the reducing gas to a prescribed pressure to regenerate the adsorbent 9. The high- temperature regenerated gas left in a reactor is extracted under reduced pressure and a part of the high-temperature reducing gas is introduced through a valve 13 into the reactor to a prescribed pressure to reduce the adsorbent and reuse the adsorbent for the adsorption of sulfur compound. The high-temperature reducing gas 1 can be continuously refined to obtain refined gas 3 by successively performing the adsorption, regeneration and reduction in the 1st-3rd reactors 6, 7, 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温還元性ガスの精製方法に関し、たとえば石
炭ガス化プロセスの生成ガスのような高温の還元性ガス
混合物中に含まれる硫化水素を合理的に除去する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for purifying high-temperature reducing gases, for example, for purifying hydrogen sulfide contained in a high-temperature reducing gas mixture, such as the product gas of a coal gasification process. Concerning a reasonable method of removal.

〔従来の技術〕[Conventional technology]

近年、石油資源の枯渇、価格の高騰から燃料(又は原料
)の多様化が叫ばれ、石炭や重質油(タールサンド油、
オイyシエー〜油、大慶重油、マヤ原油、或いは減圧残
油壜ど)の利用技術の開発が進められている。石炭や重
質油をガス化して発電や燃料及び合成原料とする方法は
七の代表的な一例である。
In recent years, there has been a call for diversification of fuels (or raw materials) due to the depletion of oil resources and soaring prices.
Techniques for utilizing oil, Daqing heavy oil, Maya crude oil, vacuum residual oil bottles, etc. are being developed. The method of gasifying coal and heavy oil to use for power generation, fuel, and synthetic raw materials is a typical example of the seven methods.

しかし、このガス化生成ガスには原料の石炭や重質油に
よって違うが数100〜数11000ppの硫化水素を
含み、これは公害防止上或いは後流機器の腐食や触媒の
被毒防止のため是非、除去が必要である。
However, this gasification product gas contains hydrogen sulfide ranging from several hundred ppm to several 11,000 ppp, depending on the raw material coal and heavy oil, and this is necessary to prevent pollution, corrosion of downstream equipment, and poisoning of catalysts. , removal is necessary.

この硫化水素除去プロセスに必要な具備条件は次のとお
シである。
The necessary conditions for this hydrogen sulfide removal process are as follows.

(1)  ガス化生成ガスは高温(炉出口、1000〜
2000℃、一部熱回収されても300〜500℃)高
圧(加圧式ガス炉の場合)であシ、後流の発電(ガスタ
ービンとスチームタービンを組合せた複合サイクル発電
方式)や、燃料及び合成原料として使用する場合も殆ん
ど高温、高圧で使う場合が多いので、その間に入る硫化
水素除去プロセスも高温、高圧の乾式法が熱経済上有利
である。ちなみに石炭ガス化発電の場合、乾式法と湿式
法では発電効率で4〜5xの差があると云われている。
(1) Gasification product gas is at high temperature (furnace outlet, 1000~
2000℃, 300-500℃ even with partial heat recovery) high pressure (in the case of a pressurized gas furnace), downstream power generation (combined cycle power generation method combining a gas turbine and a steam turbine), fuel and When it is used as a synthetic raw material, it is often used at high temperature and high pressure, so a dry method using high temperature and high pressure for the hydrogen sulfide removal process that occurs during that process is advantageous from a thermoeconomic standpoint. Incidentally, in the case of coal gasification power generation, it is said that there is a difference of 4 to 5 times in power generation efficiency between the dry method and the wet method.

(2)副産物は取扱上或いは市場性からみて、そのニー
ズに合ったものにすることが好ましい。
(2) From the viewpoint of handling and marketability, it is preferable to use by-products that meet the needs.

ガス化プロセスが発電や燃料及び合成原料に使われ始め
ると、その副産物墓は莫大な量となシ、関連市場へのイ
ンパクトは大きく副産物の形は重要な因子である。
When the gasification process begins to be used for power generation, fuel, and synthetic raw materials, the amount of by-products will be enormous, and the impact on related markets will be large, and the form of the by-products will be an important factor.

(3)プロセスが簡単で合理的であることが必要である
。実用化に当っては、最終的にはプランFの経済性(固
定費+運転費)で評価されるので、プロセスが簡単で経
済性に優れていることが最も重要である。
(3) The process must be simple and rational. When it comes to practical application, the economic efficiency of Plan F (fixed cost + operating cost) will ultimately be evaluated, so it is most important that the process be simple and economical.

(4)プラントの安定運転に関する信頼性が高いことが
必要である0発電プラントや化学プラントに組み込まれ
るため、プラントの安定運転性に関しては一部以上の信
頼性の高いものであることが必要である。
(4) It is necessary to have high reliability in terms of stable operation of the plant. Since it is incorporated into a power generation plant or a chemical plant, it is necessary to have high reliability in terms of stable operation of the plant. be.

また硫化水素ガスの処理方法としては、次のようなもの
が既に知られている。
Furthermore, the following methods are already known as methods for treating hydrogen sulfide gas.

1)湿式法 a)吸収・脱離法;低温、高圧でメタノールやポリエチ
レングリコ−μなどの溶剤で吸収し、高温、低圧で脱離
する方法で、レクチシーy法、セVクシーρ法などがあ
る。
1) Wet method a) Absorption/desorption method: Absorb with a solvent such as methanol or polyethylene glycol-μ at low temperature and high pressure, and desorb at high temperature and low pressure. be.

b)吸収酸化法;炭酸カリなどのアルカリ性水溶液に吸
収し触媒の存在下で空気で部分酸化し単体硫黄を生成さ
せる方法で、タカハックス法、スFレットフォード法な
どがある。
b) Absorption oxidation method: A method in which elemental sulfur is produced by absorbing it in an alkaline aqueous solution such as potassium carbonate and partially oxidizing it with air in the presence of a catalyst. Examples include the Takahax method and the Stretford method.

ii)乾式法 a)鉄や亜鉛などの金属酸化物で高温で硫化物として吸
着除去する方法であシ、アイアンボックス法などがある
ii) Dry method a) A method in which metal oxides such as iron or zinc are adsorbed and removed as sulfides at high temperatures, such as the iron box method.

b)硫化水素を一部酸化して亜硫酸ガスとの混合ガスと
し、触媒の存在下で高温で反応させ単体硫黄とする方法
であシ、クラウス法などがある。
b) A method of partially oxidizing hydrogen sulfide to form a mixed gas with sulfur dioxide gas and reacting it at high temperature in the presence of a catalyst to form elemental sulfur, such as the Claus method.

上記、1)のa)sb)  の方法は、コークス炉ガス
(COG)や石油精製工程でのガス精製に実用化されて
いるが、一般にガスの冷却、除しんや、混入する不純物
(ターμ、ナフタリン、ハロゲン、N馬、 HCN、 
Cog など)による閉塞や、吸収液の汚染、劣化を防
ぐために前処理装置が非常に複雑であ夛、既に述べたよ
うにガスを冷却するために熱経済上不利である。更に廃
水処理の問題もある。
The method a) sb) in 1) above has been put into practical use for refining coke oven gas (COG) and gas in oil refining processes, but it is generally used for cooling the gas, removing dust, and removing contaminating impurities (tar, μ, etc.). naphthalene, halogen, Numa, HCN,
In order to prevent clogging by Cog, etc.), contamination and deterioration of the absorption liquid, the pretreatment equipment is extremely complicated, and as already mentioned, it is disadvantageous in terms of thermoeconomics because it cools the gas. There is also the issue of wastewater treatment.

ji)の乾式法はガス化生成ガスの処理に有利な方法で
ある。しかしb)のクラウス法は石油精製工程で広く用
いられているが、一般に数10%以上の高濃度ガスに適
用され、通常のクラウス法では反応平衡上処理ガス中に
硫化水素や亜硫酸ガスを少量含むためさらにこのチール
ガス処理が必要であシ、そのま−の適用は困難である。
The dry method (ji) is an advantageous method for treating the gasification product gas. However, although the Claus method (b) is widely used in oil refining processes, it is generally applied to high concentration gases of several tens of percent or more, and in the normal Claus method, a small amount of hydrogen sulfide or sulfur dioxide gas is added to the treated gas due to the reaction equilibrium. Since it contains steel gas, it is necessary to further treat the steel gas, and it is difficult to apply it as it is.

a)は高温のガス化生成ガスの処理には有利な方法であ
るが、吸着剤の再生使用に粉化や劣化の問題がToシ、
又高温乾式処理のニーズも低かったことから、吸着剤を
再生循環使用する本格的な実用装置は今まで殆んどない
Method a) is an advantageous method for treating high-temperature gasification product gas, but there are problems with powdering and deterioration when reusing the adsorbent.
Furthermore, since there was little need for high-temperature dry processing, there have been few full-scale practical devices that regenerate and recirculate adsorbents.

本発明者らはガス化生成ガスの処理方法に関する上記の
如きニーズに対応して、乾式脱硫剤や還元触媒の開発及
び処理プロセスの最適化の研究を進め還元性ガス中の硫
化水素除去方法として、イオウ化合物を吸着した吸収剤
を酸素含有ガスで再生する工程、次いで再生された吸収
剤を高温還元性ガスで該吸収剤前後の精製の対象となる
還元ガス濃度が同一になるまで還元する工程、次いで該
高温還元性ガスを通気して該吸収剤で該イオウ化合物を
吸着除去する工程を連続的に繰り返すことによシ精製ガ
ス中の還元性ガス濃度を安定化させることを特徴とする
高温還元性ガスの精製法を提案した。(特願昭60−0
85412号) 〔発明が解決しようとする問題点〕 特願昭60−085412号の発明では反応器を再生工
程から吸着脱硫工程への切替えの間に還元工程を追加し
プロセスガスの一部を添加することによって再生工程で
Fe雪03tでに酸化された酸化鉄をあらかじめFe3
O4、FeOtで還元しておくことによって、次に反応
器を吸着脱硫工程に切替えた時に倣しいF efi o
=の還元によるプロセスガス中のI(l、COガスの消
費による一時的なガス濃度変動を防ごうとするものであ
る。
In response to the above-mentioned needs regarding the treatment method of gasified gas, the present inventors have been conducting research on the development of dry desulfurization agents and reduction catalysts and optimization of the treatment process as a method for removing hydrogen sulfide from reducing gas. , a step of regenerating the absorbent that has adsorbed sulfur compounds with an oxygen-containing gas, and then a step of reducing the regenerated absorbent with a high-temperature reducing gas until the concentration of the reducing gas to be purified before and after the absorbent becomes the same. , and then continuously repeating the steps of aerating the high-temperature reducing gas and adsorbing and removing the sulfur compound with the absorbent, thereby stabilizing the reducing gas concentration in the purified gas. A method for purifying reducing gases was proposed. (Special application 1986-0
No. 85412) [Problems to be solved by the invention] In the invention of Japanese Patent Application No. 60-085412, a reduction step is added between the switching of the reactor from the regeneration step to the adsorption desulfurization step, and a part of the process gas is added. By doing so, the iron oxide oxidized with Fe snow 03t in the regeneration process is converted into Fe3 in advance.
By reducing with O4 and FeOt, the next time the reactor is switched to the adsorption desulfurization process, the FefiO
This is intended to prevent temporary fluctuations in gas concentration due to consumption of I(l, CO gas in the process gas due to reduction of =).

しかるに、■さらに突際の操作においては、この吸着脱
硫、再生、還元工程のバ〃プ切替えを単純に行うと各工
程の残留ガスが混合して、一時的にガス組成が変動し、
また加圧状態が異なるため一時的なガス流量の変動が起
シ得るのでこれを防ぐための工夫が必要である。
However, in a final operation, if the adsorption desulfurization, regeneration, and reduction processes are simply switched, the residual gases from each process will mix, causing temporary fluctuations in the gas composition.
Furthermore, since the pressurization conditions are different, temporary fluctuations in gas flow rate may occur, so it is necessary to take measures to prevent this.

次に、■吸着脱硫工程完了時の反応器内高圧(例えば2
0 kll / d G )残存ガスは回収利用する必
要がある。通常N1ガスなどでパージするが、回収率も
低(多量のパージガスを必要とし得策でなく、経済性向
上のためにはパージ操作を省くことが望ましい。
Next, ■ High pressure inside the reactor at the completion of the adsorption desulfurization process (for example, 2
0 kll/d G) The remaining gas needs to be recovered and used. Normally, purging is performed with N1 gas, etc., but the recovery rate is low (it is not a good idea as it requires a large amount of purge gas, and it is desirable to omit the purge operation to improve economic efficiency).

また、■吸着脱硫を行っていた反応器内にはガス化生成
ガス、再生を行っていた反応器内には酸素を含む酸化性
ガスが存在するため、そのま\混合させると燃焼による
温度上昇や圧力増加などのトラブルの原因となるため、
通常、工程切替時にN、ガスなど不活性ガスによるガス
パージを行うが、多量のパージガスを必要とし得策でな
く、経済性向上のためにはパージ操作を省くことが望ま
しい。
In addition, there is gasified gas in the reactor where adsorption desulfurization was performed and oxidizing gas containing oxygen in the reactor where regeneration was performed, so if they are mixed as is, the temperature will rise due to combustion. Doing so may cause problems such as pressure increase or pressure increase.
Normally, a gas purge with an inert gas such as N or gas is performed at the time of process switching, but this requires a large amount of purge gas and is not a good idea.To improve economic efficiency, it is desirable to omit the purge operation.

〔発明の目的〕[Purpose of the invention]

本発明はこれらの従来法に於ける未検討点■〜■を詳細
に検討し、来月性を高めようとする亀のである。
The present invention is an attempt to study in detail the unexamined points (1) to (2) in these conventional methods, and to improve their performance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は高温還元性ガス中に含まれるイオウ化合物を吸
着除去する方法において、 ■ 該イオウ化合物を吸着した吸収剤を酸素含有ガスで
再生する再生工程、次いで再生された吸収剤を高温還元
性ガスの一部を用いて還元する還元工程、次いで還元さ
れた吸収剤を用いて高温還元ガス中の該イオウ化合物を
吸着除去する脱硫工程を連続的に繰り返す方法であって
、 ■ 吸着による脱硫工程から再生工程への切替え操作で
は反応器内に残存した所定圧を有する高温還元性ガスを
減圧によって系外に抜き出して回収した後、酸素含有再
生ガスを所定圧になる迄添加しイオウ化合物を吸着した
吸収剤の再生を開始させ、      ■ 再生工程から還元工程への切替操作では、反応器内
に残存した所定圧を有する高温再生ガスを減圧によって
後処理工程に抜き出した後に、前記吸収工程から再生工
程への切換時に糸外に回収した高温還元性ガスを所定圧
になるまで添加して再生吸収剤の還元を開始させる ことを特徴とする高温還元性ガスの精製方法である。
The present invention provides a method for adsorbing and removing sulfur compounds contained in a high-temperature reducing gas, including: (1) a regeneration step of regenerating an absorbent that has adsorbed the sulfur compound with an oxygen-containing gas; A method of continuously repeating a reduction step in which a part of the sulfur compound is used to reduce the sulfur compound, followed by a desulfurization step in which the sulfur compound in the high-temperature reducing gas is adsorbed and removed using a reduced absorbent, and includes: (1) a desulfurization step by adsorption; In the switching operation to the regeneration process, the high-temperature reducing gas remaining in the reactor at a predetermined pressure was extracted from the system by depressurization and recovered, and then oxygen-containing regeneration gas was added until the predetermined pressure was reached to adsorb sulfur compounds. Regeneration of the absorbent is started, and ■ In the switching operation from the regeneration process to the reduction process, the high temperature regeneration gas having a predetermined pressure remaining in the reactor is extracted to the post-treatment process by reducing the pressure, and then the regeneration process is switched from the absorption process to the regeneration process. This method of purifying high-temperature reducing gas is characterized by adding high-temperature reducing gas recovered outside the yarn until a predetermined pressure is reached at the time of switching to the regenerated absorbent to start reduction of the regenerated absorbent.

本発明方法の一冥施態様を第1図によって説明する。One embodiment of the method of the present invention will be explained with reference to FIG.

ガス化炉で部分燃焼ガス化された馬及びCOを主成分と
するガス化ガス1は除じんされてイオウ化合物を除去す
る工程に導かれる。この除じん後のガス化ガス1は石炭
の種類やガス化条件によって異なるが、′#L10〜数
1000 ppmのH怠8やCO8,N馬、 HCNな
どを含んでおシ、ガス・、@度はガス化炉出口のスチー
ムと一部等による熱回収で250〜son℃、圧力はガ
ス化炉の形式によって異なるが常圧〜2.5 ataで
ある。
The gasified gas 1 mainly composed of CO and CO that has been partially burned and gasified in the gasifier is removed and led to a step of removing sulfur compounds. The gasified gas 1 after this dust removal differs depending on the type of coal and gasification conditions, but it contains 10 to several thousand ppm of hydrogen, CO8, nitrogen, HCN, etc. The temperature is 250 to 10°C due to heat recovery by steam and a portion of the gasifier outlet, and the pressure is normal pressure to 2.5 ata, although it varies depending on the type of gasifier.

本発明では除しん後のガス化ガス1を、Fe。In the present invention, the gasified gas 1 after dust removal is Fe.

Zn、 Mo、 Mn、 Cu、 W等の金属酸化物か
らなる吸収剤9を充填した第1の反応器である吸収塔6
に流路切替バルブ10を介して通気することでガス化ガ
ス1中のイオウ化合物は硫化物として吸着除去され一方
第2の反応器である再生塔7では吸収塔6と同一の吸収
剤9が充填されてお)、イオウ化合物の吸着によシ破過
に達した吸収剤9に流路切替パルプ17を介して酸素含
有ガス(例えば空気)2を通気して、次式に示すような
焙焼反応によシ吸収剤9を再生させると同時に流路切替
パルプ20を介して濃厚なSo。
An absorption tower 6 which is a first reactor filled with an absorbent 9 made of metal oxides such as Zn, Mo, Mn, Cu, W, etc.
The sulfur compounds in the gasification gas 1 are adsorbed and removed as sulfides by venting through the flow path switching valve 10, while in the regeneration tower 7, which is the second reactor, the same absorbent 9 as in the absorption tower 6 is used. Oxygen-containing gas (for example, air) 2 is passed through the flow path switching pulp 17 to the absorbent 9 which has reached breakthrough due to the adsorption of sulfur compounds (filled with sulfur compounds), and is roasted as shown in the following equation. The absorbent 9 is regenerated by the calcination reaction, and at the same time, rich So is generated through the flow path switching pulp 20.

ガス5を得る。この時流路切替バルブ11.14゜25
.26は閉になっている。
Get gas 5. At this time, the flow path switching valve 11.14°25
.. 26 is closed.

4F*S+701→2Fe30s+480.     
 ・(1)上記反応は発熱反応であシ酸素含有ガス20
通気と同時に急激に起るので、該再生塔7の出口ガスを
循環フィン4で循環させ表から、再生反応に必要な酸素
を低濃度で全体に均一に供給するなどによシ温度をコン
トローμすることが好ましい。この再生温度は250〜
600℃で行われ、吸収剤9から放散された濃厚なSo
、ガス5は硫酸製造原料として利用するか、あるいは単
体硫黄や固体の硫黄化合物として回収される工程に導か
れる。また湿式脱硫法で石膏として回収することもでき
る。
4F*S+701→2Fe30s+480.
・(1) The above reaction is an exothermic reaction and oxygen-containing gas 20
Since this occurs rapidly at the same time as ventilation, the temperature can be controlled by circulating the outlet gas of the regeneration tower 7 through the circulation fins 4 and uniformly supplying the oxygen necessary for the regeneration reaction throughout the entire body at a low concentration. It is preferable to do so. This playback temperature is 250~
The process was carried out at 600°C, and the concentrated So
, the gas 5 is used as a raw material for producing sulfuric acid, or is led to a process where it is recovered as elemental sulfur or solid sulfur compounds. It can also be recovered as gypsum using a wet desulfurization method.

吸収剤9は粒状、円柱状、ハニカム状、板状などのいず
れの形状でも良く、ア!ミナ、チタニア、シリカ、ゼオ
ライトなどの多孔質の耐熱性基材に上述の金属酸化物を
担持したものが使用される。
The absorbent 9 may be in any shape such as granules, cylinders, honeycombs, or plates. A porous heat-resistant base material such as mina, titania, silica, or zeolite is used that supports the above-mentioned metal oxide.

Fe!01を吸収剤成分とした場合の脱硫反応式は下記
のとおシでちゃ、 FeB04+CO+3I(18−+3Fe8+3’H1
0+CO1−123Fe104+H1+5H1S→3F
eS+4H,O・ f31ガス化ガス1に共存する微量
のCOSは下記式に示す反応でE、Sに転化して吸着除
去されるか、Fe104との吸着反応で除去される。
Fe! The desulfurization reaction formula when 01 is used as an absorbent component is as follows: FeB04+CO+3I(18-+3Fe8+3'H1
0+CO1-123Fe104+H1+5H1S→3F
eS+4H,O.f31 A trace amount of COS coexisting in the gasified gas 1 is converted into E and S and adsorbed and removed by the reaction shown in the following formula, or is removed by an adsorption reaction with Fe104.

CO8+ Hl0−4Co雪+ EIIS= (4)F
e104+1(1+3CO8→3FeS+H10+5C
O1”(5JFb104+CO+3CO8−IFe8+
4cO1・・・(6)脱硫反応温ffiは250〜45
0℃、SV値(ガス流量Nm”/h/吸収剤容量ms 
)はto00〜2 CL OOO1/h程度テ、カス中
f)’H@BF)90%以上が除去され、吸収塔6の流
路切替パルプ25を介して精製ガス3が得られる。この
時流路切替バルブ13.14,19.22は閉になって
いる。
CO8+ Hl0-4Co snow+ EIIS= (4)F
e104+1(1+3CO8→3FeS+H10+5C
O1” (5JFb104+CO+3CO8-IFe8+
4cO1...(6) Desulfurization reaction temperature ffi is 250 to 45
0℃, SV value (gas flow rate Nm”/h/absorbent capacity ms
) is about to00~2 CL OOO1/h, more than 90% f)'H@BF) in the waste is removed, and purified gas 3 is obtained via the flow path switching pulp 25 of the absorption tower 6. At this time, the flow path switching valves 13.14 and 19.22 are closed.

さらに第5の反応器である還元塔8では吸収塔6、再生
塔7と同一の吸収剤9が充填されておシ、再生処理で金
属酸化物の状態にされた吸収剤9に除しん後のガス化ガ
ス1の一部(数%程度)を流路切替バルブ15を介して
通気させて、主として下記の(方式還元反応を行わせる
Furthermore, the reduction tower 8, which is the fifth reactor, is filled with the same absorbent 9 as the absorption tower 6 and the regeneration tower 7. A part (about several percent) of the gasified gas 1 is vented through the flow path switching valve 15 to mainly perform the following (method reduction reaction).

この還元反応は精製ガス3中のH,、CO濃度が一定に
なるまでの予備還元反応であシ、流路切替パルプ24を
介して除じん後のガス化ガス1に戻される。
This reduction reaction is a preliminary reduction reaction until the concentration of H, CO in the purified gas 3 becomes constant, and is returned to the gasified gas 1 after dust removal via the flow path switching pulp 24.

この時流路切替バルブ12,18.21は閉になってい
る。
At this time, the flow path switching valves 12, 18, and 21 are closed.

3FelO1+ Hl 42Fe104 + Ego 
      −” (7)このような予備還元反応の段
階では(2) 、 (3) 。
3FelO1+ Hl 42Fe104 + Ego
-'' (7) At the stage of such a preliminary reduction reaction (2), (3).

(5) 、 (6)式の)!ms、 COBの吸着反応
も同時に行るが、(方式の反応の方が12) 、 +3
) 、 (5) 、 +6)式の反応よシ早いので予備
還元反応終了後は除しん後のガス化ガス10通気を停止
して、次工程の吸着反応開始のために時期させておく。
(5), (6))! ms, COB adsorption reaction is also performed at the same time, (method reaction is 12), +3
), (5), +6) Since this reaction is faster than the reactions of equations 1 and 6), after the preliminary reduction reaction is completed, the ventilation of the gasified gas 10 after removal is stopped to allow time for the start of the adsorption reaction in the next step.

さて、本突施態様において、各反応器(吸収塔、再生塔
、還元塔)はバルブ切替えで繰り返して使用する。
Now, in this final embodiment, each reactor (absorption tower, regeneration tower, reduction tower) is used repeatedly by switching valves.

ガス切替え時にガス化ガス1の流量及び組成変動がない
ようにするため、反応器内のガス置換(又はパージ)に
対し、下記方式を採用する。
In order to prevent the flow rate and composition of the gasification gas 1 from changing when switching gases, the following method is adopted for gas replacement (or purging) in the reactor.

(1)即ちガス吸収工程完了時の吸収塔6内高圧(例え
ば20 kg / am” G )残存ガスは、所定圧
力(例えば5 kliJ/m” G )以下になるまで
ガス抜きを行う。
(1) That is, the high pressure (for example, 20 kg/am" G) remaining gas in the absorption tower 6 at the completion of the gas absorption process is degassed until the pressure becomes below a predetermined pressure (for example, 5 kliJ/m" G).

この場合パルプ25は閉、パルプ22は開となる。吸収
塔6から排出された残存ガス28はガス冷却器51を通
ってコンプレッサ32ニヨシ、元o圧力(20kg15
IsG )に昇圧されガスホルダ33GC蓄える。ガス
ホルダ55出ロガス29は適当に精製ガス2に合流させ
る。
In this case, the pulp 25 is closed and the pulp 22 is open. The residual gas 28 discharged from the absorption tower 6 passes through the gas cooler 51 to the compressor 32, at original pressure (20kg15
IsG ) and stored in the gas holder 33GC. The log gas 29 from the gas holder 55 is appropriately combined with the purified gas 2.

吸収塔6内はガス排出後は、5 kg / a11G程
度のガス化ガス1が残存するが、このガスはパージする
ことなく次の再生工程に入る。とのように当初の吸収塔
6内圧力は5 kg 7al G以下であるが、圧力が
所定圧力(例えば20時/a、”G)に上がるまで再生
フィンに酸素含有ガス2を徐々に導入して再生系を循環
し、吸収剤9の酸化(再生)反応を促進させ、吸収塔6
が400℃以上に達すると残存ガス中の主成分Co、H
,等が反応して各々C’O,,I(,0等に転化される
。残存ガス中の可燃分が全て反応した後本格的に再生運
転を行う。すなわち、循環フィン4、パルプ16、吸収
塔6、吸収剤!、バyプ19のフィンに酸素含有ガス2
を循環し、一部ガス5は後流O湿式脱硫系で処理する。
After the gas is discharged from the absorption tower 6, about 5 kg/a11G of gasified gas 1 remains, but this gas enters the next regeneration step without being purged. Although the initial pressure inside the absorption tower 6 is below 5 kg 7al G, the oxygen-containing gas 2 is gradually introduced into the regeneration fin until the pressure rises to a predetermined pressure (for example, 20:00/a, "G"). is circulated through the regeneration system to promote the oxidation (regeneration) reaction of the absorbent 9, and the absorption tower 6
When the temperature reaches 400℃ or higher, the main components Co and H in the remaining gas
, etc. react and are converted to C'O,, I(, 0, etc.). After all the combustibles in the remaining gas have reacted, full-scale regeneration operation is performed. That is, the circulation fins 4, the pulp 16, Absorption tower 6, absorbent!, oxygen-containing gas 2 to the fins of bypass 19
is circulated, and a portion of the gas 5 is treated in a downstream O wet desulfurization system.

(第1図においては、この状態を再生塔7tわシに図示
しである。この場合には上記酸素含有ガス2の循環は、
循環ライン4、パルプ17、再生塔7、吸収剤9、パμ
ブ20によって行われている。) (2)一方再生工程完了時の吸収塔6内には、濃縮され
九SO,ガス(約7〜8%80= )が高圧(例えば2
0 kg /allG )にて残存している。
(In FIG. 1, this state is illustrated in the regeneration tower 7t. In this case, the circulation of the oxygen-containing gas 2 is as follows.
Circulation line 4, pulp 17, regeneration tower 7, absorbent 9, paper μ
This is done by the driver 20. ) (2) On the other hand, in the absorption tower 6 at the completion of the regeneration process, concentrated 9 SO gas (approximately 7 to 8% 80=) is under high pressure (e.g. 2
0 kg/allG).

このitガス抜きせずに還元工程に切替えると一次的に
精製ガス5に混入するため脱硫率の低下を招く。
If the process is switched to the reduction step without this degassing, it will be mixed into the purified gas 5 temporarily, resulting in a decrease in the desulfurization rate.

従って再生工程終了直前には、吸収塔6内圧力を大気圧
近くまで減圧し80mガスを抜き出す必要がある。この
放出So、ガス5は後流の湿式排脱系など後処理工程に
導入する。
Therefore, immediately before the end of the regeneration process, it is necessary to reduce the pressure inside the absorption tower 6 to near atmospheric pressure and extract 80 m of gas. The released So and gas 5 are introduced into a post-treatment process such as a downstream wet evacuation system.

(3)再生工程を完了した後は還元工程に移行させる。(3) After the regeneration step is completed, the process proceeds to the reduction step.

当初吸収塔6内は減圧下(大気圧)にあるので、所定圧
力(例えば20 kg / al G )に上がるまで
ガス化ガス1を導入する。以後還元工程の運転開始とな
る。ガス流量及び組成変動かないようガス吸収操作は連
続して切替えるようにするが、再生→還元の当初に一時
(吸収塔6内を20 kg /−Gに昇圧する間)若干
ガス量の減少が起こるが、次に説明する方法でこの問題
は解決できる。
Initially, the inside of the absorption tower 6 is under reduced pressure (atmospheric pressure), so the gasification gas 1 is introduced until the pressure rises to a predetermined pressure (for example, 20 kg/al G). After that, the operation of the reduction process will begin. Although the gas absorption operation is continuously switched to avoid fluctuations in the gas flow rate and composition, there is a slight decrease in the gas amount at the beginning of the regeneration → reduction process (while the pressure inside the absorption tower 6 is increased to 20 kg/-G). However, this problem can be solved by the method described below.

前述したように、ガス吸収工程完了時の吸収塔6円高圧
残存ガスはガス抜きで所定圧力(例えば5 k19 /
 at” G以下)に減圧後、ガス冷却器51を経てコ
ンプレッサ32にて所定圧力(元の圧力20 kg /
 d G )に昇圧されてガスホルダ33に貯蔵されて
いる。
As mentioned above, the high-pressure residual gas in the absorption tower at the completion of the gas absorption process is degassed to a predetermined pressure (for example, 5 k19 /
After the pressure is reduced to below (at”
d G ) and stored in the gas holder 33 .

このガスホルダ33ガスは還元工程切替(反応器内昇圧
)時、タイマー操作でライン29又はライン34を使っ
て、精製ガス3又は粗ガス1フインに戻される。上記操
作をとることによシ、再生→還元移行時のガスjfk減
少を防止することができる。
This gas holder 33 gas is returned to purified gas 3 or crude gas 1 fin using line 29 or line 34 by timer operation when switching the reduction process (increasing the pressure inside the reactor). By performing the above operation, it is possible to prevent the gas jfk from decreasing during the transition from regeneration to reduction.

(4)吸収→再生→還元→吸収・・・・・を繰返す。吸
収と還元は常に連続運転となるよう操作し、その結果再
生工程にて一部sonガス流れの不連続が起こるが、後
流の湿式脱硫には連続ガス流れとなるようその分空気を
送シ込むことによシ対処できる。
(4) Repeat absorption → regeneration → reduction → absorption. Absorption and reduction are always operated continuously, and as a result, some discontinuity of the son gas flow occurs in the regeneration process, but air is sent in the downstream wet desulfurization to ensure a continuous gas flow. You can deal with it by getting in trouble.

尚還元工程に導入するガス化ガスは必要最小限におさえ
ること(例えば5x程度)とし、吸収剤の還元(Fan
 Ql−+ Fe504 )を主目的としたものである
The gasification gas introduced in the reduction process should be kept to the minimum necessary (for example, about 5x), and the reduction of the absorbent (Fan
Ql-+Fe504) was the main objective.

〔発明の効果〕〔Effect of the invention〕

以上述べ九ように本発明力−法によればM製処理しよう
とする高温還元性ガス中の4.COなどの燃料源を一時
的に減少させることなく、またガス化ガス流量も変動さ
せることなく、安定させて次工程に供給できるイオウ化
合物の除去精製法である。
As stated above, according to the method of the present invention, 4. This is a method for removing and refining sulfur compounds that can be stably supplied to the next process without temporarily reducing the fuel source such as CO or changing the gasification gas flow rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施例を説明するための図である
。 5・・・精製ガス 4・・・循環フィン 5…SO鵞ガス !−NIL 1吸収塔 7−H& 2再生塔 8・・・醜3還元塔 !・・・吸収剤 10〜27−・・流路切替パルプ 28・・・吸収塔残存ガス 2 ?−・・ガスホルダー出ロガス 30・・・還元用ガス化ガス sl・・・ガス冷却器 s2・・・ガスコンプレッサー 33…ガス1hfi/ダー 34−・・戻しガスライン
FIG. 1 is a diagram for explaining an embodiment of the method of the present invention. 5...Purified gas 4...Circulation fin 5...SO gas! -NIL 1 Absorption tower 7-H & 2 Regeneration tower 8... Ugly 3 Reduction tower! ... Absorbent 10 to 27 - ... Flow path switching pulp 28 ... Absorption tower residual gas 2 ? -...Gas holder output log gas 30...Reducing gasification gas SL...Gas cooler s2...Gas compressor 33...Gas 1hfi/der 34-...Return gas line

Claims (1)

【特許請求の範囲】 高温還元性ガス中に含まれるイオウ化合物を吸着除去す
る方法において、 (1)該イオウ化合物を吸着した吸収剤を酸素含有ガス
で再生する再生工程、次いで再生された吸収剤を高温還
元性ガスの一部を用いて還元する還元工程、次いで還元
された吸収剤を用いて高温還元ガス中の該イオウ化合物
を吸着除去する脱硫工程を連続的に繰り返す方法であつ
て、 (2)吸着による脱硫工程から再生工程への切替え操作
では反応器内に残存した所定圧を有する高温還元性ガス
を減圧によつて系外に抜き出して回収した後、酸素含有
再生ガスを所定圧になる迄添加しイオウ化合物を吸着し
た吸収剤の再生を開始させ、 (3)再生工程から還元工程への切替操作では、反応器
内に残存した所定圧を有する高温再生ガスを減圧によつ
て後処理工程に抜き出した後に、前記吸収工程から再生
工程への切換時に系外に回収した高温還元性ガスを所定
圧になるまで添加して再生吸収剤の還元を開始させる ことを特徴とする高温還元性ガスの精製方法。
[Claims] A method for adsorbing and removing sulfur compounds contained in a high-temperature reducing gas, comprising: (1) a regeneration step of regenerating an absorbent that has adsorbed the sulfur compound with an oxygen-containing gas, and then the regenerated absorbent. A method of continuously repeating a reduction step in which sulfur compounds are reduced using a part of a high-temperature reducing gas, and then a desulfurization step in which the sulfur compounds in the high-temperature reducing gas are adsorbed and removed using a reduced absorbent, 2) In the switching operation from the desulfurization process by adsorption to the regeneration process, the high-temperature reducing gas with a predetermined pressure remaining in the reactor is extracted out of the system by depressurization and recovered, and then the oxygen-containing regeneration gas is brought to the predetermined pressure. (3) In the switching operation from the regeneration process to the reduction process, the high-temperature regeneration gas remaining in the reactor at a predetermined pressure is depressurized. High-temperature reduction characterized in that after being extracted to the treatment process, the high-temperature reducing gas recovered outside the system at the time of switching from the absorption process to the regeneration process is added to a predetermined pressure to start reduction of the regenerated absorbent. Method for purifying sexual gases.
JP62127236A 1987-05-26 1987-05-26 Refining method for high temperature reducing gas Expired - Lifetime JPH0776348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62127236A JPH0776348B2 (en) 1987-05-26 1987-05-26 Refining method for high temperature reducing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62127236A JPH0776348B2 (en) 1987-05-26 1987-05-26 Refining method for high temperature reducing gas

Publications (2)

Publication Number Publication Date
JPS63291986A true JPS63291986A (en) 1988-11-29
JPH0776348B2 JPH0776348B2 (en) 1995-08-16

Family

ID=14955081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62127236A Expired - Lifetime JPH0776348B2 (en) 1987-05-26 1987-05-26 Refining method for high temperature reducing gas

Country Status (1)

Country Link
JP (1) JPH0776348B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303515A (en) * 1989-05-18 1990-12-17 Kawasaki Heavy Ind Ltd Dry type desulfurizing and dust removing method
US5440873A (en) * 1991-04-02 1995-08-15 Mitsubishi Jukogyo Kabushiki Kaisha Gasification-combined power plant
JP2002060203A (en) * 2000-08-16 2002-02-26 Mitsubishi Heavy Ind Ltd Method for producing synthesis gas
JP2003512924A (en) * 1999-11-01 2003-04-08 フイリツプス ピトローリアム カンパニー New sorbent for desulfurization and desulfurization
JP2003513772A (en) * 1999-11-01 2003-04-15 フイリツプス ピトローリアム カンパニー Desulfurization and new sorbents therefor
JP2003515430A (en) * 1999-08-25 2003-05-07 フイリツプス ピトローリアム カンパニー Sorbent compositions and their use in manufacturing processes and desulfurization

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303515A (en) * 1989-05-18 1990-12-17 Kawasaki Heavy Ind Ltd Dry type desulfurizing and dust removing method
US5440873A (en) * 1991-04-02 1995-08-15 Mitsubishi Jukogyo Kabushiki Kaisha Gasification-combined power plant
JP2003515430A (en) * 1999-08-25 2003-05-07 フイリツプス ピトローリアム カンパニー Sorbent compositions and their use in manufacturing processes and desulfurization
JP2003512924A (en) * 1999-11-01 2003-04-08 フイリツプス ピトローリアム カンパニー New sorbent for desulfurization and desulfurization
JP2003513772A (en) * 1999-11-01 2003-04-15 フイリツプス ピトローリアム カンパニー Desulfurization and new sorbents therefor
JP2002060203A (en) * 2000-08-16 2002-02-26 Mitsubishi Heavy Ind Ltd Method for producing synthesis gas

Also Published As

Publication number Publication date
JPH0776348B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US4251495A (en) Process for purifying a hydrogen sulfide containing gas
US4041130A (en) Process for desulfurization of coke oven gas
GB2202546A (en) Desulfurizing agent, process for treating hydrogen sulfide-containing gas, coal gasification system and power generation system
JPS5845101A (en) Method of reducing total sulfur content of charge gas having high carbon dioxide content
JPS5827203B2 (en) Krausshouoff
JPS6317488B2 (en)
EP0159730A2 (en) Process for the removal of sulphur compounds from off-gases
JP3602268B2 (en) Method and apparatus for removing sulfur compounds contained in natural gas and the like
JPS63291986A (en) Purification of high-temperature reducing gas
JPH02180614A (en) Process for refining high temperature reducing gas
EP0481281A2 (en) Process for purifying high-temperature reducing gases
KR101489852B1 (en) Apparatus for recovering sulfur from synthesis gas and Method therefor
CA1142327A (en) Recovery of salts of anthraquinone disulfonic acid in the stretford process
US4686090A (en) Desulfurizing of reducing gas stream using a recycle calcium oxide system
CN107567350A (en) For H to be removed and reclaimed from gas stream2S improved method
SU1582975A3 (en) Method of purifying gases from mercaptanes
EP0514941A1 (en) Process for the separation of sulphur oxides from offgases
JPS61245819A (en) Method for purifying high temperature reductive gas
JP2651381B2 (en) Purification method of high-temperature reducing gas
JPH0790137B2 (en) Refining method for high temperature reducing gas
JP2617561B2 (en) Purification method of high-temperature reducing gas
EP1116511A1 (en) Method for removing sulfur compounds from gas mixtures
CN1089018C (en) Application of chrome-contained waste catalyst as desulfurizing agent
JPS6153104B2 (en)
JPS59184291A (en) Refining of high-temperature reducing gas