JPS61252290A - Method of refining high-temperature reducing gas - Google Patents

Method of refining high-temperature reducing gas

Info

Publication number
JPS61252290A
JPS61252290A JP60093565A JP9356585A JPS61252290A JP S61252290 A JPS61252290 A JP S61252290A JP 60093565 A JP60093565 A JP 60093565A JP 9356585 A JP9356585 A JP 9356585A JP S61252290 A JPS61252290 A JP S61252290A
Authority
JP
Japan
Prior art keywords
gas
adsorbent
air
reducing gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60093565A
Other languages
Japanese (ja)
Inventor
Mitsugi Suehiro
末弘 貢
Junji Fujiki
藤木 淳次
Toru Seto
徹 瀬戸
Toshikuni Sera
世良 俊邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60093565A priority Critical patent/JPS61252290A/en
Publication of JPS61252290A publication Critical patent/JPS61252290A/en
Pending legal-status Critical Current

Links

Landscapes

  • Industrial Gases (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To efficiently remove a sulfur compd. contained in a reducing gas, by calcining an adsorbent on which a sulfur compd. contained in a high-temp. reducing gas has been adsorbed and using the obtained regenerated gas for pressurizing air or oxygen for desorption. CONSTITUTION:A coal, a heavy oil, etc., 1 is fed into a gasifying oven 3 where it is partially burnt with a small amount of air or oxygen 2 to obtain a high- temp. reducing gas 4. Coarse particle dust 6 contained in the high-temp. reducing gas 4 is removed with a dust-collector 5, and a fine dust 8 is removed with a precision dust collector 7 to obtain a gas 9. The gas 9 is fed into an adsorption-regeneration apparatus 10 where the gas is brought into contact with an adsorbent to remove a sulfur compd., thereby obtaining a refined gas 11. Air and/or oxygen 17 is fed into a regeneration apparatus 10 through a compressor 16 to calcine the adsorbent. The obtained SO2 gas 12 is fed through a gas cooler 13 and a blower 14 into a gas expander 20 to expand the gas. The power is transmitted to the compressor 16 which is coaxial with the gas expander 20 for use in pressurizing air for calcination.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温還元性ガスの精製方法に関し、たとえば
石炭ガス化プロセスの生成ガスのような高温の還元性ガ
ス混合物中に含まれる硫化水素を合理的に除去する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for purifying a high temperature reducing gas, for example hydrogen sulfide contained in a high temperature reducing gas mixture such as the product gas of a coal gasification process. Concerning how to rationally remove.

(従来の技術) 近年、石油資源の枯渇、価格の高騰から、燃料(又は原
料)の多様化が叫ばれ、石炭や重質油(ターμサンド油
、オイμシエーy油、大慶重油、マヤ原油、或いは減圧
残油など)の利用技術の開発が進められている。石炭や
重質油をガス化して発電や燃料及び合成原料とする方法
はその代表的な一例である。
(Conventional technology) In recent years, due to the depletion of oil resources and soaring prices, diversification of fuels (or raw materials) has been called for. Development of technologies to utilize crude oil (crude oil, vacuum residue, etc.) is progressing. A typical example is the method of gasifying coal or heavy oil to use as power generation, fuel, or synthetic raw material.

しかし、このガス化生成ガスには原料の石炭や重質油に
よって違うが数100〜数11000ppの硫化水素を
含み、これは公害防止上、或いは後流機器の腐食や触媒
の被毒防止のため、是非1、除去が必要である。
However, this gasification product gas contains hydrogen sulfide ranging from several hundred ppm to several 11,000 ppm, depending on the raw material coal and heavy oil, and this is used to prevent pollution, corrosion of downstream equipment, and poisoning of catalysts. , 1, it is necessary to remove it.

仁の硫化水素除去グロセスに必要な具備条件は次のとお
りである。
The necessary conditions for the hydrogen sulfide removal process from kernels are as follows.

(1)ガス化生成ガスは高温(炉出口。1000〜20
00℃、一部熱回収されても300〜500℃)高圧(
加圧式ガス化炉の場合)であり、後流の発電(ガスター
ビンとスチームタービンを組合せた複合サイクル発電方
式)や、燃料及び合成原料として使用する場合も殆んど
高温、高圧で使う場合が多いので、その間に入る硫化水
素除去プロセスも高温、高圧の乾式法が熱経済上有利で
ある。ちなみに、石炭ガス化発電の場合、乾式法と湿式
法では、発電効率で4〜5sの差があると云われている
(1) The gas produced by gasification is at a high temperature (furnace outlet.
00℃, 300-500℃ even if some heat is recovered) high pressure (
In the case of a pressurized gasifier), it is mostly used at high temperatures and pressures for downstream power generation (combined cycle power generation system that combines a gas turbine and a steam turbine), and as a fuel and synthetic raw material. Therefore, a dry method using high temperature and high pressure is advantageous from a thermoeconomic standpoint for the hydrogen sulfide removal process that occurs during the process. Incidentally, in the case of coal gasification power generation, it is said that there is a difference of 4 to 5 seconds in power generation efficiency between the dry method and the wet method.

(2)副産物は、取扱上、或いは市場性からみて、その
ニーズに合ったものにすることが好ましい。ガス化プロ
セスが発電や燃料及び合成原料に使われ始めると、その
副産物量は美大な量となシ、関連市場へのインパクトは
大きく、副産物の形は重要な因子である。
(2) It is preferable to use by-products that meet the needs in terms of handling or marketability. When the gasification process begins to be used for power generation, fuel, and synthetic raw materials, the amount of by-products will be enormous, and the impact on related markets will be large, and the form of the by-products is an important factor.

(3)プロセスが簡単で合理的であることが必要である
。実用化に当っては、最終的にはプラントの経済性(固
定費+運転費)で評価されるので、プロセスが簡単で経
済性に優れていることが最も重要である。
(3) The process must be simple and rational. In practical application, the economic efficiency of the plant (fixed cost + operating cost) will ultimately be evaluated, so it is most important that the process be simple and economical.

(4)プラントの安定運転に関する信頼性が高いことが
必要である。発電プラントや、化学プラントに組み込ま
れるため、プラントの安定運転性に関しては一部以上の
信頼性の高いものであることが必要である。
(4) It is necessary to have high reliability regarding stable operation of the plant. Since it is incorporated into a power generation plant or a chemical plant, it is necessary for the plant to be more than partially reliable in terms of stable operation.

また、硫化水素ガスの処理方法としては、次のようなも
のが既に知られている。
Furthermore, the following methods are already known as methods for treating hydrogen sulfide gas.

l)湿式法 a)吸収・脱離法;低温、高圧で、メタノ−μやポリエ
チレングリコ−μなどの溶剤で吸収し、高温、低圧で脱
離する方法で、レクチシーμ法、セVクシーμ法などが
ある。
l) Wet method a) Absorption/desorption method: Absorption with a solvent such as methanol-μ or polyethylene glyco-μ at low temperature and high pressure, and desorption at high temperature and low pressure. There are laws, etc.

b)吸収酸化法;炭酸カリなどのアルカリ性水溶液に吸
収し触媒の存在下で空気で部分酸化し、単体硫黄を生成
させる方法で、タカハックス法、ストレットフォード法
などがある。
b) Absorption oxidation method: A method in which elemental sulfur is produced by absorbing it in an alkaline aqueous solution such as potassium carbonate and partially oxidizing it with air in the presence of a catalyst. Examples include the Takahax method and the Stretford method.

11)乾式法 a)鉄や亜鉛などの金属酸化物で、高温で、硫化物とし
て吸着除去する方法であシ、アイアンボックス法などが
ある。
11) Dry method a) A method in which metal oxides such as iron or zinc are adsorbed and removed as sulfides at high temperatures.Other methods include the iron box method.

b)硫化水素を一部酸化して亜硫酸ガスとの混合ガスと
し、触媒の存在下で、高温で、反応させ、単体硫黄とす
る方法であり、クラウス法などがある。
b) A method of partially oxidizing hydrogen sulfide to form a mixed gas with sulfur dioxide gas and reacting it at high temperature in the presence of a catalyst to form elemental sulfur, such as the Claus method.

上記、1)のaLb)の方法は、コークス炉ガス(CO
G )や、石油精製工程でのガス精製に実用化されてい
るが、一般に、ガスの冷却、除じんや、混入する不純物
(ターμ、ナフタリン、ハロゲン、NH,、!(C’N
、 CO8など)による閉塞や、吸収液の汚染、劣化を
防ぐために前処理装置が非常に複雑であυ、既に述べた
ように、ガスを冷却するために熱経済上不利である。更
に廃水処理の問題もある。
The above method 1) aLb) uses coke oven gas (CO
G ) and gas refining in the oil refining process, but it is generally used for gas cooling, dust removal, and contaminating impurities (terμ, naphthalene, halogen, NH, ! (C'N
, CO8, etc.), and to prevent contamination and deterioration of the absorption liquid, the pretreatment equipment is very complicated, and as already mentioned, it is disadvantageous in terms of thermoeconomics because it cools the gas. There is also the issue of wastewater treatment.

11)の乾式法は、ガス化生成ガスの処理に有利な方法
である。しかし、b)のクラウス法は石油精製工程で広
く用いられているが、一般に数10−以上の高濃度ガス
に適用され、通常のクラウス法では反応平衡上処理ガス
中に硫化水素や亜硫酸ガスを少量含むためさらにこのチ
ールガス処理が必要であり、そのま−の適用は困難であ
る。a)は高温のガス化生成ガスの処理には有利な方法
であるが、吸着剤の再生使用に粉化や劣化の問題があシ
、又高温乾式処理のニーズも低くかつたことから、吸着
剤を再生循環使用する本格的な実用装置は、今まで殆ん
どない。
The dry method (11) is an advantageous method for processing gasification product gas. However, although the Claus method (b) is widely used in oil refining processes, it is generally applied to high concentration gases of several tens of tons or more, and in the normal Claus method, hydrogen sulfide and sulfur dioxide gas are added to the treated gas due to reaction equilibrium. Since it contains a small amount, further treatment with this tea gas is required, making it difficult to apply it directly. Method a) is an advantageous method for processing high-temperature gasification product gas, but there are problems with powdering and deterioration when reusing the adsorbent, and the need for high-temperature dry processing is also low. Until now, there are almost no full-scale practical devices that regenerate and recycle agents.

(発明が解決しようとする問題点) 本発明者らは、ガス化生成ガスの処理方法に関する上記
の如きニーズに対応して、乾式吸着剤や還元触媒の開発
及び処理プロセスの最適化の研究を進め、還元性ガス中
の硫化水素除去方法として最も実用的に有利な方法を提
供しようとするものである。
(Problems to be Solved by the Invention) In response to the above-mentioned needs regarding processing methods for gasified product gas, the present inventors have conducted research on the development of dry adsorbents and reduction catalysts and the optimization of processing processes. The purpose of this study is to provide the most practically advantageous method for removing hydrogen sulfide from reducing gases.

(問題点を解決するための手段) すなわち本発明は、石炭や重質油などの加圧ガス化によ
って得られる高温還元性ガス中に含まれる硫黄化合物を
吸着剤で硫化物として吸着除去し、該吸着剤を空気又は
/及び酸素で焙焼して吸着剤を再生すると同時に、濃厚
な亜硫酸ガスを含む再生ガスを得、次いで該再生ガスを
湿式脱硫法によって処理する方法に於いて、該再生ガス
をガスエキスパンダを通して膨張せしめその動力を該ガ
スエキスパンダと同軸のコン、デレッサを通して焙焼用
の空気などの加圧に使用することを特徴とする高温還元
性ガスの精製方法である。
(Means for Solving the Problems) That is, the present invention adsorbs and removes sulfur compounds contained in high-temperature reducing gas obtained by pressurized gasification of coal, heavy oil, etc. as sulfides using an adsorbent, In a method in which the adsorbent is roasted with air and/or oxygen to regenerate the adsorbent, at the same time a regenerated gas containing concentrated sulfur dioxide gas is obtained, and then the regenerated gas is treated by a wet desulfurization method, the regenerated This method of purifying high-temperature reducing gas is characterized by expanding gas through a gas expander and using the resulting power to pressurize air for roasting through a compressor and a depressor coaxial with the gas expander.

本発明方法の一実施態様例を第1図に示す。An embodiment of the method of the present invention is shown in FIG.

本発明方法を第1図に基いて詳細に説明する。The method of the present invention will be explained in detail with reference to FIG.

第1図において、石炭1は、小量の空気又は酸素2で、
ガス化炉3内で部分燃焼、ガス化され、H3及びCoを
主成分とするガス化ガス4が得られる。これは石油や天
然ガスの代替として、コンバインドガスタービンや、都
市ガス等の燃RK、或いはメタノールやアンモニヤ又は
石油化学の合成原料に使用される。このガス化ガス4は
石炭の種類やガス化条件に依って違るが、数10〜数1
000 ppmのH,8,C’O8,NH,、ダスト及
びWi微量のHF、HCtを含み、温度はガス化炉3内
口のスチームヒータ等で熱回収され250〜500℃、
圧力はガス化炉3の形式によって違るが、常圧〜25 
ataである。
In FIG. 1, coal 1 has a small amount of air or oxygen 2,
It is partially combusted and gasified in the gasifier 3, and a gasified gas 4 containing H3 and Co as main components is obtained. This is used as a substitute for petroleum or natural gas in combined gas turbines, city gas, etc., or as a synthetic raw material for methanol, ammonia, or petrochemicals. This gasification gas 4 varies depending on the type of coal and gasification conditions, but is from several 10 to several 1
000 ppm of H, 8, C'O8, NH, dust, and trace amounts of HF and HCt.
The pressure varies depending on the type of gasifier 3, but it ranges from normal pressure to 25
It is ata.

そこで本発明方法では、先ず、サイクロン等の簡易形除
じん装置5で粗粒ダスト6を除き、次いで第1図に示す
ような吸着、再生反応器形式として固定床式を使用する
場合には、さらにグフニュヲーベッド方式等の精密除じ
ん装置7で微細ダスト8を除いて、ダストが含有されな
い石炭ガス化ガス9として吸着、再生反応器10に供給
される。吸着、再生反応器10ではFs。
Therefore, in the method of the present invention, the coarse dust 6 is first removed using a simple dust removal device 5 such as a cyclone, and then when a fixed bed type adsorption/regeneration reactor type as shown in Fig. 1 is used, Further, fine dust 8 is removed by a precision dust removal device 7 such as a Goufnyow bed type, and the coal gasified gas 9 containing no dust is supplied to an adsorption and regeneration reactor 10. Fs in the adsorption and regeneration reactor 10.

Zn、 Mo、 Mn、 Cu、 W  等の金属酸化
物を吸着剤として、250〜500℃でH,Bと反応さ
せ、硫化物として吸着除去する。この時のFeの場合の
反応式を示せば次の通シである。
Metal oxides such as Zn, Mo, Mn, Cu, and W are used as adsorbents to react with H and B at 250 to 500°C, and are adsorbed and removed as sulfides. The reaction formula for Fe at this time is as follows.

5Fe20B + H2−+ 2F8! 04 + H
I 03H2B + Fe3O4+ Hl 43Fe8
 + 4H!0HCN + H,O→NH,+GO CO8+ H,S→Co2+H,S このように、吸着、再生反応器10では不純物のHCN
  −? CO8も一部反応し、除去され精製ガス11
を得る。
5Fe20B + H2-+ 2F8! 04+H
I 03H2B + Fe3O4+ Hl 43Fe8
+4H! 0HCN + H,O→NH,+GO CO8+ H,S→Co2+H,S In this way, in the adsorption and regeneration reactor 10, the impurity HCN
−? Part of CO8 also reacts and is removed to produce purified gas 11
get.

反応温度は250〜500℃で、ガスの空塔速度(fス
流量Nm”/h吸着剤容量1rLl)は吸着剤の種類や
粒径によって異るが、1000〜20.0001/hで
、ガス中のH,Sの90%以上が除去される。
The reaction temperature is 250 to 500°C, and the gas superficial velocity (fsu flow rate Nm''/h adsorbent capacity 1rLl) is 1000 to 20.0001/h, although it varies depending on the type and particle size of the adsorbent. More than 90% of the H and S contained therein are removed.

吸着、再生反応器10の形式は、第1図では固定床方式
で示しているが、流動層、移動層又は気流搬送方式等も
適用される。
Although the type of adsorption/regeneration reactor 10 is shown in FIG. 1 as a fixed bed type, a fluidized bed, moving bed or pneumatic conveyance type is also applicable.

吸着、再生反応器10は同一構造であり、内部には前述
の吸着剤が同量充填されているが、各反応器では前述の
吸着反応と、次式に示すような空気又は/及び酸素17
の供給による焙焼反応による吸着剤の再生がガス流路の
切替操作によシ順次進められる。
The adsorption and regeneration reactors 10 have the same structure and are filled with the same amount of the above-mentioned adsorbent, but in each reactor, the above-mentioned adsorption reaction and air or/and oxygen 17 as shown in the following formula are carried out.
The regeneration of the adsorbent by the torrefaction reaction caused by the supply of gas proceeds sequentially by switching the gas flow path.

4FeS + 702  →2Fe203 + 480
24Fe304 + OH→6Fez03前述の吸着反
応の進行によシ吸着剤の金属酸化物が硫化物に変化して
吸着しなくなると石炭ガス化ガス9の供給を停止して、
再生反応用の空気又は/及び酸素17がコンプレッサ1
6を介して加圧され反応器10に供給される。前述の再
生反応温度は250〜750℃で、吸着したSの大部分
は亜硫酸ガスとして放散されるが、再生反応熱で反応器
10出ロガス12はかなりの高温になり、再生反応に循
環使用するためにはガスクーラー13でブロアー14が
使用できる温度まで下げてやらなければならない。ブロ
アー14を通過したガスの一部は再生反応に循環して使
われ、再生ガス15はガスエキスパンダー20を通して
後流の湿式脱硫装置18に導かれる。ここでコンプレッ
サ16とガスエキスパンダ20は軸を連動し、再生ガス
15がガスエキスパンダ20で膨張する際の動力をコン
プレッサ16に与えることによって、コンプレッサ動力
の大幅な節減を計ることができる。
4FeS + 702 →2Fe203 + 480
24Fe304 + OH→6Fez03 As the adsorption reaction described above progresses, the metal oxide in the adsorbent changes to sulfide and is no longer adsorbed, and the supply of coal gasification gas 9 is stopped.
Air or/and oxygen 17 for regeneration reaction is supplied to the compressor 1
6 and is supplied to the reactor 10 under pressure. The regeneration reaction temperature mentioned above is 250 to 750°C, and most of the adsorbed S is dissipated as sulfur dioxide gas, but due to the heat of the regeneration reaction, the log gas 12 from the reactor 10 becomes quite high temperature and is recycled for use in the regeneration reaction. In order to do this, the gas cooler 13 must be used to lower the temperature to a point where the blower 14 can be used. A part of the gas that has passed through the blower 14 is circulated and used for the regeneration reaction, and the regeneration gas 15 is led to the downstream wet desulfurization device 18 through the gas expander 20. Here, the shafts of the compressor 16 and the gas expander 20 are interlocked, and by providing power to the compressor 16 when the regenerated gas 15 is expanded in the gas expander 20, it is possible to significantly reduce the compressor power.

再生ガスからの動力回収の一実例を・下記に示す。An example of power recovery from regeneration gas is shown below.

1、 ガスエキスパンダー仕様 (1)  入口ガス条件 ガス量: 10,59 oklI/h(7,2y aN
m”/b)ガス組成:         Volチco
、    α03 )!、0   1.51 Nz    a艮34 0、     a、45 so、    12.67 100.00 ガス圧カニ 24 kg7am” G ガス温度ニア00℃ (2)出口ガス条件 ガス圧カニ l O5kg/cfIIG(3)ガスエキ
スパンダー仕様 軸動カニ 1.180 kW 吐出温度:285℃ 回転数: 14.25 Orpm 2 空気コンプレッサー仕様 (1)入口空気条件 空気量: 1o19ok!g/h(796oNm’/h
)組 成:v01チ Co、       0.03 H,0148 N2      77.95 0、      2α66 10 α00 温   度: 15℃ (2)出口空気条件 空気圧カニ 24.5 kg/cIn2G(3)空気コ
ンプレッサー仕様 軸動カニ 1.600 kw 吐出温度:240℃ 回転数: 14.25 Orpm 湿式脱硫装置18では亜硫酸ガスを既存の脱硫方法によ
って石灰又は苦土などの脱硫剤の添加により硫酸力μシ
ウム又は硫酸マグネシウムなどを回収物19として得る
1. Gas expander specifications (1) Inlet gas condition Gas amount: 10,59 oklI/h (7,2y aN
m”/b) Gas composition: Vol.
, α03)! , 0 1.51 Nz a艮34 0, a, 45 so, 12.67 100.00 Gas pressure crab 24 kg7am” G Gas temperature near 00℃ (2) Outlet gas condition Gas pressure crab l O5kg/cfIIG (3) Gas expander specifications Axial crab 1.180 kW Discharge temperature: 285℃ Rotation speed: 14.25 Orpm 2 Air compressor specifications (1) Inlet air conditions Air amount: 1o19ok!g/h (796oNm'/h
) Composition: v01 ChiCo, 0.03 H,0148 N2 77.95 0, 2α66 10 α00 Temperature: 15℃ (2) Outlet air condition Pneumatic crab 24.5 kg/cIn2G (3) Air compressor specifications axial movement Crab 1.600 kW Discharge temperature: 240°C Rotation speed: 14.25 Orpm In the wet desulfurization equipment 18, sulfur dioxide gas is converted into μsium sulfate or magnesium sulfate by adding a desulfurizing agent such as lime or magnesium sulfate using an existing desulfurization method. Obtained as recovered material 19.

以上のように、本発明は石炭や重質油などのガス化によ
って得られる高温還元性ガス中に含まれる硫黄化合物を
、吸着と脱着リサイクμによって除去する方法において
、加圧脱着ガスをガスエキスパンダを通して膨張せしめ
て、その動力を同軸のコンプレッサを通して脱着用の空
気又は酸素の外圧に使用する実用上非常に有用な方法で
ある。
As described above, the present invention is a method for removing sulfur compounds contained in high-temperature reducing gas obtained by gasification of coal, heavy oil, etc. by adsorption and desorption recycling μ. This is a very useful method in practice, in which the gas is expanded through a panda and the power is used for external pressure of air or oxygen for desorption through a coaxial compressor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施聾様のフローを示す図である
。 復代理人  内 1)  明 復代理人  萩 原 亮 − 僕代理人  安西篤夫
FIG. 1 is a diagram showing the flow of one embodiment of the present invention for a deaf person. Sub-agents 1) Meifuku agent Ryo Hagiwara - My agent Atsuo Anzai

Claims (1)

【特許請求の範囲】[Claims] 石炭や重質油などの加圧ガス化によつて得られる高温還
元性ガス中に含まれる硫黄化合物を吸着剤で硫化物とし
て吸着除去し、該吸着剤を空気又は/及び酸素で焙焼し
て吸着剤を再生すると同時に、濃厚な亜硫酸ガスを含む
再生ガスを得、次いで該再生ガスを湿式脱硫法によつて
処理する方法に於いて、該再生ガスをガスエキスパンダ
を通して膨張せしめその動力を該ガスエキスパンダと同
軸のコンプレッサを通して焙焼用の空気などの加圧に使
用することを特徴とする高温還元性ガスの精製方法。
Sulfur compounds contained in high-temperature reducing gas obtained by pressurized gasification of coal or heavy oil are adsorbed and removed as sulfides using an adsorbent, and the adsorbent is roasted with air and/or oxygen. In this method, the regenerating gas containing concentrated sulfur dioxide gas is obtained at the same time as regenerating the adsorbent, and then the regenerating gas is treated by a wet desulfurization method, in which the regenerating gas is expanded through a gas expander to generate its power. A method for purifying high-temperature reducing gas, characterized in that air for roasting, etc. is pressurized through a compressor coaxial with the gas expander.
JP60093565A 1985-05-02 1985-05-02 Method of refining high-temperature reducing gas Pending JPS61252290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60093565A JPS61252290A (en) 1985-05-02 1985-05-02 Method of refining high-temperature reducing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60093565A JPS61252290A (en) 1985-05-02 1985-05-02 Method of refining high-temperature reducing gas

Publications (1)

Publication Number Publication Date
JPS61252290A true JPS61252290A (en) 1986-11-10

Family

ID=14085770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60093565A Pending JPS61252290A (en) 1985-05-02 1985-05-02 Method of refining high-temperature reducing gas

Country Status (1)

Country Link
JP (1) JPS61252290A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239127A (en) * 2000-02-29 2001-09-04 Toho Kako Kensetsu Kk Method for recovering organic solvent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254850A (en) * 1975-10-29 1977-05-04 Hitachi Ltd City gas use power recovery method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254850A (en) * 1975-10-29 1977-05-04 Hitachi Ltd City gas use power recovery method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239127A (en) * 2000-02-29 2001-09-04 Toho Kako Kensetsu Kk Method for recovering organic solvent

Similar Documents

Publication Publication Date Title
RU2417825C2 (en) Method of cleaning gases produced at gasification plant
US2992884A (en) Process for the removal of sulfur oxides from gases
US4041130A (en) Process for desulfurization of coke oven gas
US4368178A (en) Process for the removal of H2 S and CO2 from gaseous streams
JP3035870B2 (en) Method for removing HCl and HF from coal derived fuel gas
JPS5845101A (en) Method of reducing total sulfur content of charge gas having high carbon dioxide content
US3524720A (en) Process for removing sulfur dioxide from gases
US4008169A (en) Preparation of iron oxide sorbent for sulfur oxides
CA2261412A1 (en) Process for the purification of gasification gas
US4010239A (en) Iron oxide sorbents for sulfur oxides
PL107862B1 (en) METHOD OF PROCESSING GASES CONTAINING HYDROGEN SULFIDE
KR850001200B1 (en) Process for dry desuifurization of flue gas
JPS63191894A (en) Treatment of fly slag
JPS61252290A (en) Method of refining high-temperature reducing gas
US4755372A (en) Catalytic sulfur degassing
US3923957A (en) Conversion of hydrogen cyanide in foul gas streams to carbon disulfide
JPS63291986A (en) Purification of high-temperature reducing gas
JPS63123801A (en) Method for treating high-temperature and high-pressure reducing gas
JPS59184291A (en) Refining of high-temperature reducing gas
JPS59204687A (en) Fuel gas desulfurization
CA1146338A (en) Low sulfur content hot reducing gas production using calcium oxide desulfurization with water recycle
JP2651381B2 (en) Purification method of high-temperature reducing gas
JPS59230618A (en) Removal of hydrogen sulfide
JPS61245819A (en) Method for purifying high temperature reductive gas
JP2635652B2 (en) Dry desulfurization of coal gas