JPS60225621A - Desulfurization of high temperature gas - Google Patents

Desulfurization of high temperature gas

Info

Publication number
JPS60225621A
JPS60225621A JP59081160A JP8116084A JPS60225621A JP S60225621 A JPS60225621 A JP S60225621A JP 59081160 A JP59081160 A JP 59081160A JP 8116084 A JP8116084 A JP 8116084A JP S60225621 A JPS60225621 A JP S60225621A
Authority
JP
Japan
Prior art keywords
desulfurization
gas
temperature
tower
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59081160A
Other languages
Japanese (ja)
Inventor
Tadataka Murakami
村上 忠孝
Susumu Yoshioka
進 吉岡
Keizo Otsuka
大塚 馨象
Shuntaro Koyama
俊太郎 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP59081160A priority Critical patent/JPS60225621A/en
Publication of JPS60225621A publication Critical patent/JPS60225621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:To enhance the reactivity with H2S to lower a powdering ratio and to enable regeneration, by using a particulate substance by hydrating crushed particles of an alumina cement clinker through the contact with water. CONSTITUTION:Formed H2S gas is guided to a desulfurization tower 12 from a duct 15 and absorbed by a desulfurization agent, which is obtained by hydrating an alumina cement clinker, in said tower 12. The desulfurization agent comes to CaS by absorbing H2S and enters an oxidizing tower 13 to be oxidized by air from a supply pipe 16 to be converted to CaSO3. Subsequently, the desulfurization agent enters a reducing tower 14 and reduced to CaO by CO and H2 gases to be returned to the desulfurization tower 12 through a conveyor pipe 23. At this time, a new desulfurization agent can be replenished from a replenishing pipe 24 in an amount corresponding to a damaged amount. The outlet gas from the reducing tower contains SO2 and sent to a byproduct preparation apparatus from a duct 20.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、水和されたアルミナセメントクリンカ−粒子
を用いて還元性高温ガス中の硫化水素を除去する脱硫方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a desulfurization method for removing hydrogen sulfide in a reducing hot gas using hydrated alumina cement clinker particles.

〔発明の背景〕[Background of the invention]

石油代替エネルギーとして、近年、石炭のガス化が注目
され、その開発の推進がなされており、都市ガス燃料の
みならず、電力、化学工業などの分野での利用が期待さ
れている。
Coal gasification has attracted attention in recent years as an energy alternative to oil, and its development is being promoted.It is expected to be used not only as a city gas fuel but also in fields such as electric power and the chemical industry.

石炭のガス化に伴なって石炭中の硫黄分は、大部分が硫
化水素(H2S)になり生成ガス中に存在−fる。その
ため、石炭をガス化したものを利用するプロセスでは環
境保全対策から、脱硫して使用する必要がある。
As coal is gasified, most of the sulfur content in the coal becomes hydrogen sulfide (H2S), which is present in the generated gas. Therefore, in the process of using gasified coal, it is necessary to desulfurize it before use, as a measure to protect the environment.

従来のガス脱硫方法には、アルカリ性水溶液や有機溶媒
でH28含有ガスを洗浄し脱硫する湿式脱硫法があり、
化学工業などの各分野で実用化されている。しかし、湿
式脱硫法では脱硫温度が常温〜120℃と低いため、石
炭ガス化炉からの高温ガスを120℃以下に冷却しなげ
ればならない。
Conventional gas desulfurization methods include wet desulfurization methods, in which H28-containing gas is washed and desulfurized with an alkaline aqueous solution or organic solvent.
It has been put into practical use in various fields such as the chemical industry. However, in the wet desulfurization method, the desulfurization temperature is as low as room temperature to 120°C, so the high-temperature gas from the coal gasifier must be cooled to 120°C or lower.

それに対し、400℃以上の温度で脱硫する高温ガス脱
硫法を高温の精製ガスな利用するプロセス、例えば、複
合発電用燃料ガス、COシフト反応原料ガスなどに適用
できれば、ガス冷却再加熱工程を省略でき、高温ガスの
熱効率及び設備コストを大巾に改善できる。従って、最
近は、高温ガスを対象とした乾式脱硫法が有望視されて
いる。
On the other hand, if the high-temperature gas desulfurization method, which desulfurizes at a temperature of 400°C or higher, can be applied to processes that utilize high-temperature purified gas, such as fuel gas for combined cycle power generation, CO shift reaction raw material gas, etc., the gas cooling and reheating step can be omitted. This can greatly improve the thermal efficiency of high-temperature gas and equipment costs. Therefore, recently, dry desulfurization methods targeting high-temperature gases have been viewed as promising.

吸収剤(脱硫剤)としては廃脱硫剤の処理を考慮し、再
生して使用する方法への指向が高まっている。
As absorbents (desulfurizing agents), there is an increasing trend towards methods that take into account the treatment of waste desulfurizing agents and regenerate and use them.

乾式脱硫法には、主に鉄系及びカルシウム系の固形脱硫
剤を使用することが検討されている。前者の鉄系脱硫剤
は、高温側はど脱硫剤のシンタリングが起るのでHll
Sとの反応温度は350℃〜460℃で行われる。その
ために反応速度が遅くなり、十分な吸収及び再生性能を
得ることができない。更にその反応温度が石炭ガス化炉
の温度よりも低いために、脱硫装置の前側に冷却装置を
設けなければならず生成ガスの顕熱損失などに基づく熱
効率の低下を招いたりしかも、システムも複雑になる欠
点を有している。
The use of iron-based and calcium-based solid desulfurization agents is being considered for the dry desulfurization method. The former type of iron-based desulfurization agent is difficult to use because sintering of the desulfurization agent occurs at high temperatures.
The reaction temperature with S is 350°C to 460°C. This slows down the reaction rate and makes it impossible to obtain sufficient absorption and regeneration performance. Furthermore, since the reaction temperature is lower than that of the coal gasification furnace, a cooling device must be installed in front of the desulfurization equipment, resulting in a decrease in thermal efficiency due to sensible heat loss of the produced gas, and the system is also complicated. It has some drawbacks.

一方、後者のカルシウム系脱硫剤としては、天然に産出
する石灰石やドロマイトなど含カルシウム鉱物が利用さ
れる。このカルシウム系脱硫剤の吸収性能は、870℃
付近が高く、その温度領域以下でも、以上でも吸収性能
は低下する欠点がある。再生反応はH,8を吸収して硫
化カルシウム(Ca8)になるため、空気などにより硫
酸カルシウム(CaS04)VC酸化した後、還元ガス
の一酸化炭素(CO)などで還元して行われる。ここで
の還元反応温度は、1000℃以上の高温を要するため
脱硫剤のシンタリングによる活性劣化が問題になる。特
に致命的なのは、含カルシウム鉱物は、高温での脱炭酸
や吸収、再生反応の繰返し、更には流動層などの反応形
式の場合、物理的及び機械的強度の低下に伴なう摩耗が
非常に大きく、粉化、飛散のためあと処理の問題や、ひ
いては゛粉化、飛散により必要な脱硫性能さえ得られず
供給量を増大しなげればならない欠点を有している。
On the other hand, as the latter calcium-based desulfurization agent, naturally occurring calcium-containing minerals such as limestone and dolomite are used. The absorption performance of this calcium-based desulfurization agent is 870℃.
There is a drawback that the temperature is high in the vicinity, and the absorption performance decreases both below and above that temperature range. Since the regeneration reaction absorbs H, 8 and becomes calcium sulfide (Ca8), it is carried out by oxidizing calcium sulfate (CaS04) VC with air or the like, and then reducing it with a reducing gas such as carbon monoxide (CO). Since the reduction reaction temperature here requires a high temperature of 1000° C. or higher, deterioration of the activity of the desulfurizing agent due to sintering becomes a problem. What is especially fatal is that calcium-containing minerals are subject to extremely high wear due to a decrease in physical and mechanical strength when decarboxylation, absorption, and regeneration reactions are repeated at high temperatures, and when reactions are conducted in fluidized beds. It has the drawback that it is large in size, causes problems in post-processing due to powdering and scattering, and furthermore, the necessary desulfurization performance cannot be obtained due to powdering and scattering, and the supply amount must be increased.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の欠点を解決するためになされたもので
あり、還元性高温ガス中におけるH2Sとの反応性が十
分に高く、かつ、粉化率が低く、再生繰返しが可能な脱
硫方法を提供することにある。
The present invention has been made to solve the above-mentioned drawbacks, and provides a desulfurization method that has sufficiently high reactivity with H2S in reducing high-temperature gas, has a low powdering rate, and can be repeatedly regenerated. It is about providing.

〔発明の概要〕[Summary of the invention]

即ち、本発明は、高温ガス中のH,Sの除去を目的に、
再生可能でしかも耐久性にすぐれた脱硫剤を種々探求し
た結果、アルミナセメントクリンカ−を原料とする脱硫
剤を用いたことを特徴とするものである。
That is, the present invention aims to remove H and S from high-temperature gas.
As a result of various searches for a desulfurizing agent that is renewable and has excellent durability, the present invention is characterized by the use of a desulfurizing agent made from alumina cement clinker.

本発明に用いる脱硫剤は、一般に市販されている微粉末
アルミナセメントの酌工程で製造される塊状のアルミナ
セメントクリンカ−を、固定層9移動層など種々の反応
形式に応じて適用できるように破砕して粒径調整を行っ
た後、水に浸漬して粒子内部まで水和させて用いる。
The desulfurization agent used in the present invention is made by crushing alumina cement clinker, which is generally produced in the form of a lump of commercially available fine powder alumina cement in a mixing process, so that it can be applied to various reaction formats such as a fixed bed and a moving bed. After adjusting the particle size, the particles are immersed in water to hydrate the inside of the particles before use.

前記アルミナセメントクリンカ−は、化学成分としてC
a 036〜44 % −A I 20 g 40〜5
5%、Fe2O31=15%、8 A024〜111を
含み、水と速やかに結合して、2CaO#Aj、o、−
8)(、o、Cab−A12o、*10H,0など水和
化合物を生成する。即ち、水和物の大なるクリンカーは
ど脱水により気孔率が大きいことを意味する。ここで水
和したアルミナセメントクリンカ−は、その水和程度に
より脱硫性能に大きく影響し、十分な脱硫性能を得るた
めには水和程度の指標が必要である。そこで、水和程度
を評価する一例として、粉子内部への気孔性(多孔質化
)との相関から比表面積を測定した結果、5 rrf/
g以上、好ましくは12rrf/l/以上であることが
望ましいことがわかった。
The alumina cement clinker contains C as a chemical component.
a 036~44% -AI 20g 40~5
5%, Fe2O31 = 15%, 8 Contains A024-111, quickly combines with water, and forms 2CaO#Aj, o, -
8) (, o, Cab-A12o, *10H,0, etc. are produced. In other words, the large clinker of the hydrate means that the porosity is large due to dehydration. Here, hydrated alumina The desulfurization performance of cement clinker is greatly affected by its degree of hydration, and an index of the degree of hydration is necessary to obtain sufficient desulfurization performance.As an example of evaluating the degree of hydration, As a result of measuring the specific surface area from the correlation with the porosity (porosity), it was found that 5 rrf/
It has been found that it is desirable that it be at least 12 rrf/l/, preferably at least 12 rrf/l/.

本発明における脱硫剤は、種々の反応形式に適するよう
な粒径にアルミナセメントクリンカ−を破砕して、粒径
が調整される。しかる後、水に浸漬し、粒子内部まで十
分に水和反応せしめる。アルミナセメントクリンカ−は
本来、前記化学成分を混合して加熱し、半溶融状態から
冷却固化されたものであり、ガラス質の気孔性に乏しい
ので本発明の如く比較的粗大なりリンカ−粒子では、粒
子表面から内部への水和反応が徐々にしか進行せず、粒
子の中心部まで行なわしめるには長時間を要する。この
水和反応を短時間で進行せしめるには、常温よりも若干
高い温度で行うことにより1 / l O−1/ 3程
度まで短縮できる。このようにして得られる脱硫剤は、
強度的には一段とすぐれたものであり、しかもその製造
法が簡単である。
The particle size of the desulfurizing agent in the present invention is adjusted by crushing alumina cement clinker to a particle size suitable for various reaction types. Thereafter, the particles are immersed in water to cause a sufficient hydration reaction to occur inside the particles. Alumina cement clinker is originally a mixture of the above chemical components, heated, cooled and solidified from a semi-molten state, and because it lacks glassy porosity, it has relatively coarse linker particles as in the present invention. The hydration reaction from the surface of the particle to the inside progresses only gradually, and it takes a long time to reach the center of the particle. In order to make this hydration reaction proceed in a short time, it can be shortened to about 1/1 O-1/3 by conducting it at a temperature slightly higher than room temperature. The desulfurizing agent obtained in this way is
It has superior strength and is easy to manufacture.

脱硫剤としてのN28吸収 式に基くものである。N28 absorption as a desulfurization agent It is based on the formula.

C a O+H 2B−+C a 8+H 20 − 
”・(1)アルミナセメントクリンカ−に含有されるC
aOとH,8の反応率をモル比で示したのが第1図であ
る。この図の脱硫性能は次のような手順によって測定さ
れた。即ち、熱天秤により、化学成分としてC a 0
 3 8 fo * A I ! O B 5 3 %
 、 F e 2 0 Blts(いずれも重量tIb
)を有−f′る塊状のアルミナセメントクリンカ−をス
クリーンミルで破砕した後、粒径が0. 5〜0. 8
 mmの範囲のものを用いて、上記の方法で水和し、比
表面積が2Ofll”/IIの脱硫剤を約40〜使用し
てH2Sの1時間吸収量と反応温度の関係を測定して示
したものである。吸収せしめたガス組成は、H2SO.
2%,CO3チ。
C a O+H 2B−+C a 8+H 20 −
”・(1) C contained in alumina cement clinker
FIG. 1 shows the reaction rate of aO and H,8 in terms of molar ratio. The desulfurization performance shown in this figure was measured by the following procedure. That is, by thermobalance, C a 0 as a chemical component
3 8 fo * AI! O B 5 3%
, F e 2 0 Blts (both weight tIb
) After crushing alumina cement clinker in the form of a block with a screen mill, the particle size becomes 0. 5-0. 8
The relationship between the 1-hour absorption of H2S and the reaction temperature was measured and shown using a desulfurizing agent with a specific surface area of about 40 mm, hydrated by the above method, and having a specific surface area of 2 Ofll''/II. The absorbed gas composition was H2SO.
2%, CO3.

その他N2ガス(いずれも容積チ)で全量が1.ONj
/minの雰囲気ガスである。
Other N2 gas (both have a volume of 1), the total amount is 1. ONj
/min atmospheric gas.

第1図には、本発明による脱硫剤lと岡山県井倉産の石
灰石(C aCO3)を脱炭酸させたCaO脱硫剤2の
H2S吸収性能を比較して示した。図中において本発明
の脱硫剤lは、700〜1200℃の温度で石灰石脱硫
剤2より吸収性能がすぐれ、好ましくは850〜120
0℃で十分なる性能が得られることがわかる。従って、
例えば石炭を高温でガス化し、生成ガス温度が1ooo
℃付近の脱硫に対してもすぐれた吸収効果を有する脱硫
剤である。
FIG. 1 shows a comparison of the H2S absorption performance of the desulfurization agent 1 according to the present invention and the CaO desulfurization agent 2 obtained by decarboxylating limestone (CaCO3) produced in Ikura, Okayama Prefecture. In the figure, desulfurization agent 1 of the present invention has better absorption performance than limestone desulfurization agent 2 at a temperature of 700 to 1200°C, preferably 850 to 120°C.
It can be seen that sufficient performance can be obtained at 0°C. Therefore,
For example, when coal is gasified at high temperature, the temperature of the generated gas is 1ooo.
It is a desulfurization agent that has an excellent absorption effect even for desulfurization at temperatures around ℃.

一方、脱硫剤を再生して使用するためには、(1)式に
よって生成したCaSをCaOに戻さなければならない
。そこで、下記の反応による酸化工程と還元工程を要す
る。
On the other hand, in order to regenerate and use the desulfurization agent, CaS generated by equation (1) must be returned to CaO. Therefore, an oxidation step and a reduction step using the following reactions are required.

Ca8+202−+Ca804 ++++++HHHH
++(2)C a S 0 4 +C O−+ C a
 O +8 0 2 + C O g ・” (31帥
記(2)、 (3)式の反応を行わせることによって、
脱硫剤を再生したときの再生率と再生温度の関係を第2
図に示した。まず、前記熱天秤実験により酸化工程は、
0□5チ.残りがN2の混合ガスによって硫化カルシウ
ムを2〜3時間酸化した。次イテ、coaLss 残Q
N217)混合ガ,’([J:QIO〜60分還元して
脱硫剤を再生した。いずれの工程もガス流量は前記H,
S吸収条件と同じであり、硫化済脱硫剤もそのときのも
のを使用した。再生率の評価は酸化及び還元に伴なう重
量変化から脱硫剤中の8分に換算してめた。
Ca8+202-+Ca804 +++++++HHHH
++(2)C a S 0 4 +C O-+ C a
O + 8 0 2 + C O g ・” (By carrying out the reaction of formula 31 (2) and (3),
The relationship between the regeneration rate and regeneration temperature when regenerating the desulfurization agent is
Shown in the figure. First, according to the thermobalance experiment, the oxidation process was
0□5chi. Calcium sulfide was oxidized for 2-3 hours with a mixed gas of balance N2. Next item, coaLss remaining Q
N217) Mixed gas, '([J: QIO ~ 60 minutes reduction to regenerate the desulfurization agent. In both steps, the gas flow rate was the same as above H,
The S absorption conditions were the same, and the sulfurized desulfurization agent used at that time was also used. The regeneration rate was evaluated by converting the weight change due to oxidation and reduction into 8 minutes in the desulfurizing agent.

第2図中の温度は酸化.還元の両反応温度で、七の範囲
は700〜1200℃であった。この範囲はH!8吸収
温度と同じ温度で問題ではないが、好ましい範囲は85
0〜1200℃であった。
The temperatures in Figure 2 are for oxidation. For both reaction temperatures of reduction, the range of 7 was 700-1200°C. This range is H! There is no problem with the same temperature as 8 absorption temperature, but the preferred range is 85
The temperature was 0 to 1200°C.

図中の各温度における再生率は、本発明による脱硫剤l
及び石灰石脱硫剤2とも1loO’c付近では同程度で
あるが、それより低温側において本発明の脱硫剤による
脱硫率が高く、比較的低温側でも有効なる特性をもって
いる。
The regeneration rate at each temperature in the figure is the desulfurization agent l according to the present invention.
Both of the desulfurization agent and the limestone desulfurization agent 2 are at the same level around 1 loO'c, but the desulfurization rate of the desulfurization agent of the present invention is high at lower temperatures than that, and has characteristics that are effective even at relatively low temperatures.

脱硫剤の還元ガスは、実用的な見知から石炭のガス化に
よって生成する、CO.N2などをそのまま使用するこ
とができる。
From practical knowledge, the reducing gas of the desulfurization agent is CO., which is produced by gasification of coal. N2 etc. can be used as is.

本発明による脱硫剤の如く、脱硫,再生サイクルを繰返
して使用する場合は、サイクルによる脱硫剤の摩耗が問
題になり、脱硫剤のハンドリングに伴なう機械的強度及
び熱的強度にすぐれていることが要求される。そこで、
本発明の脱硫剤及び石灰石脱硫剤を約40y準備し、こ
れを出発試料として摩耗量を測定して比較した。
When the desulfurization agent according to the present invention is repeatedly used in desulfurization and regeneration cycles, wear of the desulfurization agent due to the cycle becomes a problem, and the desulfurization agent has excellent mechanical strength and thermal strength associated with handling. This is required. Therefore,
Approximately 40 years of the desulfurizing agent and limestone desulfurizing agent of the present invention were prepared, and the wear amount was measured and compared using this as a starting sample.

摩耗量の測定は、粒径が0.5〜1.0順で、温度85
0℃において2時間焼成して試料とし、ステンレス製の
直径1インチ、長さ300mmの筒内にその試料を充填
して封口し、筒の長さ方向の中心部で固定するとともに
、これを軸として試料が筒内で十分なる上下移動を可能
とした25r、p、mの回転数で回転させ、経時的に試
料を取出して摩耗損量を測定した。
The amount of wear was measured in the order of grain size from 0.5 to 1.0 at a temperature of 85%.
A sample was baked at 0°C for 2 hours, and the sample was filled into a stainless steel cylinder with a diameter of 1 inch and a length of 300 mm, sealed, fixed at the longitudinal center of the cylinder, and attached to the shaft. The sample was rotated at a rotation speed of 25 r, p, m, which enabled sufficient vertical movement within the cylinder, and the sample was taken out over time to measure the amount of wear loss.

摩耗損量は、0.25mmのふるいで分級し、ふるい下
の量を摩耗損量とし、出発試料に対する重量割合よりめ
た。ここで試料は、吸湿性であるため、重量測定的後で
同一温度に乾燥処理してから秤量した。
The amount of abrasion loss was determined by classifying with a 0.25 mm sieve, taking the amount under the sieve as the amount of abrasion loss, and calculating the weight ratio to the starting sample. Since the sample is hygroscopic, it was weighed after gravimetrically drying at the same temperature.

摩耗損量の経時変化を第3図に示す。本発明の脱硫剤l
に対して、石灰石脱硫剤2は摩耗絶対量も多く、特に摩
耗損量が経時に増大する。つまり、初期の急激に大館く
なる摩耗は粒径調整などによる付着粉の影響な考慮する
必要があり、本来の脱硫剤摩耗と考えるのは妥当ではな
い。それよりも、むしろ、それ以後の摩耗速度が重要で
あり、両脱硫剤について単位時間当りの摩耗損量を比較
した結果、石灰石脱硫剤が本発明による脱硫剤より7倍
も摩耗することがわかった。従って、脱硫、再生を繰返
して行う脱硫方式には、石灰石脱硫剤では適さない理由
がこの強度低下にあることがわかる。
Figure 3 shows the change in wear loss over time. Desulfurizing agent of the present invention l
On the other hand, the limestone desulfurization agent 2 has a large absolute amount of wear, and in particular, the amount of wear loss increases over time. In other words, it is necessary to consider that the initial rapid increase in wear is due to the influence of adhering powder due to particle size adjustment, etc., and it is not reasonable to think that it is the original desulfurization agent wear. Rather, the subsequent wear rate is important, and as a result of comparing the amount of wear loss per unit time for both desulfurization agents, it was found that the limestone desulfurization agent causes seven times more wear than the desulfurization agent according to the present invention. Ta. Therefore, it can be seen that this decrease in strength is the reason why limestone desulfurization agents are not suitable for desulfurization systems that repeatedly perform desulfurization and regeneration.

本発明による脱硫剤は、製造方法も簡単で、かつ強度的
にすぐれていることから、脱硫、再生サイクル及びハン
ドリングで問題となる脱硫剤の摩耗損量が少ないという
効果があり、実用に適するものである。
The desulfurization agent according to the present invention has a simple manufacturing method and excellent strength, so it has the effect of reducing the amount of wear and tear of the desulfurization agent that causes problems during desulfurization, regeneration cycles, and handling, and is suitable for practical use. It is.

以下、本発明を石炭ガス化ガスの脱硫に用いた一実施例
について第4図のフローにより説明する。
Hereinafter, an embodiment in which the present invention is used for desulfurization of coal gasification gas will be described with reference to the flowchart of FIG. 4.

脱硫装置は、脱硫塔12と再生のための酸化塔13及び
還元塔14より構成する。ここで、脱硫剤はいずれの塔
においても有効な反応性を得るため、流動層を形成する
構造とした。以下、実施例の構成及び動作を詳細に説明
する。
The desulfurization apparatus includes a desulfurization tower 12, an oxidation tower 13 for regeneration, and a reduction tower 14. Here, in order to obtain effective reactivity of the desulfurizing agent in both towers, a structure was adopted in which a fluidized bed was formed. The configuration and operation of the embodiment will be described in detail below.

石炭ガス化は、900−1600℃の高温で還元性ガス
を生成するため、石炭中の8分と生成したガス中のH3
が反応してH2Sの化合物を生成する。
Coal gasification produces reducing gas at high temperatures of 900-1600°C, so 8 minutes in the coal and H3 in the generated gas are
reacts to produce a compound of H2S.

生成H,8ガスは、石炭ガス化ガス中に石炭の種類によ
り異なるが、数千p・p@m程度存在し、ガス化炉出口
に接続されたダク)15から脱硫塔12に導かれる。脱
硫塔12内には本発明のアルミナセメントクリンカ−を
水和して成る脱硫剤11が、05〜3 mmの粒径及び
線速度が0.5〜2、 Om / sにより流動層を形
成している。ここで脱硫反応は、(11式の反応により
、700〜1200℃の温度、好ましくは850−12
00℃の温度範囲でH2Sが脱硫剤11に吸収される。
The generated H,8 gas is present in the coal gasification gas at an amount of several thousand p·p@m, although it varies depending on the type of coal, and is led to the desulfurization tower 12 from the duct 15 connected to the gasifier outlet. In the desulfurization tower 12, a desulfurization agent 11 made by hydrating the alumina cement clinker of the present invention forms a fluidized bed with a particle size of 05 to 3 mm and a linear velocity of 0.5 to 2 Om/s. ing. Here, the desulfurization reaction is carried out at a temperature of 700 to 1200°C, preferably 850-120°C by the reaction of formula 11.
H2S is absorbed by the desulfurizing agent 11 in the temperature range of 00°C.

脱硫塔12から出たガスは、脱硫塔出口に接続するダク
ト18から浄化されて排出される。
The gas discharged from the desulfurization tower 12 is purified and discharged from a duct 18 connected to the desulfurization tower outlet.

脱硫塔12内の脱硫剤11は、H,8を吸収して前記(
1)の反応式からCa8の形になり、この状態で連結管
21からオーバーフローして酸化塔13に入る。酸化塔
13に移動した脱硫剤は、酸化塔下部より、硫化脱硫剤
を酸化するための酸化剤として空気(又は不活性ガス中
に0□3チ以上を含むガス)を、供給管16から供給し
、前記(2)式の反応によって酸化する。ここでの酸化
温度は、700〜1200℃の温度、好ましくは850
〜1200℃の温度範囲で、この酸化工程で硫化脱硫剤
はCaSO4まで酸化する。
The desulfurization agent 11 in the desulfurization tower 12 absorbs H,8 and produces the above (
According to the reaction formula 1), it becomes Ca8, and in this state it overflows from the connecting pipe 21 and enters the oxidation tower 13. The desulfurizing agent transferred to the oxidizing tower 13 is supplied with air (or a gas containing 0□3 or more in inert gas) as an oxidizing agent from the lower part of the oxidizing tower to oxidize the sulfurizing desulfurizing agent from the supply pipe 16. and is oxidized by the reaction of formula (2) above. The oxidation temperature here is a temperature of 700 to 1200°C, preferably 850°C.
In this oxidation step, the sulfurized desulfurization agent is oxidized to CaSO4 in a temperature range of ~1200<0>C.

次いで、酸化した脱硫剤は、連結管22を通り還元塔1
4に入る。この還元塔では、還元剤としてCO,H,ガ
スが必要である。石炭ガス化炉ガスは都合よくこれらの
ガスを生成しているが、そのままのガスではH,8を含
んでいるため脱硫後のクリーンなガスである脱硫塔12
の出口ダクト18からガスを一部分岐してダクト17へ
導き、Ca804に:なった脱硫剤の還元ガスに利用す
る。
Next, the oxidized desulfurization agent passes through the connecting pipe 22 to the reduction tower 1.
Enter 4. This reduction tower requires CO, H, and gas as reducing agents. Coal gasifier gas conveniently generates these gases, but since the gas as it is contains H and 8, the desulfurization tower 12 is a clean gas after desulfurization.
Part of the gas is branched from the outlet duct 18 and guided to the duct 17, where it is used as a reducing gas for the desulfurization agent which has become Ca804.

還元反応は(3)式により、Ca80.が脱硫前のCa
0K戻る。ここでの反応温度は、850〜1200℃、
好ましくは1000〜1200℃である。
The reduction reaction is carried out by equation (3), with Ca80. is Ca before desulfurization
Return to 0K. The reaction temperature here is 850 to 1200°C,
Preferably it is 1000-1200°C.

ここまでの工程で1サイクルの脱硫、再生が完了して再
生済の脱硫剤11は、搬送管23を通って脱硫塔12に
供給する。この搬送管23には、脱硫、再生サイクルに
よる脱硫剤の損耗量に見合って、新しい脱硫剤を補給す
るための補給管24を付設し供給できるようになってい
る。
One cycle of desulfurization and regeneration has been completed in the steps up to this point, and the regenerated desulfurization agent 11 is supplied to the desulfurization tower 12 through the conveyance pipe 23. A replenishment pipe 24 is attached to this conveyance pipe 23 to supply new desulfurization agent in proportion to the amount of desulfurization agent wasted due to the desulfurization and regeneration cycle.

一方、還元塔14からの出口ガスは前記(3)の反応式
により、脱硫剤中へのH2Sの吸収量及びその酸化程度
により数パーセント濃度のSO□ガスが排出される。こ
のSO2ガスは、副生品製造装置ヘダク)20を流れて
供給する。
On the other hand, the outlet gas from the reduction tower 14 is SO□ gas having a concentration of several percent depending on the amount of H2S absorbed into the desulfurizing agent and the degree of oxidation thereof, according to the reaction formula (3). This SO2 gas flows through and is supplied to the by-product manufacturing apparatus (20).

これまでが流動層方式による反応形態の場合を例に説明
したが、本発明による脱硫剤では必ずしも流動層方式に
限定するものではない。また、脱硫装置の構成は、有効
な反応温度を得るためにガス化炉内において行う方法も
当然として考えられる。
Although the description has been given using an example of a reaction mode using a fluidized bed method, the desulfurization agent according to the present invention is not necessarily limited to a fluidized bed method. Furthermore, it is natural that the desulfurization apparatus may be constructed in such a way that the reaction is carried out in a gasifier in order to obtain an effective reaction temperature.

以上のように本発明によれば、還元性高温ガスの脱硫に
有効で、脱硫のためにガス温度を低下させる必要がなく
、熱損失を低減できろ。更に、従来の石灰石脱硫剤に比
べて本発明の脱硫剤は、脱硫、再生性能にすぐれた効果
を有している。しかも、高強度であるため摩耗による損
耗量を非常に少なくすることが可能であり、経済的な特
性を有する脱硫方法を提供することができろ。
As described above, according to the present invention, it is effective in desulfurizing reducing high temperature gas, there is no need to lower the gas temperature for desulfurization, and heat loss can be reduced. Furthermore, compared to conventional limestone desulfurization agents, the desulfurization agent of the present invention has excellent desulfurization and regeneration performance. Moreover, since it has high strength, it is possible to significantly reduce the amount of wear due to wear, and it is possible to provide an economical desulfurization method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、CaOの反応率(モル比)と反応温度の関係
を示した脱硫性能の比較図、第2図は、再生率と再生温
度の関係を示した再生性能の比較図、第3図は、経時摩
耗損量を示した摩耗強度の比較図、第4図は、本発明に
よる脱硫方法の一例を示したフローチャートである。 11・・・・・・脱硫剤、12・・・・・・脱硫塔、1
3・・・・・・酸化塔、14・・・・・・還元塔。 第1図 400 6(X) 800/QQO12001400刃
ε l騒 5男−ン佃: (’C) 第2図 上 住、 5品(度 (’C〕 第3図 崎 lvi (h) 第4図
Figure 1 is a comparison diagram of desulfurization performance showing the relationship between CaO reaction rate (mole ratio) and reaction temperature. Figure 2 is a comparison diagram of regeneration performance showing the relationship between regeneration rate and regeneration temperature. The figure is a comparison diagram of wear strength showing the amount of wear loss over time, and FIG. 4 is a flowchart showing an example of the desulfurization method according to the present invention. 11...Desulfurization agent, 12...Desulfurization tower, 1
3... Oxidation tower, 14... Reduction tower. Fig. 1 400 6 (X) 800/QQO12001400 blade ε 1 5th man - n Tsukuda: ('C) Fig. 2 upper residence, 5 articles (degree ('C)) Fig. 3 Saki lvi (h) Fig. 4

Claims (1)

【特許請求の範囲】 1、 アルミナセメントクリンカ−の破砕粒子を水と接
触させて水和せしめて成る粒状物質を用いて、高温還元
性ガス中の硫化水素を除去することを特徴とする高温ガ
スの脱硫方法。 2、特許請求の範囲第1項において、前記硫化水素を含
む高温ガスが石炭のガス化還元性ガスであることを特徴
とする高温ガスの脱硫方法。 3、特許請求の範囲第1項において、脱硫温度が700
℃〜1200℃の範囲であることを特徴とする高温ガス
の脱硫方法。 4、特許請求の範囲第1項において、高温ガス中の硫化
水素の吸収剤として利用し、硫化された水和アルミナセ
メントクリンカ−を再生して繰返し利用することを特徴
とする高温ガスの脱硫方法。 5、 特許請求の範囲第4項において、硫化されたアル
ミナセメントクリンカ−を酸素含有ガスにより、酸化し
て硫酸カルシウムとしたのち、−酸化炭素を含む還元性
ガスによって再生することを特徴とする高温ガスの脱硫
方法。 6、 特許請求の範囲第5項において、−酸化炭素を含
む還元性ガスが脱硫されたあとの石炭ガス化ガスである
ことを特徴とする高温ガスの脱硫方法。
[Claims] 1. A high-temperature gas characterized in that hydrogen sulfide in a high-temperature reducing gas is removed by using a granular material made of crushed particles of alumina cement clinker brought into contact with water and hydrated. desulfurization method. 2. A method for desulfurizing high-temperature gas according to claim 1, wherein the high-temperature gas containing hydrogen sulfide is a coal gasification-reducing gas. 3. In claim 1, the desulfurization temperature is 700
A method for desulfurizing high-temperature gas, characterized in that the temperature is in the range of 1200°C to 1200°C. 4. A method for desulfurizing high-temperature gas according to claim 1, characterized in that the sulfurized hydrated alumina cement clinker is used as an absorbent for hydrogen sulfide in the high-temperature gas, and the sulfurized hydrated alumina cement clinker is recycled and used repeatedly. . 5. In claim 4, a high temperature method characterized in that sulfurized alumina cement clinker is oxidized to calcium sulfate with an oxygen-containing gas, and then regenerated with a reducing gas containing carbon oxide. Gas desulfurization method. 6. The method for desulfurizing high-temperature gas according to claim 5, characterized in that the reducing gas containing carbon oxide is coal gasification gas after being desulfurized.
JP59081160A 1984-04-24 1984-04-24 Desulfurization of high temperature gas Pending JPS60225621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081160A JPS60225621A (en) 1984-04-24 1984-04-24 Desulfurization of high temperature gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081160A JPS60225621A (en) 1984-04-24 1984-04-24 Desulfurization of high temperature gas

Publications (1)

Publication Number Publication Date
JPS60225621A true JPS60225621A (en) 1985-11-09

Family

ID=13738693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081160A Pending JPS60225621A (en) 1984-04-24 1984-04-24 Desulfurization of high temperature gas

Country Status (1)

Country Link
JP (1) JPS60225621A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245819A (en) * 1985-04-23 1986-11-01 Mitsubishi Heavy Ind Ltd Method for purifying high temperature reductive gas
US20170088465A1 (en) * 2014-05-16 2017-03-30 Kerneos Ultra-fast setting cement based on amorphous calcium aluminate
US10221098B2 (en) * 2014-05-16 2019-03-05 Kerneos Ultra-fast setting cement based on amorphous calcium aluminate comprising a surface treatment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245819A (en) * 1985-04-23 1986-11-01 Mitsubishi Heavy Ind Ltd Method for purifying high temperature reductive gas
US20170088465A1 (en) * 2014-05-16 2017-03-30 Kerneos Ultra-fast setting cement based on amorphous calcium aluminate
US10196306B2 (en) * 2014-05-16 2019-02-05 Kerneos Ultra-fast setting cement based on amorphous calcium aluminate
US10221098B2 (en) * 2014-05-16 2019-03-05 Kerneos Ultra-fast setting cement based on amorphous calcium aluminate comprising a surface treatment

Similar Documents

Publication Publication Date Title
US4061716A (en) Process for the production of sorbent solids for use in the desulfurization of gases
Lei et al. Study on dry desulfurization performance of MnOx hydrothermally loaded halloysite desulfurizer
US4091076A (en) Method of removing sulfur emissions from a fluidized-bed combustion process
US6083862A (en) Cyclic process for oxidation of calcium sulfide
JP2930409B2 (en) Purification method of sulfide-containing gas
US5866503A (en) Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas
CN115805008A (en) Iron-calcium-containing flue gas desulfurizer and preparation method thereof
WANG et al. Study on the performance of the purified CaSO4 oxygen carrier derived from wet flue gas desulphurization slag in coal chemical looping combustion
JPS6362572B2 (en)
JPS60225621A (en) Desulfurization of high temperature gas
JP2553935B2 (en) Desulfurization and denitration method of exhaust gas from sintering machine
US5653955A (en) Cyclic process for oxidation of calcium sulfide
Zielke et al. Sulfur removal during combustion of solid fuels in a fluidized bed of dolomite
JPH0459022A (en) Desulfurizing method by spraying fine powder desulfurizing agent to waste combustion gas
JPS58193727A (en) Desulfurizing agent
JPH0557139A (en) Lime blowing desulfurization
US4225572A (en) Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion
Zhao et al. Experimental and mechanism studies on simultaneous desulfurization and denitrification from flue gas using a flue gas circulating fluidized bed
JPS59230618A (en) Removal of hydrogen sulfide
JPH11253742A (en) Desulfurizing agent and its production
JPS63197520A (en) Spray drying absorption method for desulfurizing hot flue gas current
JPH01254226A (en) Purification of high temperature reductive gas
JPS63123801A (en) Method for treating high-temperature and high-pressure reducing gas
JPS5895551A (en) Desulfurizer for fluidized bed
GB1569657A (en) Production of sorbents and purification of gases containing sulphur