JPH0459022A - Desulfurizing method by spraying fine powder desulfurizing agent to waste combustion gas - Google Patents

Desulfurizing method by spraying fine powder desulfurizing agent to waste combustion gas

Info

Publication number
JPH0459022A
JPH0459022A JP2165376A JP16537690A JPH0459022A JP H0459022 A JPH0459022 A JP H0459022A JP 2165376 A JP2165376 A JP 2165376A JP 16537690 A JP16537690 A JP 16537690A JP H0459022 A JPH0459022 A JP H0459022A
Authority
JP
Japan
Prior art keywords
desulfurization
fine powder
exhaust gas
agent
desulfurizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2165376A
Other languages
Japanese (ja)
Other versions
JP3032247B2 (en
Inventor
Takeo Komuro
小室 武勇
Shigeru Azuhata
茂 小豆畑
Norio Arashi
紀夫 嵐
Hiroshi Miyadera
博 宮寺
Kazuichi Saito
斎藤 一一
Kiyoshi Narato
清 楢戸
Tsukasa Nishimura
西村 士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2165376A priority Critical patent/JP3032247B2/en
Publication of JPH0459022A publication Critical patent/JPH0459022A/en
Application granted granted Critical
Publication of JP3032247B2 publication Critical patent/JP3032247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To eliminate bad influence of molten desulfurizer in a boiler furnace on heat transfer tubes by spraying a fine powder desulfurizing agent to the flow passage of the waste combustion gas at the gas temp. ranging from 500 to 800 deg.C from the boiler furnace to the flue. CONSTITUTION:A fine powder desulfurizing agent is sprayed to the flow passage of the waste combustion as at the gas temp. ranging from 500 to 800 deg.C from the boiler furnace to the flue so as to desulfurize the waste combustion gas. This powder desulfurizing agent collects sulfur oxide in the waste gas. The combustion waste gas at high temp. in the boiler furnace is cooled in a first heat exchanger 7 and second heat exchanger 8. The exhaust gas is at 1500-1600 deg.C near the burner, though this depends on the boiler type, and cooled in the first heat exchanger 7 to 700-900 deg.C. By spraying the fine powder desulfurizing agent in the flow passage of the waste gas from the exit of the first heat exchanger 7, high desulfurizing effect can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、燃焼排ガスから硫黄酸化物(以下S○。と称
することかある。)を除去する脱硫法に関するもので、
特に設備コストが簡単な微粉脱硫剤をボイラ火炉から煙
道に至る燃焼り1ガス流路内に噴霧する脱硫法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a desulfurization method for removing sulfur oxides (hereinafter sometimes referred to as S○) from combustion exhaust gas.
In particular, the present invention relates to a desulfurization method in which a fine powder desulfurization agent, which requires simple equipment cost, is sprayed into the combustion gas flow path from the boiler furnace to the flue.

[従来の技術] 火力発電用ボイラを対象にした脱硫装置は、石灰石−石
膏法と呼はれている脱硫方式が主流である。この石灰石
−石膏法は微粉石灰石に水を加えてスラリー状にし、こ
のスラリーをボイラから発生ずる燃焼排ガスと接触させ
ることにより、亜硫酸ガスを吸収させ、副産物として石
膏を回収する湿式脱硫法である。また、乾式法の代表例
は、活性炭脱硫法である。
[Prior Art] Desulfurization equipment for thermal power generation boilers is mainly based on a desulfurization method called the limestone-gypsum method. The limestone-gypsum method is a wet desulfurization method in which water is added to pulverized limestone to form a slurry, and this slurry is brought into contact with combustion exhaust gas generated from a boiler to absorb sulfur dioxide gas and recover gypsum as a byproduct. Further, a typical example of a dry method is an activated carbon desulfurization method.

前記湿式法、乾式法、いずれの場合も脱硫性能は高いが
、設備が重装備となりイニシャルコス1へか高くなる問
題点かある。前者の石灰石−石膏法では、排水処理設備
、排ガスの再加熱処理設備等が必要になる。これに対し
て、ボイラ火炉内に微粉脱硫剤を粉体て噴霧する脱硫法
が提案されている。この脱硫法は、装置か簡単てあり設
備コストも少なくてきるが、脱硫性能が低く特に排出規
制の厳しいわが国の火力発電用ボイラの燃焼排ガスの脱
硫方式としては採用されなかった。しがし、設備コスI
・が低くなる点から注目され始め、改良が進められてき
た。また、微粉脱硫剤として、主に石灰石が用いられて
いる。
Although the desulfurization performance is high in both the wet method and the dry method, there is a problem in that the equipment is heavy and the initial cost is higher than 1. The former limestone-gypsum method requires wastewater treatment equipment, waste gas reheating equipment, etc. In contrast, a desulfurization method has been proposed in which a powdered desulfurizing agent is sprayed into a boiler furnace. Although this desulfurization method has simple equipment and reduces equipment costs, it has poor desulfurization performance and has not been adopted as a method for desulfurizing combustion exhaust gas from thermal power generation boilers in Japan, where emissions regulations are particularly strict. However, equipment cost I
・Started to attract attention because of its low value, and improvements have been made. In addition, limestone is mainly used as a fine powder desulfurization agent.

[発明が解決しようとする課題] 前記ボイラ火炉内に微粉脱硫剤を噴霧する脱硫法におい
て、石灰石をボイラの高温火炉部に噴霧したときの脱硫
反応は次のとおりである。ます、石灰石が高温下で分解
して生石灰を生成し、この生石灰がSO,および02と
反応し、無水石膏を生成する。石灰石から生石灰を生成
させる反応を行わせる必要から石灰石を高温雰囲気に噴
霧する必要がある。しかし、噴霧する温度領域が高温過
ぎると、噴霧した石灰石かシンタリンクし、脱硫反応活
性が低下する問題かあるため、最適な噴霧箇所を選ぶ必
要がある。油焚きボイラでは、石炭火力ボイラに比べ火
炉内の温度が高く、火炉内に石灰石を噴霧できない。ま
た、石炭焚きボイラでは、燃焼する石炭種により、石炭
灰の溶融温度が異なり、しかも、脱硫剤として噴霧する
石灰石は、石炭灰の融点を下げる問題がある。従って、
石灰石の生石灰化反応と脱硫反応を効率よく行うには、
ボイラのどこへ石灰石を噴霧するか、石灰石の噴霧位置
が重要である。また、石炭焚きボイラては、日間負荷変
化運転か行われるが、負荷変化するとボイラ火炉内の温
度分布か変化し、負荷に応して噴霧位置を変える必要が
ある。
[Problems to be Solved by the Invention] In the desulfurization method in which a fine powder desulfurization agent is sprayed into the boiler furnace, the desulfurization reaction when limestone is sprayed into the high temperature furnace part of the boiler is as follows. First, limestone decomposes at high temperatures to produce quicklime, which reacts with SO and 02 to produce anhydrite. It is necessary to spray limestone into a high-temperature atmosphere because it is necessary to carry out a reaction that produces quicklime from limestone. However, if the spraying temperature range is too high, the sprayed limestone may sinterlink, reducing the desulfurization reaction activity, so it is necessary to choose the optimal spraying location. In oil-fired boilers, the temperature inside the furnace is higher than in coal-fired boilers, and limestone cannot be sprayed into the furnace. Furthermore, in coal-fired boilers, the melting temperature of coal ash varies depending on the type of coal being burned, and the limestone sprayed as a desulfurization agent has the problem of lowering the melting point of coal ash. Therefore,
In order to efficiently carry out the limestone quickliming reaction and desulfurization reaction,
Where in the boiler the limestone is sprayed is important.The location of the limestone spray is important. In addition, coal-fired boilers are operated with daily load changes, and when the load changes, the temperature distribution inside the boiler furnace changes, and it is necessary to change the spray position according to the load.

そこて、本発明の目的は、微粉脱硫剤を燃焼排ガス中に
噴霧する脱硫法において、石炭灰の溶融による1〜ラブ
ルのおそれをなくし、しがも、脱硫性能を高くすること
である。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the possibility of 1 to 1 rub due to melting of coal ash and to improve desulfurization performance in a desulfurization method in which a fine powder desulfurization agent is sprayed into combustion exhaust gas.

1課題を解決するための手段] 本発明の上記目的は、次の構成により達成される。1.Means to solve the problem] The above object of the present invention is achieved by the following configuration.

すなわち、火力発電ボイラの燃焼排ガスに微粉脱硫剤を
噴霧する脱硫法において、ボイラ火炉から煙道の燃焼排
ガス温度が500℃から800′c領域の燃焼排ガス流
路に微粉脱硫剤を噴霧して燃焼排ガス中の硫黄酸化物を
脱硫剤に捕集する微粉脱硫剤を燃焼排ガスに噴霧する脱
硫法、である。
That is, in the desulfurization method in which a fine powder desulfurizing agent is sprayed onto the flue gas of a thermal power boiler, the fine powder desulfurizing agent is sprayed from the boiler furnace into the flue gas flow path in the flue where the temperature of the flue gas is in the range of 500°C to 800'C. This is a desulfurization method in which a fine powder desulfurization agent that collects sulfur oxides in the exhaust gas is sprayed onto the combustion exhaust gas.

微粉脱硫剤は、硫黄酸化物を固定する金属としては、カ
ルシウム、ナトリウム、マグネシウムを含むアルカリ金
属あるいはアルカリ土類金属を用いる。特に、カルシウ
ム、ナトリウム、マグネシウムの水酸化物あるいは水和
物は燃焼排ガス温度500°Cから800℃の領域にお
いて、脱硫性能か高められる。
The fine powder desulfurization agent uses alkali metals or alkaline earth metals including calcium, sodium, and magnesium as metals that fix sulfur oxides. In particular, hydroxides or hydrates of calcium, sodium, and magnesium can improve desulfurization performance in the combustion exhaust gas temperature range of 500°C to 800°C.

一般的なカルシウム、ナトリウム、マグネシウムの水酸
化物あるいは水和物の代表例は水酸化カルシウム、水酸
化す1〜リウム、水酸化マグネシウム等である。とくに
、消石灰は、上記燃焼排ガス温度領域で、数秒の滞留時
間て燃焼排ガス中の硫黄酸化物を亜硫酸カルシウムに固
定できることが明らかになった。燃焼排ガスと消石灰の
脱硫反応は、燃焼排ガス温度か、600℃近傍の時に最
大値となる。他の水酸化物あるいは水和物についても微
粉として燃焼排ガスと接触して脱硫を行わせるには、水
酸化物あるいは水和物の分解温度よりさらに150°C
から200℃高温の領域か最適である。このことから前
述の水酸化物あるいは水和物を500°Cから800℃
の燃焼排ガス温度領域に噴霧することにより、装置が簡
単となり、しかも高脱硫率が達成てきる。
Typical examples of common calcium, sodium, and magnesium hydroxides or hydrates include calcium hydroxide, mono-lithium hydroxide, and magnesium hydroxide. In particular, it has been revealed that slaked lime can fix sulfur oxides in combustion exhaust gas to calcium sulfite within a residence time of several seconds in the above-mentioned combustion exhaust gas temperature range. The desulfurization reaction between the flue gas and slaked lime reaches its maximum value when the flue gas temperature is around 600°C. For other hydroxides or hydrates, in order to desulfurize them by contacting them with the combustion exhaust gas in the form of fine powder, the temperature must be 150°C higher than the decomposition temperature of the hydroxides or hydrates.
The optimum temperature range is between 200°C and 200°C. From this, the above-mentioned hydroxide or hydrate should be heated from 500°C to 800°C.
By spraying in the combustion exhaust gas temperature range, the equipment becomes simple and a high desulfurization rate can be achieved.

前記脱硫法により生成する微粉脱硫剤に捕集された亜硫
酸塩は、捕集機の前流側に設置した酸化触媒により酸化
して硫酸塩にして捕集することもである。また、微粉脱
硫剤は100℃から500℃の温度で熱処理した後に、
亜硫酸ガスあるいは亜硫酸カルシウムの酸化促進剤を含
浸させなを用いてもよい。
The sulfite collected in the fine powder desulfurization agent produced by the desulfurization method may be oxidized by an oxidation catalyst installed upstream of the collector to be collected as sulfate. In addition, after the fine powder desulfurization agent is heat-treated at a temperature of 100°C to 500°C,
A material impregnated with an oxidation promoter such as sulfur dioxide gas or calcium sulfite may also be used.

さらに、前記脱硫法において、微粉脱硫剤が同伴する燃
焼排ガス流路にアンモニアガスを供給すると、燃焼排ガ
スに共存する窒素酸化物、硫黄酸化物はアンモニヤ化合
物として微粉脱硫剤に捕集されるので脱硫とともに脱硝
もてきる。
Furthermore, in the desulfurization method, when ammonia gas is supplied to the flue gas flow path accompanied by a fine powder desulfurization agent, nitrogen oxides and sulfur oxides coexisting in the flue gas are collected as ammonia compounds by the fine powder desulfurization agent, so the desulfurization At the same time, denitrification also occurs.

[作用1 石炭の燃焼により発生する燃焼排ガス中の硫黄酸化物は
、500″Cから800°Cの温度領域に噴霧されたカ
ルシウム、ナトリウム、マグネシウムの水酸化物あるい
は水和物と次の(1)〜〈4)式のように反応し脱硫が
行われる。
[Action 1 Sulfur oxides in the flue gas generated by coal combustion are combined with hydroxides or hydrates of calcium, sodium, and magnesium sprayed in the temperature range of 500"C to 800°C and the following (1 ) to <4), the reaction occurs and desulfurization is performed.

Ca(○l−1)、−+CaO+H20・ ・ −−C
a○+SO2→CaSO3・ ・ CaO+S○2+1./2SO2→Ca5O4(反応の
一部)・・ CaSO3+1/2C)z→CaS○4(反応の一部) ・ (1) ・ (2) ・ (3) また、ナトリウム、マグネシウムの水酸化物あるいは水
和物についても以下のように反応する。
Ca (○l-1), -+CaO+H20・ ・ --C
a○+SO2→CaSO3・・CaO+S○2+1. /2SO2→Ca5O4 (part of the reaction)... CaSO3+1/2C)z→CaS○4 (part of the reaction) ・ (1) ・ (2) ・ (3) Also, sodium, magnesium hydroxide or water The reaction also occurs in the following manner.

2NaOH+502−>Na2SO3+1−120・・
 (5)M g (OH> 2 +S O2→MgS○
3+H20(6)消石灰を使用する場合、600°Cの
燃焼排ガス温度ての高い脱硫率は、(1)、(2)式の
反応が主てあり、電気集塵機で回収される副産物は亜硫
酸カルシウムである。
2NaOH+502->Na2SO3+1-120...
(5) M g (OH> 2 +S O2 → MgS○
3+H20 (6) When using slaked lime, the high desulfurization rate at a flue gas temperature of 600°C is mainly due to the reactions of equations (1) and (2), and the byproduct recovered by the electrostatic precipitator is calcium sulfite. be.

この亜硫酸カルシウムは硫酸カルシウムに酸化する必要
がある。
This calcium sulfite needs to be oxidized to calcium sulfate.

なお、(1)、(2)式の未反応CaOは燃焼排ガス煙
道内の400℃近傍以下の温度て、CaOと■120を
反応さぜCa (OH) 2を生成させる。
Note that unreacted CaO in formulas (1) and (2) is reacted with 120 at a temperature of around 400° C. or lower in the flue gas flue to generate Ca (OH) 2.

この新たに生成した消石灰は硫黄酸化物と反応して反応
式(7)に示すように、亜硫酸カルシウムを生成する。
This newly produced slaked lime reacts with sulfur oxide to produce calcium sulfite as shown in reaction formula (7).

Ca(OH)2+5O2−)CaSOG+1−120し
たがって、消石灰を噴霧する脱硫法は、燃焼排ガス温度
が500°Cから800℃の高温で高い脱硫反応を行わ
ぜ、さらに150°Cから60℃の低温でも脱硫反応を
行わせる二段階法であり、高い脱硫率か得られる。
Ca(OH)2+5O2-)CaSOG+1-120 Therefore, the desulfurization method that sprays slaked lime performs a high desulfurization reaction at a high combustion exhaust gas temperature of 500°C to 800°C, and even at a low temperature of 150°C to 60°C. This is a two-step method in which the desulfurization reaction is carried out, and a high desulfurization rate can be obtained.

一方、カルシウム、ナl−リウム、マグネシウムの金属
塩の存在下に石炭灰を添加しスラリー化することにより
、石炭灰からAβ2o)、si○2Fe2O3が溶出し
、多水分系の水酸化物あるいは水和物を生成する。以下
に消石灰を用いたときの代表例的水酸化物あるいは水和
物を示す。
On the other hand, by adding coal ash to slurry in the presence of metal salts of calcium, sodium, and magnesium, Aβ2o) and si○2Fe2O3 are eluted from the coal ash, and polyhydric hydroxide or water produce a sum product. Typical hydroxides or hydrates when using slaked lime are shown below.

Ca(OH)2+石炭灰 一+3CaO−A#zO3−3CaSOt−mIH20
(8)Ca(OH)2+石炭灰 →3CaO−Pe203・3CaSOt・m2H20(
9)Ca(OH)2+石炭灰 →3Ca○・S ]、02・3CaSOt・m3H20
(10)添加する金属塩がナトリウム、マグネシウムの
場合も(8)〜(10)式に示す生成物に類似した水酸
化物あるいは水和物が生成する。このような類似水酸化
物あるいは水和物の粒径は4μm以下の針状結晶が生成
し、SO2との接触面積を高め、高脱硫率か得られる。
Ca(OH)2+coal ash +3CaO-A#zO3-3CaSOt-mIH20
(8) Ca(OH)2+coal ash→3CaO-Pe203・3CaSOt・m2H20(
9) Ca(OH)2+coal ash→3Ca○・S], 02.3CaSOt・m3H20
(10) Even when the metal salt to be added is sodium or magnesium, hydroxides or hydrates similar to the products shown in formulas (8) to (10) are produced. Such similar hydroxides or hydrates produce needle-like crystals with a particle size of 4 μm or less, increasing the contact area with SO2 and achieving a high desulfurization rate.

(8)〜(10)の水酸化物あるいは水和物は12〜3
2結晶水を持ち、燃焼排ガス温度が500℃から800
℃の領域に微粒化して噴霧するとSO2吸着に有効な細
孔が発達し、脱硫性能を高めることができる。
The hydroxides or hydrates of (8) to (10) are 12 to 3
2. It has crystal water and the combustion exhaust gas temperature ranges from 500℃ to 800℃.
When it is atomized and sprayed in the temperature range of °C, pores effective for SO2 adsorption develop, and desulfurization performance can be improved.

前述したように消石灰を用いる場合において、燃焼排ガ
ス温度500℃から800℃で一旦生石灰(Cab)化
した脱硫剤は60℃がら150”Cの低温領域では、C
a (OH) 2の水相反応が進行し、直接S02との
反応による(7)式の脱硫反応が起こる。
As mentioned above, when using slaked lime, the desulfurization agent, which has been turned into quicklime (Cab) at a combustion exhaust gas temperature of 500°C to 800°C, has a carbon
The aqueous phase reaction of a (OH) 2 proceeds, and the desulfurization reaction of formula (7) occurs by direct reaction with S02.

燃焼排ガス温度800℃〜60’Cでの脱硫反応に伴う
副産物は、亜硫酸カルシウムであり、電気集塵機で回収
後に硫酸カルシウムに酸化し安定化される。
A by-product accompanying the desulfurization reaction at a combustion exhaust gas temperature of 800°C to 60'C is calcium sulfite, which is stabilized by being oxidized to calcium sulfate after being recovered by an electrostatic precipitator.

[実施例] 以下に本発明の一実施例を第1図に示す。第1図におい
て、石炭火力発電ボイラ1には微粉石炭2が供給され、
空気3により燃焼される。微粉脱硫剤4は搬送機5を経
て、流路9により導入する空気と共に流路6からボイラ
1に噴霧される。ボイラ火炉内では第2図のように高温
燃焼排ガスは第一熱交換器7、第二熱交換器8で冷却さ
れる。
[Example] An example of the present invention is shown in FIG. 1 below. In FIG. 1, pulverized coal 2 is supplied to a coal-fired power generation boiler 1,
It is combusted by air 3. The fine desulfurizing agent 4 passes through a conveyor 5 and is sprayed into the boiler 1 through a flow path 6 along with air introduced through a flow path 9. In the boiler furnace, high-temperature combustion exhaust gas is cooled by a first heat exchanger 7 and a second heat exchanger 8, as shown in FIG.

ボイラ形式にもよるが、バーナ近傍の温度]、 500
°Cから1600℃の燃焼排ガスは、第一熱交換器7て
冷却され、燃焼排ガス温度は700℃から900°Cに
なる。微粉脱硫剤は、第一熱交換器7の出口の燃焼排ガ
ス流路に噴霧することにより、本発明法による高脱硫性
能が達成できる。燃焼排ガス10は第二熱交換器8で4
00℃近傍に冷却される。冷却排ガス10は第1図に示
すように流路11がら空気予熱器12て冷却され、燃焼
排ガス流路13から脱硫塔14に導かれる。微粉脱硫剤
は空気予熱器12の出口温度領域から脱硫剤中の未反応
CaOがCa (OH) 2に消化反応し、直接SO2
との反応により、脱硫反応が起こり、Ca S O3を
生成する。脱硫塔14では、CaOの消化反応を進める
ために、水を流路15から積極的に噴霧供給する。燃焼
排ガス中の石炭灰と微粉脱硫剤は流路16から電気集塵
機17に導入され回収される。処理された燃焼排ガスは
煙突18から排出される。流路15から供給する水を流
路9から供給することも可能てあり、このとき、水はス
プレィで微粒化して供給するか水蒸気として供給する。
Depending on the boiler type, the temperature near the burner], 500
The combustion exhaust gas at a temperature of 1600°C to 700°C is cooled by the first heat exchanger 7, and the temperature of the combustion exhaust gas becomes 700°C to 900°C. By spraying the fine powder desulfurization agent into the flue gas flow path at the outlet of the first heat exchanger 7, high desulfurization performance can be achieved by the method of the present invention. The combustion exhaust gas 10 is transferred to the second heat exchanger 8.
It is cooled to around 00°C. As shown in FIG. 1, the cooled exhaust gas 10 is cooled through a flow path 11 through an air preheater 12, and then guided through a combustion exhaust gas flow path 13 to a desulfurization tower 14. In the fine powder desulfurization agent, unreacted CaO in the desulfurization agent is digested into Ca (OH) 2 from the outlet temperature region of the air preheater 12, and is directly converted into SO2.
A desulfurization reaction occurs and produces Ca SO3. In the desulfurization tower 14, water is actively sprayed and supplied from the channel 15 in order to advance the CaO digestion reaction. Coal ash and fine powder desulfurization agent in the combustion exhaust gas are introduced into the electrostatic precipitator 17 through the flow path 16 and recovered. The treated combustion exhaust gas is discharged from the chimney 18. It is also possible to supply the water supplied from the flow path 15 through the flow path 9, and in this case, the water is supplied after being atomized by spraying or as water vapor.

また、微粉脱硫剤の供給を流路6がら全量供給する代わ
りに、脱硫塔14に分割供給することも可能である。
Further, instead of supplying the entire amount of the fine powder desulfurization agent through the flow path 6, it is also possible to supply it in parts to the desulfurization tower 14.

燃焼排ガス中の硫黄酸化物を捕集した脱硫剤を電気集塵
機]7で回収し、回収ダスl〜を水に浸漬させ、その上
澄み液を、流路]、5から再び燃焼排ガス系に供給して
もよい。
The desulfurizing agent that has collected the sulfur oxides in the combustion exhaust gas is collected by an electrostatic precipitator] 7, the recovered dust l~ is immersed in water, and the supernatant liquid is supplied again to the combustion exhaust gas system from the flow path], 5. It's okay.

微粉脱硫剤を噴霧する脱硫法について、脱硫特性を把握
するために、第3図に示す実験装置て検討した。セラミ
ックス反応管25には1mmピッチでカンタル電熱線2
6を巻き、反応管25内の温度を調整した。第3図の反
応管は内径13mmのセラミックス管(有効部長さ12
00mm)により検討した。微粉脱硫剤27は、フィー
ダ28から分散器2つを経て反応管25に気流搬送した
In order to understand the desulfurization characteristics of the desulfurization method that involves spraying a fine powder desulfurization agent, we investigated using the experimental apparatus shown in Figure 3. Kanthal heating wires 2 are placed in the ceramic reaction tube 25 at a pitch of 1 mm.
6 to adjust the temperature inside the reaction tube 25. The reaction tube in Figure 3 is a ceramic tube with an inner diameter of 13 mm (effective length 12 mm).
00mm). The fine powder desulfurizing agent 27 was air-flow-transported from the feeder 28 to the reaction tube 25 via two dispersers.

反応ガス31はキャリヤーガス30と混合し、反応管2
5に脱硫剤27と並流で供給し、脱硫反応を行わせた。
Reaction gas 31 is mixed with carrier gas 30 and reacted in reaction tube 2.
5 and the desulfurizing agent 27 in parallel flow to carry out a desulfurization reaction.

反応管25の出口では、処理ガス33と脱硫剤32を分
離し、ガスの一部はSO2、N01C02、O3分析計
に導き濃度を測定しな。
At the outlet of the reaction tube 25, the processing gas 33 and the desulfurizing agent 32 are separated, and a portion of the gas is led to an SO2, N01C02, and O3 analyzer to measure the concentration.

第4図の実施例は、本発明の効果を表す典型的な実験結
果を示ず。第4図の記号口△○印は、消石灰の温度依存
性を示し、Ca / Sはそぞれ1゜5.20.2,7
の結果である。一方、・ム■マは石灰石の脱硫反応の温
度依存性を示し、石灰石の粒径を変化した結果を示す。
The example shown in FIG. 4 does not show typical experimental results showing the effects of the present invention. The symbols △○ in Figure 4 indicate the temperature dependence of slaked lime, and Ca/S are 1°5, 20.2, and 7, respectively.
This is the result. On the other hand, ・mu■ma shows the temperature dependence of the desulfurization reaction of limestone, and shows the results of changing the particle size of limestone.

石灰石の平均粒径は3.3μm、78μm、10,1μ
m、10.6μm、のちのが、それぞれ符号・、ム、閣
、マに対応する。模擬燃焼排ガス組成中の亜硫酸ガス濃
度は1500 p p m 、026%、CO210%
、H2O3%とした。
The average particle size of limestone is 3.3μm, 78μm, 10.1μm
m, 10.6 μm, and later correspond to the codes ・, mu, kaku, and ma, respectively. The sulfur dioxide gas concentration in the simulated combustion exhaust gas composition is 1500 ppm, 0.26%, CO2 10%
, H2O3%.

石灰石を用いたときは、1000℃近傍で脱硫性能が最
も高くなり、それ以上反応温度が高くなると脱硫性能は
低下した。1000℃の時の有効反応ゾーンでの滞留時
間は0.9秒から1,2秒であった。一方、消石灰を脱
硫剤として用いたときには、1000℃から反応温度が
低下すると800℃までは僅か脱硫性能が下がるが、8
00℃以下に温度が低下すると脱硫性能は高くなり始め
、反応温度か600℃で最大値を示す。反応温度が60
0℃より低下すると脱硫性能は低下した。消石灰の実験
時の有効反応領域の滞留時間は各反応温度で若干具なる
が0,9秒から1,54秒であった。反応温度600°
Cての滞留時間を検討した結果を第5図に示す。滞留時
間は0.7秒から27秒に変化させた。脱硫性能は0.
9秒までは滞留時間を長くする程高くなるが、それ以上
長くしても脱硫性能はあまり影響しなくなる。この結果
は、第2図に示した第一熱交換器7出口から反応有効部
である700℃から900°C近傍での滞留時間は08
秒から1秒がとれるので本発明を適用できる。各反応温
度に対して得られる反応後の脱硫剤のX線回折結果を第
6図、第7図に示す。
When limestone was used, the desulfurization performance was highest at around 1000°C, and as the reaction temperature rose further, the desulfurization performance decreased. The residence time in the effective reaction zone at 1000°C was from 0.9 seconds to 1.2 seconds. On the other hand, when slaked lime is used as a desulfurization agent, when the reaction temperature decreases from 1000℃, the desulfurization performance decreases slightly up to 800℃;
Desulfurization performance begins to increase when the temperature drops below 00°C, and reaches its maximum value at the reaction temperature of 600°C. reaction temperature is 60
Desulfurization performance decreased when the temperature decreased below 0°C. The residence time of slaked lime in the effective reaction region during the experiment varied slightly at each reaction temperature, but ranged from 0.9 seconds to 1.54 seconds. Reaction temperature 600°
Figure 5 shows the results of examining the residence time at C. The residence time was varied from 0.7 seconds to 27 seconds. Desulfurization performance is 0.
The longer the residence time is up to 9 seconds, the higher it becomes, but even if it is longer than that, the desulfurization performance is not affected much. This result shows that the residence time from the outlet of the first heat exchanger 7 shown in FIG.
Since 1 second can be taken from seconds, the present invention can be applied. The X-ray diffraction results of the desulfurizing agent after the reaction obtained for each reaction temperature are shown in FIGS. 6 and 7.

第6図は反応温度1000 ’Cで行った脱硫反応後の
脱硫剤、石灰石のX線回折結果を示す。硫黄酸化物は硫
酸カルシウムとして固定されているが、第7図の消石灰
を600℃の反応温度で脱硫を行った副生物中の硫黄酸
化物は亜硫酸カルシウムであった。
FIG. 6 shows the results of X-ray diffraction of the desulfurization agent, limestone, after the desulfurization reaction was carried out at a reaction temperature of 1000'C. Sulfur oxide is fixed as calcium sulfate, but the sulfur oxide in the by-product of desulfurizing slaked lime at a reaction temperature of 600° C. in FIG. 7 was calcium sulfite.

第8図の実施例は、本発明の効果を検証するなめに微粉
炭50kg/hを燃焼する竪型燃焼炉による脱硫実験結
果を示ず。燃焼炉は本体40に微粉炭供給バーナ41と
、脱硫剤供給系42.43、燃焼排ガス分析系44から
成る。脱硫実験は硫黄含有率0.38%の石炭を空気過
剰率1.1から1゜15て燃焼さぜなときの脱硫試験結
果である。粒径325μm以下のものか95%以上で含
まれる石灰石を空気により7燃焼炉内に噴霧した場合と
、平均粒径10.2μmの消石灰を燃焼炉内に噴霧した
ときの脱硫性能を比較検討した。
The example shown in FIG. 8 does not show the results of a desulfurization experiment using a vertical combustion furnace that burns 50 kg/h of pulverized coal in order to verify the effects of the present invention. The combustion furnace includes a main body 40, a pulverized coal supply burner 41, a desulfurization agent supply system 42, 43, and a combustion exhaust gas analysis system 44. The results of the desulfurization experiment were obtained when coal with a sulfur content of 0.38% was burned at an excess air ratio of 1.1 to 1.15. A comparative study was conducted on the desulfurization performance when limestone with a particle size of 325 μm or less or 95% or more was sprayed into the combustion furnace by air, and when slaked lime with an average particle size of 10.2 μm was sprayed into the combustion furnace. .

第9図の実施例は、Ca / Sと脱硫率の関係を石灰
石と消石灰の微粉脱硫剤についての脱硫率を示す。石灰
石(○印)に比較し、消石灰(△印)を比較すると、同
じCa / Sでも消石灰の脱硫率が高くできた。石灰
石を燃焼炉内へ供給した位置での平均燃焼排ガス温度は
、1000℃から1100℃であった。また、消石灰を
燃焼炉内の燃焼排ガス温度が700℃から900℃の温
度領域に噴霧した。石灰石および消石灰を供給した位置
がら燃焼排ガスのサンプル位置まての燃焼排ガスの滞留
時間は08から1.3秒であった。
The example in FIG. 9 shows the relationship between Ca/S and desulfurization efficiency for fine powder desulfurization agents of limestone and slaked lime. When comparing limestone (○ mark) and slaked lime (△ mark), the desulfurization rate of slaked lime was higher even with the same Ca/S. The average flue gas temperature at the position where limestone was supplied into the combustion furnace was 1000°C to 1100°C. In addition, slaked lime was sprayed in the temperature range of the combustion exhaust gas in the combustion furnace from 700°C to 900°C. The residence time of the flue gas from the position where limestone and slaked lime were supplied to the sample position of the flue gas was 0.8 to 1.3 seconds.

また、第3図の反応管25で消石灰および石灰石のそれ
ぞれの脱硫反応が最適となる条件て脱硫実験を行い、そ
の時の脱硫剤サンプルを採取し、その脱硫剤サンプルに
よる本脱硫プロセスの低温領域を模擬した脱硫実験を行
った。
In addition, a desulfurization experiment was conducted in the reaction tube 25 shown in Fig. 3 under conditions that optimized the desulfurization reactions of slaked lime and limestone, and a sample of the desulfurization agent was collected at that time, and the low temperature region of the main desulfurization process using the desulfurization agent sample was measured. A simulated desulfurization experiment was conducted.

消石灰、石灰石の脱硫剤サンプルは、石炭灰にそれぞれ
10%均一混合したものを用いた。
Desulfurizing agent samples of slaked lime and limestone were used by uniformly mixing 10% of each with coal ash.

実験は、50mmΦで、長さ2.5mの反応管内に前述
の脱硫剤サンプルを噴霧させ、脱硫反応が活発に起こる
低温領域150’Cがら65°Cを模擬して実験を行っ
た。滞留時間は8〜10秒で行った。排ガス中のS○2
濃度は750ppm、N。
The experiment was conducted by spraying the desulfurizing agent sample described above into a reaction tube with a diameter of 50 mm and a length of 2.5 m, simulating a low temperature range of 150'C to 65°C, where the desulfurization reaction occurs actively. The residence time was 8 to 10 seconds. S○2 in exhaust gas
The concentration was 750 ppm, N.

は350ppm、CO210%としH2Oは反応管出口
の排ガス温度が65°Cになるように水分を調整した。
was 350 ppm, CO2 was 10%, and the water content of H2O was adjusted so that the exhaust gas temperature at the outlet of the reaction tube was 65°C.

第10図は、脱硫剤として、石灰石(○)と消石灰(△
)の脱硫剤サンプルについてCa/Sと脱硫率を示す。
Figure 10 shows limestone (○) and slaked lime (△) as desulfurizing agents.
) The Ca/S and desulfurization rate are shown for the desulfurization agent sample.

Ca / Sは脱硫サンプル中の未反応CaOの分析値
と噴霧供給量と、供給するSO2濃度、ガス址から算出
したもので、それぞれのモル比で表した。同−Ca /
 Sても石灰石の脱硫サンプルより消石灰の脱硫サンプ
ルが脱硫性能を高くできる効果かあることが明らかにな
った。
Ca/S was calculated from the analytical value of unreacted CaO in the desulfurized sample, the spray supply amount, the supplied SO2 concentration, and the gas residue, and was expressed as a molar ratio of each. Same-Ca/
It was also found that the slaked lime desulfurization sample has higher desulfurization performance than the limestone desulfurization sample.

したがって、消石灰を燃焼排ガス温度500°Cから8
00℃の領域に噴霧させることにより、同じCa / 
Sでも石灰石より脱硫性能が高くできる効果がある。こ
れによって、燃焼排ガス温度が800℃から65℃まで
の領域における脱硫性能は、Ca / S = 2に対
して石灰石を用いる噴霧脱硫法では59.8%であるの
に対して、消石灰を用いる噴霧脱硫法ては83.2%に
なる。
Therefore, slaked lime is
The same Ca/
Even S has the effect of providing higher desulfurization performance than limestone. As a result, the desulfurization performance in the range of combustion exhaust gas temperature from 800°C to 65°C is 59.8% for Ca/S = 2 in the spray desulfurization method using limestone, whereas the spray desulfurization method using slaked lime The desulfurization method results in 83.2%.

なお、消石灰を燃焼排ガスの温度が500℃から800
℃の領域に噴霧する脱硫法では、副生物の大部分は亜硫
酸カルシウムであり、電気集塵機で回収したものは、酸
化処理して硫酸カルシウムとする。
Note that slaked lime is used when the temperature of the combustion exhaust gas is from 500℃ to 800℃.
In the desulfurization method, which sprays in the temperature range of °C, most of the by-products are calcium sulfite, and what is recovered by an electrostatic precipitator is oxidized to form calcium sulfate.

このために集塵機中あるいは、燃焼排ガス中の亜硫酸ガ
スをSo、に酸化処理することにより、硫酸カルシウム
として電気集塵機て回収することかてきる。また、消石
灰に酸化促進剤を含浸させたものを500℃から800
°Cの燃焼排ガス温度領域に噴霧することにより、硫酸
カルシウムして回収することができる。酸化促進剤とし
ては、バナジウム塩、酸化鉄、酸化マンカン等を数pI
) m消石灰に含浸させることが有効である。更に酸化
促進剤を含浸させるのに、温度100℃から500℃で
加熱処理することにより細孔を発達させてから行うこと
が有効である。
For this purpose, sulfur dioxide gas in a dust collector or in combustion exhaust gas is oxidized to So, which can be recovered as calcium sulfate using an electrostatic precipitator. In addition, slaked lime impregnated with an oxidation promoter can be heated from 500℃ to 800℃.
Calcium sulfate can be recovered by spraying into the flue gas temperature range of °C. As an oxidation promoter, vanadium salt, iron oxide, mankan oxide, etc. are used at several pI.
) It is effective to impregnate it with slaked lime. Furthermore, in order to impregnate the oxidation promoter, it is effective to perform a heat treatment at a temperature of 100° C. to 500° C. to develop pores.

また、燃焼排ガス温度が500℃から800°Cの温度
領域の低温領域にアンモニアガスを噴霧することにより
、硫黄酸化物の一部を硫安として捕集すると同時に窒素
酸化物を亜硝酸カルシウム、硝酸カルシウムとして捕集
することができる。
In addition, by spraying ammonia gas into the low-temperature region where the combustion exhaust gas temperature ranges from 500°C to 800°C, part of the sulfur oxides are collected as ammonium sulfate, and at the same time, nitrogen oxides are converted into calcium nitrite and calcium nitrate. It can be collected as

[発明の効果] 本発明の微粉脱硫剤をボイラ火炉から煙道の燃焼排ガス
温度が500℃から800°C領域の燃焼排ガス流路に
噴霧する脱硫法は、石灰石を使用するボイラ火炉内に噴
霧する脱硫法に比べて、噴霧温度領域が低温であり、ボ
イラ火炉内での脱硫剤の溶融による伝熱管へ弊害を無く
ずことかできる。
[Effects of the Invention] The desulfurization method of spraying the fine powder desulfurization agent of the present invention from a boiler furnace into the flue gas flow path in which the flue gas temperature ranges from 500°C to 800°C is a method for spraying the powdered desulfurization agent into a boiler furnace using limestone. Compared to the desulfurization method, the spray temperature range is lower, and there is no harm to the heat transfer tubes due to melting of the desulfurization agent in the boiler furnace.

また、そのなめにボイラの熱交換器の効率を高く維持て
きる。更に、石灰石をボイラ火炉に噴霧する方法に比べ
脱硫性能を高くできる効果がある。
Additionally, the efficiency of the boiler heat exchanger can be maintained at a high level. Furthermore, this method has the effect of increasing desulfurization performance compared to the method of spraying limestone into the boiler furnace.

さらに、微粉脱硫剤に酸化促進剤を含浸させたものを噴
霧することにより、あるいは微粉脱硫剤に捕集された亜
硫酸塩を酸化処理することで排ガス中の硫黄酸化物は硫
酸カルシウムとして回収することができる。
Furthermore, the sulfur oxides in the exhaust gas can be recovered as calcium sulfate by spraying a fine powder desulfurizing agent impregnated with an oxidation promoter or by oxidizing the sulfites collected in the fine powder desulfurizing agent. I can do it.

また、微粉脱硫剤とともにアンモニアガスを噴霧するこ
とにより、排ガスの脱硫、脱硝をすることができる。
Furthermore, by spraying ammonia gas together with a fine powder desulfurization agent, the exhaust gas can be desulfurized and denitrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の微粉脱硫剤を噴霧する脱硫プロセスを
示す図、第2図は本脱硫剤の噴霧位置の代表例を示す図
、第3図はボイラ火炉内を模擬した基礎実験装置の概略
図、第4図は本発明の脱硫剤として消石灰を用いたとき
の脱硫性能に及ぼす燃焼排ガス温度依存性を示す図、第
5図は消石灰について温度600 ’Cでの滞留時間と
脱硫性能との関係を示す図、第6図、7図は副生物のX
線回折図、第8図は微粉炭燃焼炉による脱硫実験装置図
、第9図は消石灰と石灰石の脱硫性能比較図、第10図
は温度領域150〜65°Cでの本発明法と石灰石火炉
内吹き込み法の脱硫性能の比較結果を示す図である。 コ・・・ボイラ火炉、2・・・微粉石炭、3・・燃焼用
空気、4・・・微粉脱硫剤、5・・・搬送機、6・・脱
硫剤噴霧流路、7 ・第一熱交換器、9・噴霧空気流路
、12空気予熱器、14・・脱硫塔、15・・水供給流
路、17・・電気集塵機 出願人 バブコック日立株式会社 代理人 弁理士 松永孝義 はか1名
Figure 1 is a diagram showing the desulfurization process of spraying the pulverized desulfurization agent of the present invention, Figure 2 is a diagram showing a typical example of the spraying position of the present desulfurization agent, and Figure 3 is a diagram of the basic experimental equipment simulating the inside of a boiler furnace. Schematic diagram, Figure 4 is a diagram showing the combustion exhaust gas temperature dependence on desulfurization performance when slaked lime is used as the desulfurization agent of the present invention, and Figure 5 is a diagram showing the residence time and desulfurization performance of slaked lime at a temperature of 600'C. Figures 6 and 7 show the relationship between by-products
Linear diffraction diagram, Figure 8 is a diagram of the desulfurization experiment equipment using a pulverized coal combustion furnace, Figure 9 is a comparison diagram of the desulfurization performance of slaked lime and limestone, and Figure 10 is a diagram of the present invention method and a limestone furnace in the temperature range of 150 to 65°C. It is a figure which shows the comparison result of the desulfurization performance of the internal blowing method. Co... Boiler furnace, 2... Pulverized coal, 3... Combustion air, 4... Fine powder desulfurization agent, 5... Conveyor, 6... Desulfurization agent spray channel, 7 - First heat Exchanger, 9. Spray air flow path, 12. Air preheater, 14.. Desulfurization tower, 15.. Water supply flow path, 17.. Electrostatic precipitator Applicant Babcock Hitachi Co., Ltd. Agent Patent attorney Takayoshi Matsunaga Haka 1 person

Claims (10)

【特許請求の範囲】[Claims] (1)火力発電ボイラの燃焼排ガスに微粉脱硫剤を噴霧
する脱硫法において、ボイラ火炉から煙道の燃焼排ガス
温度が500℃から800℃領域の燃焼排ガス流路に微
粉脱硫剤を噴霧して燃焼排ガス中の硫黄酸化物を脱硫剤
に捕集することを特徴とする微粉脱硫剤を燃焼排ガスに
噴霧する脱硫法。
(1) In the desulfurization method in which a fine powder desulfurizing agent is sprayed onto the flue gas of a thermal power generation boiler, the fine powder desulfurizing agent is sprayed from the boiler furnace into the flue gas flow path in the flue where the flue gas temperature is in the range of 500 to 800 degrees Celsius and then combusted. A desulfurization method that involves spraying a fine powder desulfurization agent onto combustion exhaust gas, which is characterized by the fact that the sulfur oxides in the exhaust gas are collected by the desulfurization agent.
(2)微粉脱硫剤は、カルシウム、ナトリウム、マグネ
シウムのうちの少なくとも一成分を含む化合物であり、
500℃から800℃の温度で水を放出して金属酸化物
となる水酸化物あるいは水和物であることを特徴とする
請求項1記載の微粉脱硫剤を燃焼排ガスに噴霧する脱硫
法。
(2) The fine powder desulfurization agent is a compound containing at least one component of calcium, sodium, and magnesium,
A desulfurization method in which the fine powder desulfurization agent according to claim 1 is sprayed into combustion exhaust gas, wherein the desulfurization agent is a hydroxide or hydrate that releases water at a temperature of 500°C to 800°C to become a metal oxide.
(3)微粉脱硫剤は、カルシウム、ナトリウム、マグネ
シウムのうちの少なくとも一成分を含む水酸化物あるい
は水和物に水を添加してスラリー状としたものであるこ
とを特徴とする請求項1記載の微粉脱硫剤を燃焼排ガス
に噴霧する脱硫法。
(3) The fine powder desulfurization agent is a slurry obtained by adding water to a hydroxide or hydrate containing at least one component of calcium, sodium, and magnesium. A desulfurization method in which fine powder desulfurization agent is sprayed into the combustion exhaust gas.
(4)微粉脱硫剤はカルシウム、ナトリウム、マグネシ
ウムのうちの少なくとも一成分を含む水酸化物あるいは
水和物に水蒸気を加えたものであることを特徴とする請
求項3記載の微粉脱硫剤を燃焼排ガスに噴霧する脱硫法
(4) Combustion of the fine powder desulfurizing agent according to claim 3, wherein the fine powder desulfurizing agent is a mixture of hydroxide or hydrate containing at least one component of calcium, sodium, and magnesium to which water vapor is added. A desulfurization method that sprays into exhaust gas.
(5)微粉脱硫剤に酸化促進剤を含浸させたことを特徴
とする請求項1記載の微粉脱硫剤を燃焼排ガスに噴霧す
る脱硫法。
(5) A desulfurization method in which the fine powder desulfurizing agent according to claim 1 is sprayed into combustion exhaust gas, characterized in that the fine powder desulfurizing agent is impregnated with an oxidation promoter.
(6)微粉脱硫剤を噴霧する位置の後流側に水を噴霧す
ることを特徴とする請求項1記載の微粉脱硫剤を燃焼排
ガスに噴霧する脱硫法。
(6) A desulfurization method in which the fine powder desulfurizing agent is sprayed into the combustion exhaust gas according to claim 1, characterized in that water is sprayed downstream of the position where the fine powder desulfurizing agent is sprayed.
(7)微粉脱硫剤は100℃から500℃の温度で熱処
理した後に、亜硫酸ガスあるいは亜硫酸カルシウムの酸
化促進剤を含浸させたものであることをを特徴とする請
求項1記載の微粉脱硫剤を燃焼排ガスに噴霧する脱硫法
(7) The fine powder desulfurizing agent according to claim 1, wherein the fine powder desulfurizing agent is impregnated with an oxidation promoter such as sulfur dioxide gas or calcium sulfite after being heat-treated at a temperature of 100°C to 500°C. A desulfurization method that sprays combustion exhaust gas.
(8)請求項1記載の脱硫法により生成する微粉脱硫剤
に捕集された亜硫酸塩を、捕集機の前流側に設置した酸
化触媒により酸化して硫酸塩にした後に、捕集機で回収
することを特徴とする微粉脱硫剤を燃焼排ガスに噴霧す
る脱硫法。
(8) The sulfite collected in the fine powder desulfurization agent produced by the desulfurization method according to claim 1 is oxidized to sulfate by an oxidation catalyst installed upstream of the collector, and then the collector A desulfurization method that sprays a fine powder desulfurization agent, which is recovered in the combustion exhaust gas, into the combustion exhaust gas.
(9)請求項1記載の脱硫法により燃焼排ガス中の硫黄
酸化物を捕集した微粉脱硫剤含有ダストを煙道に設置し
た捕集機で回収し、回収ダストを水に浸漬させ、その上
澄み液を、微粉脱硫剤を噴霧する位置の後流側の燃焼排
ガス流路に噴霧することを特徴とする微粉脱硫剤を燃焼
排ガスに噴霧する脱硫法。
(9) Dust containing a fine desulfurizing agent that has collected sulfur oxides in combustion exhaust gas by the desulfurization method according to claim 1 is collected by a collector installed in a flue, the collected dust is immersed in water, and the supernatant is collected. A desulfurization method for spraying a fine powder desulfurizing agent into a combustion exhaust gas, characterized in that a liquid is sprayed into a flue gas flow path downstream of a position where the fine powder desulfurizing agent is sprayed.
(10)請求項1ないし8記載の脱硫法における微粉脱
硫剤が同伴する燃焼排ガス流路にアンモニアガスを供給
し、燃焼排ガスに共存する窒素酸化物、硫黄酸化物をア
ンモニア化合物として微粉脱硫剤に捕集させることを特
徴とする微粉脱硫剤を燃焼排ガスに噴霧する脱硫、脱硝
法。
(10) In the desulfurization method according to claims 1 to 8, ammonia gas is supplied to the flue gas flow path in which the fine powder desulfurizing agent is accompanied, and nitrogen oxides and sulfur oxides coexisting in the flue gas are converted into ammonia compounds and converted into the fine powder desulfurizing agent. A desulfurization and denitrification method that sprays a fine powder desulfurization agent, which is characterized by collection, into combustion exhaust gas.
JP2165376A 1990-06-22 1990-06-22 Desulfurization method of spraying fine powder desulfurizing agent to combustion exhaust gas Expired - Fee Related JP3032247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2165376A JP3032247B2 (en) 1990-06-22 1990-06-22 Desulfurization method of spraying fine powder desulfurizing agent to combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2165376A JP3032247B2 (en) 1990-06-22 1990-06-22 Desulfurization method of spraying fine powder desulfurizing agent to combustion exhaust gas

Publications (2)

Publication Number Publication Date
JPH0459022A true JPH0459022A (en) 1992-02-25
JP3032247B2 JP3032247B2 (en) 2000-04-10

Family

ID=15811200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165376A Expired - Fee Related JP3032247B2 (en) 1990-06-22 1990-06-22 Desulfurization method of spraying fine powder desulfurizing agent to combustion exhaust gas

Country Status (1)

Country Link
JP (1) JP3032247B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321636A (en) * 2000-05-17 2001-11-20 Asahi Glass Co Ltd Gas treating method
JP2008170107A (en) * 2007-01-12 2008-07-24 Chugoku Electric Power Co Inc:The Oxide reducing method and oxide reducer for coal addition used in the same
JP2008170105A (en) * 2007-01-12 2008-07-24 Chugoku Electric Power Co Inc:The Method of reducing carbon monoxide, and carbon monoxide reducer for coal addition used in method
JP2008532734A (en) * 2005-02-04 2008-08-21 フューエル テック インコーポレーテッド Duct injection with targets for SO3 control
WO2018068765A1 (en) * 2016-10-14 2018-04-19 黄华丽 Gas detoxification agent, and preparing and detoxification methods thereof
CN110052153A (en) * 2019-06-06 2019-07-26 天津水泥工业设计研究院有限公司 A kind of desulfurizing agent preparation unit based on cement clinker production line calcium circulation
JP2020146624A (en) * 2019-03-13 2020-09-17 Jfeエンジニアリング株式会社 Exhaust gas treatment device and method
CN116510495A (en) * 2023-05-30 2023-08-01 曲阜龙坤环保科技有限公司 Sintering flue gas desulfurizing agent and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321636A (en) * 2000-05-17 2001-11-20 Asahi Glass Co Ltd Gas treating method
JP2008532734A (en) * 2005-02-04 2008-08-21 フューエル テック インコーポレーテッド Duct injection with targets for SO3 control
JP2008170107A (en) * 2007-01-12 2008-07-24 Chugoku Electric Power Co Inc:The Oxide reducing method and oxide reducer for coal addition used in the same
JP2008170105A (en) * 2007-01-12 2008-07-24 Chugoku Electric Power Co Inc:The Method of reducing carbon monoxide, and carbon monoxide reducer for coal addition used in method
WO2018068765A1 (en) * 2016-10-14 2018-04-19 黄华丽 Gas detoxification agent, and preparing and detoxification methods thereof
US11911740B2 (en) 2016-10-14 2024-02-27 Liwei Huang Noxious gas purificant and its preparation and purification method thereof
JP2020146624A (en) * 2019-03-13 2020-09-17 Jfeエンジニアリング株式会社 Exhaust gas treatment device and method
CN110052153A (en) * 2019-06-06 2019-07-26 天津水泥工业设计研究院有限公司 A kind of desulfurizing agent preparation unit based on cement clinker production line calcium circulation
CN110052153B (en) * 2019-06-06 2023-11-10 天津水泥工业设计研究院有限公司 Desulfurizing agent preparation unit based on cement clinker production line calcium cycle
CN116510495A (en) * 2023-05-30 2023-08-01 曲阜龙坤环保科技有限公司 Sintering flue gas desulfurizing agent and preparation method thereof
CN116510495B (en) * 2023-05-30 2024-03-22 曲阜龙坤环保科技有限公司 Sintering flue gas desulfurizing agent and preparation method thereof

Also Published As

Publication number Publication date
JP3032247B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
EP1040863B1 (en) Process for removing NOx and SOx from exhaust gas
US5171552A (en) Dry processes for treating combustion exhaust gas
EP2440756A2 (en) COMBUSTION FLUE GAS NOx TREATMENT
BR112016008365B1 (en) TREATMENT OF NITROGEN OXIDES IN COMBUSTION GAS CURRENTS
US4853194A (en) Method for treating exhaust gas
EA002327B1 (en) Process for producing highly reactive lime in a furnace
JPH0459022A (en) Desulfurizing method by spraying fine powder desulfurizing agent to waste combustion gas
KR100225473B1 (en) Process for removing so2 and nox from a gaseous stream
IT9067327A1 (en) PROCEDURE FOR THE TREATMENT OF COMBUSTION EXHAUST GAS
JPH0557139A (en) Lime blowing desulfurization
JPH0691937B2 (en) Exhaust gas dry desulfurization method
PL166712B1 (en) Method of removing sulfur dioxide from outlet gases
RU2796494C1 (en) Method and installation for joint flue gas cleaning with several pollutants
JP2846399B2 (en) Desulfurization in boiler furnace and flue
JP3790358B2 (en) Method for reducing sulfuric acid and anhydrous sulfuric acid in combustion exhaust gas
JPH0312926B2 (en)
JPH0359309A (en) Method for desulfurization in furnace
JPH10118446A (en) Apparatus for treatment highly concentrated so2 gas containing exhaust gas
JP2002219331A (en) Method and apparatus for preparing desulfirizing agent and dry exhaust gas desulfurizing method
JPH07308540A (en) Waste gas treatment
JP2000237535A (en) Method for decreasing sulfuric anhydride in waste combustion gas and apparatus therefor
JPH0741144B2 (en) Method for simultaneous dry removal of sulfur oxides and nitrogen oxides
JPH0568848A (en) Desulfurizing method
JPH04145925A (en) Waste gas treating device
JPS58174222A (en) Treatment of waste gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees