JPS63122790A - Purification of high-temperature reducing gas - Google Patents

Purification of high-temperature reducing gas

Info

Publication number
JPS63122790A
JPS63122790A JP26857186A JP26857186A JPS63122790A JP S63122790 A JPS63122790 A JP S63122790A JP 26857186 A JP26857186 A JP 26857186A JP 26857186 A JP26857186 A JP 26857186A JP S63122790 A JPS63122790 A JP S63122790A
Authority
JP
Japan
Prior art keywords
gas
adsorbent
sulfur
regeneration
temperature reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26857186A
Other languages
Japanese (ja)
Other versions
JPH0678530B2 (en
Inventor
Naoharu Shinoda
篠田 直晴
Toshikuni Sera
世良 俊邦
Kenji Inoue
健治 井上
Mitsugi Suehiro
末弘 貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26857186A priority Critical patent/JPH0678530B2/en
Publication of JPS63122790A publication Critical patent/JPS63122790A/en
Publication of JPH0678530B2 publication Critical patent/JPH0678530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:To purify the titled gas efficiently, by removing sulfides from a high- temperature reducing gas with an adsorbent, introducing an O2-containing regenerating gas to the adsorbent and making the sulfides flow as SO2 and converting the SO2 with an SO2 reducing catalyst set at the rear flow side of the adsorbent. CONSTITUTION:Coal 1 and oxygen 2 are fed to a gasifying furnace 3 to give crude gas 4, from which dust is removed by a dust collector 5 to give a high- temperature reducing gas 6. The gas is passed through an adsorption reactors 17-19 packed with an adsorbent to adsorb sulfides and then an oxygen- containing regenerating gas 40 is introduced to the adsorbent 20 and a sulfurous acid-containing gas is made to flow. Then, the flow gas and the high- temperature reducing gas flowing from the adsorbent 20 are fed to reactors 24-26 packed with a sulfurous acid reducing catalyst set at the rear flow side of the adsorbent 20, the sulfurous acid gas in the flow gas is converted into sulfur of single substance, a gas flowing from the reducing catalyst 27 is fed to a separator 38, sulfur of single substance is separated, the residual gas 39 is recycled as part of the regenerating gas for the adsorbent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温還元性ガスの精製方法に関し、たとえば
石炭ガス化プロセスの生成ガスのような高温の還元性ガ
ス混合物中に含まれる硫化水素等を合理的に除去する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for purifying high-temperature reducing gases, such as hydrogen sulfide contained in a high-temperature reducing gas mixture, such as the product gas of a coal gasification process. etc., and how to rationally remove them.

〔従来の技術〕[Conventional technology]

近年、石油資源の枯渇、価格の高騰から、燃料(又は原
料)の多様化が叫ばれ、石炭や重質油(タールサンド油
、オイルシェール油、大慶重油、マヤ原油、或いは減圧
残油など)の利用技術の開発が進められている。石炭や
重質油をガス化して発電や燃料及び合成原料とする方法
はその代表的な一例である。
In recent years, due to the depletion of oil resources and soaring prices, there has been a call for diversification of fuels (or raw materials), such as coal and heavy oil (tar sand oil, oil shale oil, Daqing heavy oil, Maya crude oil, vacuum residual oil, etc.). Development of utilization technology is progressing. A typical example is the method of gasifying coal or heavy oil to use as power generation, fuel, or synthetic raw material.

しかし、このガス化生成ガスには原料の石炭や重質油に
よって違うが数100〜数11000ppの硫化水素を
含み、これは公害防止上、或いは後光機器の腐食や触媒
の被毒防止のため、是非、除去が必要である。
However, this gasification product gas contains hydrogen sulfide ranging from several hundred ppm to several 11,000 ppp, depending on the raw material coal and heavy oil, and this is used to prevent pollution, corrosion of backlight equipment, and poisoning of catalysts. , it is necessary to remove it.

この除去方法としては湿式法と乾式法があるが、湿式法
は処理ガスを冷却しなければならず熱経済上不利であり
、かつ共存成分(タール、ナフタリン、ハロゲン、NH
,、FIIC!N 、 C!OEI媒じんなど)の除去
あるいは吸収液の汚染、劣化防止のための前処理や廃水
処理のための設備が必要となり、プロセスが複雑になる
There are wet and dry methods for this removal, but the wet method requires cooling the process gas, which is disadvantageous in terms of thermoeconomics, and coexisting components (tar, naphthalene, halogen, NH
,,FIIC! N, C! The process becomes complicated because it requires equipment for pretreatment and wastewater treatment to remove OEI media (e.g., OEI media and dust) or to prevent contamination and deterioration of the absorption liquid.

一方乾式法は熱経済的にも有利で、プロセス構成も簡素
なことから金属酸化物を主成分とする吸着剤により高温
で硫化物として吸着除去する方法が一般的になっている
。吸着剤としてはFe、Zn、Mo、Mn、Cu、W 
 などの金属酸化物が使用され、250〜500℃でH
lSと反応させるが、F e、o、の場合の吸着反応は
(1)〜(7)式に示すように進むとされている。
On the other hand, the dry method is thermoeconomically advantageous and has a simple process configuration, so it has become common to adsorb and remove sulfides at high temperatures using an adsorbent containing metal oxides as the main component. Adsorbents include Fe, Zn, Mo, Mn, Cu, and W.
Metal oxides such as H
In the case of Fe, o, the adsorption reaction is said to proceed as shown in equations (1) to (7).

Fe、03 +H,−+2FeO+馬o−−−−−(1
)51F8,0.−)−4+ 2 Fe、04 + H
,O−−−−(2)F’e、O,+Co→2FeO+0
0.       ”−(3)5Fe、03 +CO−
+ 2Fel○、 +(! O,−−−−・(4)Fe
O+馬E?−+FeS + H,O−−(5)Fe、O
,−1−H,−)−5FItS−45Fes−4−aH
,O−−−・−(6)F es 04 + Co+5 
HtB →5 F e S + 5 % O+ C! 
OH−”−” (7)次いで吸着反応後の吸着剤は酸素
含有ガスで(8)式に示すように金属酸化物に再生され
、この吸着、再生反応の繰返しで高温還元ガス中のイオ
ウ化合物は亜硫酸ガスとして回収除去される。
Fe,03 +H,-+2FeO+horse o------(1
)51F8,0. -)-4+2Fe, 04+H
,O---(2)F'e,O,+Co→2FeO+0
0. ”-(3)5Fe, 03 +CO-
+ 2Fel○, +(! O, -----・(4) Fe
O + horse E? -+FeS+H,O--(5)Fe,O
,-1-H,-)-5FItS-45Fes-4-aH
,O---・-(6)Fes 04 + Co+5
HtB →5 Fe S + 5% O+ C!
OH-”-” (7) Next, the adsorbent after the adsorption reaction is regenerated into metal oxide with oxygen-containing gas as shown in equation (8), and by repeating this adsorption and regeneration reaction, the sulfur compound in the high-temperature reducing gas is is collected and removed as sulfur dioxide gas.

4FeEl+ yo、42Fe、O8+aso、   
  +++ (s)このプロセスで使用される吸着剤は
、前述の金属酸化物を単独あるいは耐熱性の多孔質物質
に担持したものを、移動床方式の場合は球状あるいは円
柱状に成形したものが、固定床方式の場合はハニカム状
に成形したものが従来より使用されてきた。
4FeEl+ yo, 42Fe, O8+aso,
+++ (s) The adsorbent used in this process is the metal oxide mentioned above, either alone or supported on a heat-resistant porous material, which is formed into a spherical or cylindrical shape in the case of a moving bed method. In the case of fixed bed systems, honeycomb-shaped molds have traditionally been used.

石炭ガス化ガスの如き還元ガスからイオウ化合物を除去
して精製されたガスはエネルギー源として利用されるの
で、co、Tita度分安定して製造するプロセスにす
るのが好ましく、(1)〜(4)式の反応を極力抑制し
なければならない。移動床方式では吸着工程と再生工程
が連続的に繰返されるので上記の技術的課題は克服しや
すいが、固定床方式では吸着工程と再生工程を断続的に
繰返すので、吸着層と再生層の切替では、精製ガス中の
Co、H,濃度が吸着反応開始時低下するので、高温還
元性ガスの精製方法としては実用上好ましくない。
Since gas purified by removing sulfur compounds from reducing gas such as coal gasification gas is used as an energy source, it is preferable to use a process that produces it stably by degrees of co, Tita. 4) The reaction of formula must be suppressed as much as possible. In the moving bed system, the adsorption process and regeneration process are repeated continuously, so the above technical issues are easy to overcome, but in the fixed bed system, the adsorption process and regeneration process are repeated intermittently, so it is difficult to switch between the adsorption layer and the regeneration layer. However, since the Co, H, and concentration in the purified gas decreases at the start of the adsorption reaction, this method is not practically preferred as a method for purifying high-temperature reducing gases.

そこで本出願人は固定床反応器三基を順次切替えて、イ
オウ化合物を吸着した吸着剤を酸素含有ガスで再生する
工程、次いで再生された吸着剤を高温還元性ガスで該吸
着剤前後の精製の対象となる還元ガス濃度が同一になる
まで還元する工程、次いで該高温還元性ガスを通気して
該吸着剤で該イオウ化合物を吸着除去する工程を連続的
に繰返すことにより精製ガス中の還元性ガス濃度を安定
化させる高温還元性ガスの精製法を出頭した。(特願昭
60−085412号)一方再生工程は処理ガス量低減
のために循環系で(8)式の再生反応を逐次的に進め生
成SO,濃度を濃縮後イオウ回収する方法が通常とられ
ている。しかしこの方法では5O14〜10係程度含有
する再生ガスと吸着剤が400〜800℃の高温雰囲気
で接触し、且つ副生SO,の増加をきたすので該吸着剤
が極めて苛酷な状態になっていることから、吸着剤の長
期使用は期待できない。
Therefore, the present applicant sequentially switched three fixed bed reactors to regenerate the adsorbent that had adsorbed sulfur compounds with an oxygen-containing gas, and then purified the regenerated adsorbent before and after the adsorbent using a high-temperature reducing gas. Reduction in the purified gas is achieved by continuously repeating the steps of reducing the target reducing gas concentration until they become the same, and then aerating the high-temperature reducing gas and adsorbing and removing the sulfur compounds with the adsorbent. He proposed a method for purifying high-temperature reducing gases that stabilizes the concentration of reactive gases. (Japanese Patent Application No. 60-085412) On the other hand, in the regeneration process, in order to reduce the amount of gas to be processed, the regeneration reaction of equation (8) is carried out sequentially in a circulation system, and the SO produced and the concentration are concentrated, and then the sulfur is recovered. ing. However, in this method, the regenerating gas containing about 14 to 10 parts of 5O comes into contact with the adsorbent in a high-temperature atmosphere of 400 to 800°C, and the amount of by-product SO increases, which puts the adsorbent in an extremely harsh state. Therefore, long-term use of the adsorbent cannot be expected.

馬S吸着後の吸着剤は(8)式により再生されるが、こ
の反応は通常400〜800℃で行われ発熱反応である
ので吸着剤には耐熱性が要求される。さらに再生反応で
生成するSO,および吸着剤上で一部So、になるBo
x含有ガスに対する耐久性も要求され、これらの観点か
ら吸着剤は選定されている。しかし再生反応で生成する
SO,を単体イオウや硫酸カルシウムなどの固体にして
回収する時の処理ガス量を極力減少させるために、再生
工程は通常循環系で行われるので、再生ガス中のSO,
は4〜10チ程度まで濃縮される。従って吸着剤は40
0〜800℃の高温状態で高濃度So、含有ガスに接触
するという極めて苛酷な条件で使用されるので、循環再
生ガス中のSO,濃度をできるだけ少なくして、吸着剤
をより良い環境で使用するのが望ましく、固定床式では
使用中に吸着剤の取替ができないので、プロセスの信頼
性向上から特に強く望まれている。
The adsorbent after adsorbing S is regenerated according to equation (8), but since this reaction is usually carried out at 400 to 800° C. and is an exothermic reaction, the adsorbent is required to have heat resistance. Furthermore, SO generated in the regeneration reaction and Bo that partially becomes So on the adsorbent.
Durability against x-containing gas is also required, and adsorbents are selected from these viewpoints. However, in order to reduce as much as possible the amount of gas to be treated when the SO produced in the regeneration reaction is recovered as a solid such as elemental sulfur or calcium sulfate, the regeneration process is usually carried out in a circulation system.
is concentrated to about 4 to 10 inches. Therefore, the adsorbent is 40
Since it is used under extremely harsh conditions, such as contacting gas containing high concentrations of So at high temperatures of 0 to 800 degrees Celsius, the concentration of SO in the recycled regeneration gas should be kept as low as possible to use the adsorbent in a better environment. It is desirable to do so, and since the adsorbent cannot be replaced during use in a fixed bed type, this is particularly strongly desired from the viewpoint of improving process reliability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来の高温還元性ガスの精製方法の欠点分解
消し、再生工程の吸着剤から流出するガスから亜硫酸ガ
スを単体イオウとして回収することによシ回収工程の負
荷を軽減するとともに、残ガスを再生工程に循環するこ
とにより循環再生ガス中の亜硫酸ガス濃度を低下させ、
吸着剤の長期使用を可能とした高温還元性ガスの精製方
法分提供しようとするものである。
The present invention eliminates the disadvantages of conventional high-temperature reducing gas purification methods by decomposition, recovers sulfur dioxide gas as elemental sulfur from the gas flowing out from the adsorbent in the regeneration process, and reduces the load on the recovery process. By circulating the gas to the regeneration process, the concentration of sulfur dioxide gas in the recycled regeneration gas is reduced,
The present invention aims to provide a method for purifying high-temperature reducing gases that enables long-term use of adsorbents.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は高温還元性ガス中の硫化物を吸着分離するガス
精製方法において、吸着剤の後流側に亜硫酸ガス還元触
媒を配置し、再生工程の吸着剤に酸素含有再生ガスを導
入して亜硫酸ガス含有ガスを流出させ、該流出ガスと吸
着工程の吸着剤から流出する高温還元性ガスとを上記還
元触媒に導入して流出ガス中の亜硫酸ガスを単体イオウ
に転化するとともに、[還元触媒から流出するガスから
単体イオウを分離した後、残ガスを上記吸着剤の再生ガ
スの一部として用いることを特徴とする高温還元性ガス
の精製方法である。
The present invention is a gas purification method that adsorbs and separates sulfides in a high-temperature reducing gas, in which a sulfur dioxide gas reduction catalyst is arranged on the downstream side of an adsorbent, and an oxygen-containing regeneration gas is introduced into the adsorbent in the regeneration process to reduce sulfur dioxide. The gas-containing gas is discharged, and the discharged gas and the high-temperature reducing gas discharged from the adsorbent in the adsorption step are introduced into the reduction catalyst to convert the sulfurous acid gas in the discharged gas into elemental sulfur. This is a method for purifying a high-temperature reducing gas, which is characterized in that after separating elemental sulfur from the outflowing gas, the remaining gas is used as part of the regeneration gas of the adsorbent.

〔実施例〕〔Example〕

第1図は、本発明を実施する丸めの装置のフロー図であ
る。石炭1と少量の空気又は酸素2をガス化炉Sに供給
して部分燃焼ガス化させた馬及びCOを主成分とする粗
ガス4は集じん装置5でダスト濃度を10■/g”N以
下に低減したガス化ガス6として乾式脱硫装置に供給さ
れる。このガス化ガス6は石炭の種類やガス化条件によ
って異彦るが、ダスト以外に数1a〜数1000 pp
mの馬El、C!O8,ME、及び極微量のHF。
FIG. 1 is a flow diagram of a rounding apparatus implementing the present invention. Coal 1 and a small amount of air or oxygen 2 are supplied to a gasification furnace S for partial combustion and gasification, and the crude gas 4 whose main components are CO is reduced to a dust concentration of 10 g/g"N by a dust collector 5. The gasification gas 6 reduced to below is supplied to the dry desulfurization equipment.This gasification gas 6 differs depending on the type of coal and gasification conditions, but in addition to dust, it contains several 1a to several thousand pp.
m's horse El, C! O8, ME, and trace amounts of HF.

Hatが含まれており、ガス温度はガス化炉3出口のス
チームヒータなどで熱回収され250〜500℃、圧力
はガス化炉5の形式により異なるが常圧〜25 ata
である。
The gas temperature is 250 to 500°C, which is recovered by a steam heater at the outlet of the gasifier 5, and the pressure is normal pressure to 25 ata, although it varies depending on the type of gasifier 5.
It is.

第1図では吸着剤20が充填された同一構造の吸着反応
器17.18,1?を前記(5)〜(7)式による吸着
工程、(8)式による再生工程、(1)〜(4)式によ
る還元工程と頭次切替える固定床式の例を示したが、本
発明は固定床式に限定されるものではなく、還元ガス中
の′H,s、oos々どのイオウ化合物を吸着剤で吸着
除去後、(8)式による再生を行なう場合には流動床式
や移動床式を採用することもできる。またガス流路切替
の固定床式。
In FIG. 1, an adsorption reactor 17, 18, 1? of the same structure filled with an adsorbent 20 is shown. Although an example of a fixed bed type has been shown in which the process is sequentially switched between the adsorption process according to formulas (5) to (7), the regeneration process according to formula (8), and the reduction process according to formulas (1) to (4), the present invention It is not limited to a fixed bed type, but a fluidized bed type or a moving bed type is used when regenerating according to the formula (8) after adsorbing and removing sulfur compounds such as 'H, s, and oos in the reducing gas with an adsorbent. It is also possible to adopt a formula. It is also a fixed bed type with gas flow path switching.

三基切替以外の多塔固定床式も適用できることはいうま
でもない。さらに本発明は吸着剤の再生方法に関するも
のであシ、吸着剤の組成、形状に何ら限定されるもので
はない。
It goes without saying that a multi-column fixed bed system other than the three-unit switching system can also be applied. Further, the present invention relates to a method for regenerating an adsorbent, and is not limited to the composition or shape of the adsorbent.

まず、吸着反応器17で吸着工程を、吸着反応器18で
還元工程を、吸着反応器19で再生工程を行っている状
態を説明する。
First, a state in which the adsorption reactor 17 performs an adsorption process, the adsorption reactor 18 performs a reduction process, and the adsorption reactor 19 performs a regeneration process will be described.

ガス化ガス6を流路切替バルブ8を介して吸着工程の吸
着反応器17に通気することで、イオウ化合物は吸着剤
20に吸着除去され、イオウ化合物の含まれてい危い精
製ガスは還元反応器24内のSO,還元触媒27の活性
賦与に利用され、流路切替バルブ51を介して精製ガス
34として後光のガスタービン等に供給される。還元工
程は吸着工程の前処理として(1)〜(4)式による還
元反応を行うためであり、ガス化ガス6の一部を流量調
節して流路切替バルブ12、再生された吸着剤20が充
填された吸着反応器18、EIO,還元反応器25、流
路切替バルブ32と通気することで吸着剤の還元処理が
行われる。
By ventilating the gasified gas 6 through the flow path switching valve 8 to the adsorption reactor 17 in the adsorption step, sulfur compounds are adsorbed and removed by the adsorbent 20, and the purified gas containing dangerous sulfur compounds undergoes a reduction reaction. The SO in the vessel 24 is used to activate the reduction catalyst 27, and is supplied to a gas turbine or the like in the halo as a purified gas 34 via a flow path switching valve 51. The reduction process is to perform a reduction reaction according to equations (1) to (4) as a pretreatment for the adsorption process, and a part of the gasified gas 6 is adjusted in flow rate to pass through the flow path switching valve 12 and the regenerated adsorbent 20. Reduction processing of the adsorbent is performed by ventilating the adsorption reactor 18 filled with EIO, the reduction reactor 25, and the flow path switching valve 32.

吸着反応終了後の吸着剤20a酸素含有ガス40で再生
されるが、再生工程は処理ガス量低減のために循環系で
実施するのが好ましい。また再生反応は400〜800
℃の温度で実施されるが、循環系に単体イオウ回収工程
を組み入れているので、イオウ分離時の系内ガス温度が
250℃以下になるのを所定温度に回復させるための熱
交換器−1、流路切替パルプ16f介して吸着反応器1
9に通気させる。再生反応時の発熱を抑制するには0.
濃度を[11〜1チの範囲でできるだけ低くすることが
好ましく、再生反応に伴い吸着反応器19の出口ではS
O,が生成し、0.はほとんど再生反応に消費されるの
でゼロになる。従って再生反応中のSo、還元反応器2
6には吸着反応器19から排出されるEIO。
After the adsorption reaction is completed, the adsorbent 20a is regenerated with the oxygen-containing gas 40, and the regeneration step is preferably carried out in a circulation system in order to reduce the amount of gas to be treated. Also, the regeneration reaction is 400 to 800
Although the process is carried out at a temperature of 250°C, since a simple sulfur recovery process is incorporated into the circulation system, heat exchanger-1 is used to restore the gas temperature in the system from 250°C or lower to a predetermined temperature during sulfur separation. , adsorption reactor 1 via flow path switching pulp 16f
Ventilate to 9. 0.0 to suppress heat generation during regeneration reaction.
It is preferable to keep the concentration as low as possible within the range of [11 to 1], and S at the outlet of the adsorption reactor 19 due to the regeneration reaction.
O, is generated and 0. is mostly consumed in the regeneration reaction, so it becomes zero. Therefore, So during the regeneration reaction, reduction reactor 2
6 is EIO discharged from the adsorption reactor 19;

含有N、ガスと流速切替バルブ25を介して通気される
a、s、cosなどのイオウ化合物を含まない還元ガス
の混合ガスとなり、So、還元触媒としての機能を発現
するガス性状となる。SO,還元触媒はTie、 、 
5iO1、ZrO,などの耐Sow性、耐熱性担体にN
i、Co、Mo、Wなどの酸化物を担持したものが使用
される。これらのSO1還元触媒は(9)〜(6)式に
より350〜500℃の反応温度で馬。
It becomes a mixed gas of containing N and gas and a reducing gas that does not contain sulfur compounds such as a, s, and cos, which is vented through the flow rate switching valve 25, and has a gas property that functions as a So and reduction catalyst. SO, reduction catalyst is Tie, ,
5iO1, ZrO, etc. N
Those supporting oxides such as i, Co, Mo, and W are used. These SO1 reduction catalysts can be used at a reaction temperature of 350 to 500°C according to equations (9) to (6).

COと反応し、理論モルルー/so、 、 (!O/S
o、が2であると単体イオウに、3になるとH,Sに転
化するので、a、、CO含有還元ガスと再生後のSへ含
有ガス流量を調節することにより任意の単体イオウ回収
が可能となる。
Reacts with CO, theoretical mole/so, , (!O/S
When o is 2, it is converted to elemental sulfur, and when it is 3, it is converted to H and S, so it is possible to recover any elemental sulfur by adjusting the flow rate of the containing gas to a, CO-containing reducing gas and S after regeneration. becomes.

2E]O,−)−4馬→S、 +AII!O・−・−・
(9)2SO,+400→日、  + aao、   
        −・・・・・・・ α1BOt  +
  5 H! 4 H,S −)−2H,O−−−−−
−−αやSO,+5CO+H,04%日+5CO,−・
−(IJ吸着剤の再生反応で反応温度が高くなる場合に
は、吸着反応器19と還元反応器26の間で、ガス温度
を下げることにより、SO8還元反応に最適な温度にす
ることができる。So、還元触媒の形状は固定床式では
ハニカム状が好ましいが、粒状、円柱状、粉末など形状
は問わない。
2E] O, -) -4 horse → S, +AII! O・−・−・
(9) 2SO, +400→day, + aao,
−・・・・・・ α1BOt +
5 H! 4H,S-)-2H,O----
--α and SO, +5CO+H, 04% day +5CO, -・
- (If the reaction temperature becomes high due to the regeneration reaction of the IJ adsorbent, the optimum temperature for the SO8 reduction reaction can be achieved by lowering the gas temperature between the adsorption reactor 19 and the reduction reactor 26. The shape of the So reduction catalyst is preferably honeycomb-shaped in a fixed bed type, but any shape such as granular, cylindrical, powder, etc. is acceptable.

次にSo、還元触媒の性能の一例を示す。T10゜85
 wtチ、 5iO110wtチに成形補強材としてガ
ラス繊維5 wt%を加えて成形したハニカム担体(目
開き五5−1壁厚Q、 8 m )にCoo a wt
4 tMob、 8 wt%を担持した触媒と調製し、
5V2500h−1で反応温度を550〜500℃、ガ
ス組成を変化させて性能評価を行うと下表のようになっ
た。COが共存すると(co十馬)/So、−5となり
(9)〜(ロ)式の理論反応当量よシ大きくなるので、
出口ガスの%S濃度は増加しているが、SO!濃度は9
0チ程度低くなっており、入口ガス中のSO,の50%
程度が消失していることから単体イオウに転化している
ものと推測される。
Next, an example of the performance of the So reduction catalyst will be shown. T10゜85
Coo a wt.
4 tMob, prepared with 8 wt% supported catalyst;
Performance evaluation was performed at 5V, 2500h-1, reaction temperature of 550 to 500°C, and gas composition changed, resulting in the results shown in the table below. When CO coexists, (cojuma)/So becomes -5, which is larger than the theoretical reaction equivalent of equations (9) to (b), so
Although the %S concentration in the exit gas is increasing, SO! The concentration is 9
The temperature is about 0.5% lower, and 50% of the SO in the inlet gas.
Since the amount of sulfur has disappeared, it is presumed that it has been converted to elemental sulfur.

この試験結果からSO,還元触媒27人口での80、濃
度に対応して、吸着工程からの精製ガス54を適量注入
することで単体イオウを任意に農造できる。そして流路
切替パルプ30を介してSo、還元反応後のガス55は
冷却器56で250℃以下に下げられ、単体イオウは分
離器58に貯蔵される。単体イオウを除去した再生ガス
59は酸素含有ガス40の注入に見合う分をガス抜出し
ライン44から抜出して、クラウス反応による乾式イオ
ウ回収あるいは湿式石灰石こう法などの既存プロセスで
最終的なイオウ回収を行うと共に残ガスを熱交換器41
で再生反応に必要な温度まで昇温した循環再生ガス45
として、流路切替パルプ16を介して吸着反応器19に
循環される。
From this test result, elemental sulfur can be arbitrarily produced by injecting an appropriate amount of the purified gas 54 from the adsorption process in accordance with the concentration of SO, 80% of the reduction catalyst 27 population. Then, the gas 55 after the So and reduction reaction passes through the flow path switching pulp 30 and is lowered to 250° C. or lower in a cooler 56, and the elemental sulfur is stored in a separator 58. The regenerating gas 59 from which elemental sulfur has been removed is extracted from the gas extraction line 44 in an amount equivalent to the injection of the oxygen-containing gas 40, and the final sulfur is recovered by an existing process such as dry sulfur recovery using Claus reaction or wet lime-gypsum method. Together with the remaining gas, the heat exchanger 41
The circulating regeneration gas 45 is heated to the temperature required for the regeneration reaction.
As a result, it is circulated to the adsorption reactor 19 via the flow path switching pulp 16.

本実施例は固定床式の三基切替で説明したので、上述さ
れていない流路切替パルプ9,10゜11.15,14
,15,21.22,28,29.55は吸着反応器1
7が吸着工程を、吸着反応器18が還元工程を、吸着反
応器19が再生工程を実行している時は閉の状態になっ
ている。再生ガス循環ラインに設けられる冷却器56、
熱交換器41の冷却ガス37、高温ガス42源は熱交換
条件を満足するものなら何ら制限されない。
Since this example has been explained using a fixed bed type three-way switching method, the flow path switching pulps 9, 10°, 11, 15, 14 which are not mentioned above are
, 15, 21. 22, 28, 29.55 are adsorption reactor 1
When 7 is performing an adsorption process, the adsorption reactor 18 is performing a reduction process, and the adsorption reactor 19 is performing a regeneration process, they are in a closed state. a cooler 56 provided in the regeneration gas circulation line;
The cooling gas 37 and high temperature gas 42 sources of the heat exchanger 41 are not limited in any way as long as they satisfy the heat exchange conditions.

さらに実施例ではSO□還元反応器を吸着剤反応器の後
流側に各々設置しているが、循環再生ガスラインに一括
して一基にすることはもちろん可能である。
Furthermore, in the embodiment, the SO□ reduction reactors are installed on the downstream side of the adsorbent reactor, but it is of course possible to install them all together in the circulating regeneration gas line.

〔発明の効果〕〔Effect of the invention〕

本発明は上記構成を採用することより、次のような効果
を有する。
By employing the above configuration, the present invention has the following effects.

(1)循環再生ガス中の亜硫酸ガス濃度を低下させるこ
とができたので、吸着剤の長期使用分可能にした。
(1) Since the concentration of sulfur dioxide gas in the circulating regeneration gas could be reduced, the adsorbent could be used for a long period of time.

(2)吸着剤の再生工程から流出するガス中の亜硫酸ガ
スを単体イオウに還元するために、吸着工程からの高温
還元性ガスを用いることにより、イオウ回収工程の負荷
低減を可能とした。
(2) By using the high temperature reducing gas from the adsorption process to reduce the sulfur dioxide gas in the gas flowing out from the adsorbent regeneration process to elemental sulfur, it was possible to reduce the load on the sulfur recovery process.

(3)  吸着工程から流出する還元性ガスを亜硫酸ガ
ス還元触媒に通すことにより、触媒の活性賦与に役立っ
た。
(3) By passing the reducing gas flowing out from the adsorption process through the sulfur dioxide gas reduction catalyst, it was useful for imparting activity to the catalyst.

【図面の簡単な説明】 第1図は本発明を実施するだめの装置のフロー図である
。 仮代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow diagram of an apparatus for carrying out the present invention. Temporary Agents 1) Meifuku Agent Ryo Hagiwara - Sub-Agent Atsuo Anzai

Claims (1)

【特許請求の範囲】[Claims] 高温還元性ガス中の硫化物を吸着分離するガス精製方法
において、吸着剤の後流側に亜硫酸ガス還元触媒を配置
し、再生工程の吸着剤に酸素含有再生ガスを導入して亜
硫酸ガス含有ガスを流出させ、該流出ガスと吸着工程の
吸着剤から流出する高温還元性ガスとを上記還元触媒に
導入して流出ガス中の亜硫酸ガスを単体イオウに転化す
るとともに、該還元触媒から流出するガスから単体イオ
ウを分離した後、残ガスを上記吸着剤の再生ガスの一部
として用いることを特徴とする高温還元性ガスの精製方
法。
In a gas purification method that adsorbs and separates sulfides in high-temperature reducing gases, a sulfur dioxide gas reduction catalyst is placed on the downstream side of the adsorbent, and oxygen-containing regeneration gas is introduced into the adsorbent in the regeneration process to generate sulfur dioxide-containing gas. The outflow gas and the high-temperature reducing gas flowing out from the adsorbent in the adsorption step are introduced into the reduction catalyst to convert the sulfurous acid gas in the outflow gas into elemental sulfur, and the gas flowing out from the reduction catalyst. A method for purifying a high-temperature reducing gas, characterized in that after separating elemental sulfur from the sulfur, the remaining gas is used as part of the regeneration gas of the adsorbent.
JP26857186A 1986-11-13 1986-11-13 Refining method for high temperature reducing gas Expired - Fee Related JPH0678530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26857186A JPH0678530B2 (en) 1986-11-13 1986-11-13 Refining method for high temperature reducing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26857186A JPH0678530B2 (en) 1986-11-13 1986-11-13 Refining method for high temperature reducing gas

Publications (2)

Publication Number Publication Date
JPS63122790A true JPS63122790A (en) 1988-05-26
JPH0678530B2 JPH0678530B2 (en) 1994-10-05

Family

ID=17460369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26857186A Expired - Fee Related JPH0678530B2 (en) 1986-11-13 1986-11-13 Refining method for high temperature reducing gas

Country Status (1)

Country Link
JP (1) JPH0678530B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013326A1 (en) * 1994-10-27 1996-05-09 Imperial Chemical Industries Plc Purification process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013326A1 (en) * 1994-10-27 1996-05-09 Imperial Chemical Industries Plc Purification process
US5891323A (en) * 1994-10-27 1999-04-06 Imperial Chemical Industries Plc Purification process

Also Published As

Publication number Publication date
JPH0678530B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
EP2355918B1 (en) Multiple fixed-fluidized beds for contaminant removal
CN101993049B (en) Sulfur recovery system and method
JPS6317488B2 (en)
KR20200094193A (en) System for tail gas treatment of sulfur recovery unit
CA1324875C (en) Method for purifying high-temperature reducing gas
Kwong et al. Rounding up sulfur
JPS63122790A (en) Purification of high-temperature reducing gas
JPH03238019A (en) Purification of high temperature reductive gas
EP0375077B1 (en) Removing hydrogen sulphide from a gas mixture
JP2651381B2 (en) Purification method of high-temperature reducing gas
JPS61245819A (en) Method for purifying high temperature reductive gas
CA2830498C (en) Process and system for removing sulfur from sulfur-containing gaseous streams
JPH0776348B2 (en) Refining method for high temperature reducing gas
JP2615057B2 (en) Purification method of high-temperature reducing gas
JPH0790137B2 (en) Refining method for high temperature reducing gas
EP0375048B1 (en) Method and device for desulphurising gas
EP1116511A1 (en) Method for removing sulfur compounds from gas mixtures
JPH01254226A (en) Purification of high temperature reductive gas
JPS59184291A (en) Refining of high-temperature reducing gas
CA1299842C (en) Reducing regeneration effluent rate by supplemental cooling and oxidantintroduction during regeneration of metal oxide absorbent
JPS63123801A (en) Method for treating high-temperature and high-pressure reducing gas
JPS61252290A (en) Method of refining high-temperature reducing gas
JPH02237613A (en) Method for refining high-temperature reducing gas
JPS60261526A (en) Solid-gas catalytic reactor
Dorchak et al. Elemental sulfur recovery from desulfurization sorbents in advanced power systems

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees