JPH02237613A - Method for refining high-temperature reducing gas - Google Patents

Method for refining high-temperature reducing gas

Info

Publication number
JPH02237613A
JPH02237613A JP1055087A JP5508789A JPH02237613A JP H02237613 A JPH02237613 A JP H02237613A JP 1055087 A JP1055087 A JP 1055087A JP 5508789 A JP5508789 A JP 5508789A JP H02237613 A JPH02237613 A JP H02237613A
Authority
JP
Japan
Prior art keywords
gas
absorbent
regeneration
reactor
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1055087A
Other languages
Japanese (ja)
Other versions
JP2617561B2 (en
Inventor
Hiromitsu Matsuda
裕光 松田
Yuzo Shirai
裕三 白井
Mitsugi Suehiro
末弘 貢
Toru Seto
徹 瀬戸
Shigeaki Mitsuoka
光岡 薫明
Kenji Inoue
健治 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Mitsubishi Heavy Industries Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Mitsubishi Heavy Industries Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP1055087A priority Critical patent/JP2617561B2/en
Publication of JPH02237613A publication Critical patent/JPH02237613A/en
Application granted granted Critical
Publication of JP2617561B2 publication Critical patent/JP2617561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:To reduce the term. rise of an absorbent in regeneration and to prevent the energy loss of the H2 and CO in the crude gasifying gas by partly connecting two absorption reactors in series, operating the reactors and almost completely sulfurizing the absorbent. CONSTITUTION:The ionic compds. (e.g. H2S and COS) contained in the high- temp. reducing gas are absorbed by the absorbent (e.g. Fe2O3) and removed. In this case, at least four reactors 17-20 packed with the absorbent 21 are used. The ionic compds. are absorbed by the absorbent in the absorption stage, the absorbent is regenerated by an oxygen-contg. gas in the regeneration stage, and the regenerated absorbent is reduced by the high-temp. gas in the reduction stage. Two reactors are partly operated in series in the absorption stage, and the other two reactors are partly regenerated in series at the time of operation. As a result, the temp. rise of the absorbent in regeneration is reduced, and the energy loss of the H2 and CO in the crude gasifying gas is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温還元性ガスの精製方法に関し、例えば、
石炭ガス化プロセスの生成ガスのような高温の還元性ガ
スに含まれる硫化水素、硫化カルボニル等のイオウ化合
物を合理的に除去する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for purifying high-temperature reducing gas, for example,
The present invention relates to a method for rationally removing sulfur compounds such as hydrogen sulfide and carbonyl sulfide contained in high-temperature reducing gases such as gas produced in a coal gasification process.

〔従来の技術〕[Conventional technology]

近年、石油資源の枯渇、価格の高騰から燃料又は原料の
多様化が必須となり、石炭や重質油(タールサンド油、
オイルシェール油、大慶原油、マヤ原油あるいは減圧残
油等)の利用技術の開発が進められている。
In recent years, due to the depletion of petroleum resources and soaring prices, it has become necessary to diversify fuels and raw materials.
Development of technologies for utilizing oil (oil shale oil, Daqing crude oil, Maya crude oil, vacuum residual oil, etc.) is underway.

これらの石炭、重質油等のガス化生成ガスは、原料の石
炭や重質油によって異なるが、数100〜数1000p
pmの硫化水素(}125)、硫化力ルボニル(COS
)等のイオウ化合物を含む。これらのイオウ化合物は、
公害防止上あるいは後流機器の腐食防止上、除去する必
要がある。
The gas produced by gasification of these coals, heavy oils, etc. varies depending on the raw material coal and heavy oil, but it is several hundred to several thousand parts.
pm hydrogen sulfide (}125), carbonyl sulfide (COS
) and other sulfur compounds. These sulfur compounds are
It is necessary to remove it to prevent pollution or to prevent corrosion of downstream equipment.

この除去方法としては、乾式法が熱経済的に有利で、ま
たプロセス構成も簡素であることから、金属酸化物を主
成分とする吸収剤に高温で上記のイオウ化合物を接触さ
せ、金属酸化物を金属硫化物として除去する方法が一般
的となっている。
As a removal method, the dry method is thermoeconomically advantageous and has a simple process configuration. Therefore, the above sulfur compound is brought into contact with an absorbent mainly composed of metal oxides at high temperature, and the metal oxides are removed. A common method is to remove metal sulfides as metal sulfides.

吸収剤としてはPa, Zn, Mn+ Cu+ Mo
+一等の金?酸化物が使用され、250〜500゜Cで
硫化水素や硫化力ルボニルと接触させるが、11■Sと
FegO,の場合を例に説明すると、吸収反応は(1)
〜(4)式に示すように進むとされている。
Absorbents include Pa, Zn, Mn+ Cu+ Mo
+First class gold? An oxide is used and brought into contact with hydrogen sulfide or carbonyl sulfide at 250 to 500°C. Taking the case of 11■S and FegO as an example, the absorption reaction is (1)
It is said that the process proceeds as shown in equation (4).

3Fe ,o 3 + 8 2 −+ 2Fe 2 0
. + II ! O −−−−−−−−−− (11
3Fe203+GO−+2Fe304+CO2 −−−
−−−−−− (2)FeJa + llz + 3H
zS→3FeS + 41IzO ・−−−−−− (
3)Fez04+CO+3ToS−3FeS+311z
O十COz  −− (4)次いで、吸収反応後の吸収
剤は酸素含有ガスで(5)式に示すように元の金属酸化
物に再生され、この吸収、再生反応の繰り返しで高温還
元性ガス中のイオウ化合物はSO■ガスとして回収除去
される。
3Fe, o 3 + 8 2 - + 2Fe 2 0
.. +II! O ---------- (11
3Fe203+GO-+2Fe304+CO2 ---
-------- (2) FeJa + llz + 3H
zS → 3FeS + 41IzO ・------ (
3) Fez04+CO+3ToS-3FeS+311z
O0COz -- (4) Next, the absorbent after the absorption reaction is regenerated into the original metal oxide with oxygen-containing gas as shown in equation (5), and by repeating this absorption and regeneration reaction, it is converted into a high-temperature reducing gas. The sulfur compounds inside are collected and removed as SO2 gas.

4FeS+7Ch =2Fez(h +4S(h −−
−−・−−−−−−−−−(5)このプロセスで使用さ
れる吸収剤は、前述の金属酸化物を単独あるいは耐熱性
の多孔質物質に担持したものを、移動床方式の場合は球
状や円柱状に成形したものが、固定床方式の場合はハニ
カム状に成形したものが通常使用される。
4FeS+7Ch =2Fez(h +4S(h --
−−・−−−−−−−−− (5) The absorbent used in this process is the above-mentioned metal oxide alone or supported on a heat-resistant porous material. In the case of a fixed bed method, a honeycomb shape is usually used.

そこで、本発明者らは、先に、高温還元性ガス中に含ま
れるイオウ化合物を金属酸化物を主成分とする吸収剤で
吸収除去して、高温還元性ガスを精製する方法として、
次のような提案をした。
Therefore, the present inventors have developed a method for purifying high-temperature reducing gas by first absorbing and removing sulfur compounds contained in high-temperature reducing gas using an absorbent containing metal oxide as a main component.
He made the following suggestions:

■ イオウ化合物を吸収した吸収剤を酸素含有ガスで再
生する工程、次いで再生された吸収剤を高a還元性ガス
で吸収剤前後の精製の対象となる還元性ガス濃度が同一
になるまで還元する工程、最後に高温還元性ガスを通気
して吸収剤でイオウ化合物を吸収除去する工稈を連続的
に繰り返すことにより精製ガス中の還元性ガス濃度を安
定化させることを特徴とする固定床方式高温還元性ガス
の精製法(特願昭60−85412号)。
■ A process of regenerating the absorbent that has absorbed sulfur compounds with an oxygen-containing gas, and then reducing the regenerated absorbent with a high a reducing gas until the concentration of the reducing gas to be purified before and after the absorbent becomes the same. A fixed-bed method characterized by stabilizing the reducing gas concentration in the purified gas by continuously repeating the process and finally the process of aerating high-temperature reducing gas and absorbing and removing sulfur compounds with an absorbent. Method for purifying high-temperature reducing gas (Japanese Patent Application No. 85412/1983).

また、本発明者らは、高温還元性ガス中に含まれる硫化
水素、硫化力ルボニル等のイオウ化合物を吸収剤で吸収
除去して、高温還元性ガスを精製する方法として、次の
ような提案をしてきた。
In addition, the present inventors have proposed the following method for purifying high-temperature reducing gas by absorbing and removing sulfur compounds such as hydrogen sulfide and carbonyl sulfide contained in high-temperature reducing gas using an absorbent. I've been doing this.

■ 再生された吸収剤を高温還元性ガスで吸収剤前後の
精製の対象となる還元性ガス濃度が同一になるまで還元
後、イオウ化合物を吸収除去する工程を連続的に繰り返
す高温還元性ガスの精製方法において、吸収剤を充填し
た反応器を少なくとも3塔使用し、吸収、予備再生、再
生及び還元の4工程より構成し、該高温還元性ガスを通
気して該吸収剤で該イオウ化合物を吸収除去することに
より、吸収、再生の性能を安定化させることを特徴とす
る高温還元性ガスの精製方法(特願昭62−16781
4号) ■ 高温還元性ガスに含まれるイオウ化合物を吸収剤で
吸収除去する工程、イオウ化合物を吸収した吸収剤を再
生反応に必要な温度に達するまで昇温させる予備再生工
程、再生反応温度に到達した吸収剤を酸素含有ガスで再
生する工程、再生された吸収剤を高温還元性ガスで吸収
剤前後の還元性ガス濃度が同一となるまで還元する工程
の四工程で構成すると共に、前記再生工程に1環させる
ガス量を調節するか、又はこの再生循環ガス量の調節と
再生工程に供給される高温還元性ガスの燃焼熱の利用と
により、低負荷時の吸収、再生の性能を安定化させるこ
とを特徴とする高温還元性ガスの精製法(特願昭62−
167815号).■ イオウ化合物を吸収剤で吸収除
去する吸収?程、吸収剤を酸素含有ガスで再生する再生
工程、再生工程完了後の冷却工程、再生された吸収剤を
高>mA元性ガスで吸収剤前後の還元性ガス濃度が同一
となるまで還元する工程の四工程で構成すると共に、前
記再生工程において、再生反応器出口高温ガスから連続
的に熱回収を行い吸収、再生の性能を安定化させること
を特i衣とする高温還元性ガスの精製方法(特願昭63
−27441号)。
■ After reducing the regenerated absorbent with high-temperature reducing gas until the concentration of the reducing gas to be purified before and after the absorbent becomes the same, the process of absorbing and removing sulfur compounds is repeated continuously. The purification method uses at least three reactors filled with an absorbent and consists of four steps: absorption, preliminary regeneration, regeneration, and reduction, and the high-temperature reducing gas is aerated and the sulfur compound is removed by the absorbent. A method for purifying high-temperature reducing gas characterized by stabilizing absorption and regeneration performance by absorption and removal (Patent Application No. 16781/1986)
No. 4) ■ A process in which sulfur compounds contained in high-temperature reducing gas are absorbed and removed by an absorbent, a preliminary regeneration process in which the temperature of the absorbent that has absorbed the sulfur compounds is raised until it reaches the temperature required for the regeneration reaction, and a process in which the regeneration reaction temperature is increased. It consists of four steps: a step of regenerating the reached absorbent with an oxygen-containing gas, and a step of reducing the regenerated absorbent with a high-temperature reducing gas until the reducing gas concentration before and after the absorbent becomes the same. The performance of absorption and regeneration at low loads can be stabilized by adjusting the amount of gas that is circulated in the process, or by adjusting the amount of recycle gas and using the combustion heat of the high-temperature reducing gas supplied to the regeneration process. A method for purifying high-temperature reducing gases characterized by
No. 167815). ■ Absorption to absorb and remove sulfur compounds with an absorbent? , a regeneration step in which the absorbent is regenerated with an oxygen-containing gas, a cooling step after the completion of the regeneration step, and the regenerated absorbent is reduced with a high > mA original gas until the reducing gas concentration before and after the absorbent becomes the same. Purification of high-temperature reducing gas is comprised of four steps, and in the regeneration step, the special feature is to continuously recover heat from the high-temperature gas at the outlet of the regeneration reactor to stabilize absorption and regeneration performance. Method (Special application 1986)
-27441).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上の提案における固定床方式ガス精製システムは、吸
収、再生及び還元の各工程からなる反応系と再生系から
の放出SO■ガスを処理する後流のイオウ回収系とから
構成されるが、長期間にわたって安定した性能を得るた
めには、吸収剤の劣化を抑制するようなシステム並びに
方法を採用する必要がある。
The fixed-bed gas purification system proposed above consists of a reaction system consisting of absorption, regeneration, and reduction steps, and a downstream sulfur recovery system that processes the SO gas released from the regeneration system. In order to obtain stable performance over a period of time, it is necessary to employ systems and methods that suppress deterioration of the absorbent.

吸収剤の劣化要因の1つとして、再生時の温度上昇によ
る熱劣化が挙げられる。
One of the causes of absorbent deterioration is thermal deterioration due to temperature rise during regeneration.

例えば、酸化鉄を吸収剤として使用した場合、再生時、
再生反応器内においては、再生用ガス中に含まれる酸素
と吸収剤に含まれる鉄化合物が酸化反応を起ごし、発熱
する。吸収剤はこの反応熱の蓄熱によって昇温し、該吸
収剤の耐熱限界温度を越えると、担体の損傷あるいは吸
収剤中の鉄のシンタリング現象が起き、吸収容量の低下
を来たすために、吸収剤の耐熱限界を越える温度上昇は
極力抑制する必要がある。
For example, when iron oxide is used as an absorbent, during regeneration,
In the regeneration reactor, oxygen contained in the regeneration gas and iron compounds contained in the absorbent undergo an oxidation reaction, generating heat. The temperature of the absorbent rises due to the accumulation of this reaction heat, and when the heat resistance limit temperature of the absorbent is exceeded, damage to the carrier or sintering of iron in the absorbent occurs, resulting in a decrease in absorption capacity. It is necessary to suppress the temperature rise exceeding the heat resistance limit of the agent as much as possible.

本発明者らは、その後の研究において、再生時の温度上
昇は吸収工程時に未反応として残るFe+Onの反応熱
が大きく影響していることがわかった。
In subsequent research, the present inventors found that the temperature increase during regeneration was largely influenced by the reaction heat of Fe+On remaining unreacted during the absorption process.

吸収反応器1塔を用いて、吸収工程を行わせる固定床方
式ガス精製システムにおいては、吸収反応器を通過した
後の情製ガス中のイオウ化合物を所定濃度以下にするた
めには、吸収剤の硫化率(吸収剤中のFeがFeSにな
る割合)を10〜50%程度に抑える必要がある。
In a fixed-bed gas purification system that uses one absorption reactor to perform the absorption process, in order to reduce the sulfur compounds in the gas after passing through the absorption reactor to a predetermined concentration or less, it is necessary to use an absorbent. It is necessary to suppress the sulfidation rate (the ratio of Fe in the absorbent to FeS) to about 10 to 50%.

即ち、吸収工程開始時、Fe,Oaの形態を有している
吸収剤中の鉄化合物は吸収開始と共に、上流側から順次
FeSに変化していくので吸収工程終了時点において、
吸収剤中に未反応のFl3!04が、50〜90%存在
する必要があることを意味している。
That is, at the start of the absorption process, the iron compounds in the absorbent, which have the form of Fe and Oa, gradually change to FeS from the upstream side, so at the end of the absorption process,
This means that 50-90% of unreacted Fl3!04 must be present in the absorbent.

従って、再生工程時この未反応のFexOaが、次に示
す(6)式の反応を起こし、温度上昇をきたすこととな
る。
Therefore, during the regeneration step, this unreacted FexOa causes the reaction of formula (6) shown below, causing a rise in temperature.

FeJa +’/zOz −3/zFezOz  −”
’−”’−’−’−一” (6)この(6)式の反応は
、本来の再住反応(5)弐とは無関係な反応であること
から、その反応が起こらない工夫が望まれるが、吸収反
応器1塔を用いる吸収ンステムにおいては、吸収工程終
了後の吸収剤中にはFeSとFeig4が共存する状態
を完全には解消し得ない。
FeJa +'/zOz -3/zFezOz -”
'-''-'-'-1' (6) Since the reaction in equation (6) is unrelated to the original repopulation reaction (5) 2, it is desirable to devise a way to prevent this reaction from occurring. However, in an absorption system using one absorption reactor column, it is not possible to completely eliminate the coexistence of FeS and Feig4 in the absorbent after the absorption step.

一方、吸収工程終了後に未反応のFe30.が共存ずる
ことにより、以下に記述するような種々の不都合が生じ
る。
On the other hand, after the absorption step, unreacted Fe30. The coexistence of these causes various inconveniences as described below.

吸収工程における未反応のFe304は、引き続き再生
、還元工程において次のような反応を起す。
Unreacted Fe304 in the absorption process undergoes the following reaction in the subsequent regeneration and reduction process.

即ち、再生工程においては(6)式の反応によりFe.
0,を生じ、次の還元工程においてF(3zO3は、例
えば、(1). (2)式の反応によりFe30.へと
変化する.再生工程では、前述のように温度上昇を起し
、吸?剤の熱劣化を招く要因になる一方、再生用ガス中
の酸素を消費する。
That is, in the regeneration step, Fe.
In the next reduction step, F(3zO3 changes to Fe30., for example, by the reaction of equations (1) and (2). In the regeneration step, the temperature rises as described above, and absorption This causes thermal deterioration of the agent, while consuming oxygen in the regeneration gas.

再生用ガス中の酸素は、本来(5)弐の反応によってl
肖費されるべきものであり、このFe+Onによる酸素
の消費は余分なものである。
Oxygen in the regeneration gas is originally converted to l by reaction (5) 2.
The consumption of oxygen by this Fe+On is redundant.

また還元工程においても、吸収工程での未反応Fe30
.が再生工程でFezesに転じ(1), (2)式の
反応により、再びFe30mとなり、ガス化ガス中のt
t.z+ coを消費する。この11■,COは、吸収
工程での未反応Fe30.が存在しなければ、消費され
得ない言わば無駄な消費と言うことができ、本来ガス化
ガスのHZ+ coであるため、ガス精製装置後流のガ
スタービンの燃料源ロスの原因となる。
In addition, in the reduction process, unreacted Fe30 in the absorption process is
.. is converted to Fezes in the regeneration process and becomes Fe30m again through the reactions of equations (1) and (2), and t in the gasified gas
t. Consumes z+co. This 11■,CO is the unreacted Fe30. If it does not exist, it can be said to be a wasteful consumption that cannot be consumed, and since it is essentially HZ+ co of gasification gas, it becomes a cause of fuel source loss for the gas turbine downstream of the gas purification device.

なお、吸収剤として、鉄以外のZn, Mn, Cu,
 Mo+一等の酸化物を使用した場合においても、同様
な問題が発生する。
In addition, as an absorbent, other than iron, Zn, Mn, Cu,
A similar problem occurs even when an oxide such as Mo+ is used.

本発明は、再生時の吸収剤温度上昇の緩和及び粗ガス化
ガス中の11■COのエネルギーロス等の問題杏解決す
るためになされたものである。
The present invention has been made to solve problems such as alleviation of absorbent temperature rise during regeneration and energy loss of 11 CO in crude gasification gas.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記の問題点を、吸収反応器を一部2塔直列
に配列して操作し、吸収Mを殆んど完全に硫化すること
により、解決するものである。
The present invention solves the above-mentioned problems by operating some of the absorption reactors arranged in two columns in series to almost completely sulfurize the absorbed M.

すなわち、本発明は高温還元性ガス中に含まれる硫化水
素、硫化力ルボニル等のイオウ化合物を吸収剤で吸収・
除去する方法において、吸収剤を充填した反応器を少な
くとも4塔使用し、吸収工程、再生工程及び還元工程の
三工程からなり、運転時、その一部において2塔直列に
配列して操作する吸収工程とその一部において2塔直列
に配列して操作する再生工程とをそれぞれ組み込んだ高
温還元性ガスの梢製方法を提供するものである。
That is, the present invention uses an absorbent to absorb and absorb sulfur compounds such as hydrogen sulfide and carbonyl sulfide contained in high-temperature reducing gases.
The removal method uses at least four reactors filled with absorbent, and consists of three steps: an absorption step, a regeneration step, and a reduction step. The present invention provides a method for producing a high-temperature reducing gas, which incorporates a regeneration step and a regeneration step in which two columns are arranged in series and operated in a part thereof.

〔作用〕[Effect]

吸収工程を吸収反応器l塔にて操作する従来のプロセス
から、上記のように吸収工程及び再生工程において、そ
れぞれ一部2塔直列にて操作するプロセスに変え、吸収
工程終了後の吸収剤を従来10〜50%であった硫化率
、即ち吸収剤の利用率を100%にし、吸収剤の機能を
有効に発揮させることにより、次のようなメリットが生
じる。
The conventional process in which the absorption process is operated in one absorption reactor column has been changed to a process in which two columns are operated in series in each of the absorption and regeneration processes, as described above, and the absorbent after the absorption process is By increasing the sulfidation rate, that is, the utilization rate of the absorbent, which was conventionally 10 to 50%, to 100% and making the function of the absorbent effectively manifest, the following advantages occur.

本発明では、それに何ら限定されるものではないが、以
下FezO.を吸収剤とする場合を例にして説明する。
Although the present invention is not limited thereto, the following FezO. An example will be explained in which the absorbent is used as an absorbent.

吸収工程を1塔単独操作で行う場合、吸収剤の有効活用
を図る観点から、吸収工程の切替はその出ロイオウ化合
物濃度の許容範囲内でできるだけ硫化率を上げた状態で
行う方が好ましく、従って、その吸収時間は出ロイオウ
化合物が許容限界濃度に達するまでの時間であるのに対
して、本発明方法ではl塔分の吸収剤中の鉄酸化物の殆
んどすべてがFeSになるまでの時間をとることができ
る。
When the absorption process is carried out by single column operation, from the viewpoint of effective utilization of the absorbent, it is preferable to switch the absorption process with the sulfidation rate as high as possible within the allowable range of the concentration of the sulfur compound released. The absorption time is the time it takes for the extracted sulfur compound to reach the permissible limit concentration, whereas in the method of the present invention, it takes until almost all of the iron oxide in the absorbent for 1 column becomes FeS. You can take your time.

今両者の吸収剤量を同一にとって吸収時間を計算すれば
、本発明方法は、l塔単独操作の場合よりも長くとれる
。逆に吸収時間を同一にとって必要な吸収剤量を試算す
れば、本発明方法は1塔単独操作の場合に比して少く、
75%程度で良いことになる。このことから、本発明は
従来の方法よりも反応器をよりコンパクトにできるメリ
ットを有している。その上、再生工程においては、Fe
30.が殆んどないので、FesOaの酸化反応に要す
る再生?空気量が少なくてすみ、再生用空気蚤は、1塔
単独操作(硫化率を25%とした場合)と比較すればそ
の95%程度となる。従って、残存Fezesによって
消費されていた酸素量が5%程度不要となることから、
再生用空気量の低減につながり、空気供給のためのブロ
ワー容量の削減、電力消費量の節約へと効果を発揮する
If the absorption time is calculated by assuming the same amount of absorbent for both, the method of the present invention can take longer than the case of operating the 1-column alone. On the other hand, if we calculate the amount of absorbent required for the same absorption time, the amount of absorbent required in the method of the present invention is smaller than that in the case of single column operation.
About 75% is good. From this, the present invention has the advantage that the reactor can be made more compact than the conventional method. Moreover, in the regeneration process, Fe
30. Since there is almost no regeneration required for the oxidation reaction of FesOa? The amount of air needed is small, and the air flow for regeneration is about 95% compared to single tower operation (assuming the sulfurization rate is 25%). Therefore, approximately 5% of the amount of oxygen consumed by the remaining Fezes is no longer needed.
This leads to a reduction in the amount of air used for regeneration, reduces the blower capacity for air supply, and is effective in reducing power consumption.

また還元工程においても、前述したようにl塔単独操作
における吸収工程での未反応のPexOaに起因するP
ezO3の還元反応がないので、ガスタービンの燃料源
である11■,COの無駄な消費がない。
In addition, in the reduction process, as mentioned above, PexOa due to unreacted PexOa in the absorption process in the single column operation is
Since there is no reduction reaction of ezO3, there is no wasteful consumption of CO, which is the fuel source of the gas turbine.

さらに反応面においても特徴をあげることができる。Furthermore, it can also be characterized in terms of reaction.

即ち、再生工程において、主としてFeSの酸化反応の
みが起こるために、従来方法におけるFeze4の酸化
による異常高温を避けることができるばかりか、再生工
程にある反応器出口のガス温度ならびにSO■濃度の安
定化にも寄与する。再生工程にある反応出口に設置され
ている熱交換器で回収された再生工程にある反応器出口
の高温ガスの熱は、S回収系を経て再生工程にある反応
器に導入される再生用循環ガスの補熱用に利用されるた
めに、トータルシステムとして安定した運用を図る上に
再生工程にある反応器出口のガス温度を安定化させるこ
とは重要である。一方、上記の通り、再生工程にある反
応器から発生するSO8ガスは濃度変化が小さ《、後流
のイオウ回収系で安定した性能を得ることができる。
That is, in the regeneration process, only the oxidation reaction of FeS mainly occurs, which not only avoids the abnormal high temperature caused by the oxidation of Feze4 in the conventional method, but also stabilizes the gas temperature and SO concentration at the reactor outlet in the regeneration process. It also contributes to The heat of the high-temperature gas at the outlet of the reactor in the regeneration process, which is recovered by the heat exchanger installed at the reaction outlet in the regeneration process, is introduced into the reactor in the regeneration process via the S recovery system. Since it is used for gas reheating, it is important to stabilize the gas temperature at the outlet of the reactor during the regeneration process in order to ensure stable operation as a total system. On the other hand, as mentioned above, the concentration of SO8 gas generated from the reactor in the regeneration process is small, and stable performance can be obtained in the downstream sulfur recovery system.

本発明は、上述のように波及効果が大きく、高温還元性
ガスを固定床方式で精製するトータルシステムにおいて
極めて効果的な方法と言うことができる。
The present invention has a large ripple effect as described above, and can be said to be an extremely effective method in a total system for purifying high-temperature reducing gas using a fixed bed method.

〔実施例〕〔Example〕

第1図は、本発明方法の一実施態様例を示すフロー図で
ある。
FIG. 1 is a flow diagram showing one embodiment of the method of the present invention.

第1図において、1, 2. 4及び54はozs, 
cos等のイオウ化合物を含む脱塵高温還元性ガスライ
ン、3.5〜8、42〜45は同ガス流路切替バルブ、
9〜12は再生工程及び還元工程の反応器から出る比較
的高濃度イオウ化合物含有ガスの切替バルプ、17〜?
0は吸収剤2lを複数段(ここでは4段)に分割して充
填した反応器、30〜33は吸収工程を2塔直列操作に
切替るためのガス流路切替バルブ、34〜37は再生工
程にある反応器出口ガスをもう一方の再生工程にある反
応器に導入するためのガス流路切替バルブ、38〜4l
は再生工程にある反応器へ再生用ガスを供給するための
ガス流路切替バルプ、50〜53は吸収工程にある反応
器からの精製ガスのガス流路切替バルブ、58は精製ガ
ス取出しライン、63は再生ガス循還ライン、57は後
述のガスライン78の分岐ライン、56は同流路切替バ
ルブ、59及び60は空気又は酸素含有ガス供給のため
のライン及び同流路切替バルブ、55. 62及び69
は熱交換器、64は降温された比較的高濃度のイオウ化
合物含有ガスライン、67はSO■還元反応器、7lは
イオウ凝縮器、61. 68. 70, 72, 74
. 75及び77はガスライン、73はイオウミスト分
離器、76はプロワ、80は液体イオウ(回収イオウ)
ラインである。なお、第1図中反応器20の右側の■.
■は、それぞれ反応器17左側の■,■に接続されてい
る。
In FIG. 1, 1, 2. 4 and 54 are ozs,
Dedusting high-temperature reducing gas line containing sulfur compounds such as cos, 3.5-8, 42-45 are the same gas flow path switching valves,
9-12 are switching valves for relatively high concentration sulfur compound-containing gas coming out of the reactors in the regeneration process and reduction process; 17-?
0 is a reactor filled with 2 liters of absorbent divided into multiple stages (four stages in this case), 30 to 33 are gas flow switching valves for switching the absorption process to two column series operation, and 34 to 37 are regeneration units. Gas flow switching valve for introducing the reactor outlet gas in one process into the reactor in the other regeneration process, 38-4L
50 to 53 are gas flow switching valves for supplying regeneration gas to the reactor in the regeneration process; 50 to 53 are gas flow switching valves for purified gas from the reactor in the absorption process; 58 is a purified gas extraction line; 63 is a regeneration gas circulation line, 57 is a branch line of gas line 78 which will be described later, 56 is a flow path switching valve, 59 and 60 are lines and flow path switching valves for supplying air or oxygen-containing gas, 55. 62 and 69
61 is a heat exchanger, 64 is a gas line whose temperature is lowered and contains a relatively high concentration of sulfur compounds, 67 is an SO₂ reduction reactor, 7L is a sulfur condenser, and 61. 68. 70, 72, 74
.. 75 and 77 are gas lines, 73 is a sulfur mist separator, 76 is a blower, 80 is liquid sulfur (recovered sulfur)
It's a line. Note that ■. on the right side of the reactor 20 in FIG.
(2) is connected to (2) and (2) on the left side of the reactor 17, respectively.

第1図では吸収剤21が充填された同一構造の反応器1
7〜20を(1), (21式による還元工程、(3)
, (41式による吸収工程、(5)式による再生工程
と順次切り替えて行く態様を示しているが、本発明は固
定床弐に限定されるものではなく、還元性ガス中のH.
S, COS等のイオウ化合物を吸収剤で吸収除去後、
(5)弐による再生を繰り返すプロセスなら流動床式、
移動床弐を問わず適用できる。また、4塔以上の固定床
弐にも適用できるのはいうまでもない。
In FIG. 1, a reactor 1 of the same structure filled with an absorbent 21 is shown.
7 to 20 (1), (reduction step according to formula 21, (3)
, (Although this shows an embodiment in which the absorption step using Equation 41 and the regeneration step using Equation (5) are sequentially switched, the present invention is not limited to a fixed bed.
After absorbing and removing sulfur compounds such as S and COS with an absorbent,
(5) If the process involves repeated regeneration by 2, fluidized bed method is used.
Applicable to any moving floor. It goes without saying that the present invention can also be applied to fixed beds with four or more towers.

更に、吸収剤の組成、形状に何ら限定されるものではな
いが、ここではF+40.を吸収剤とする場合につき説
明する。
Furthermore, although there are no limitations to the composition or shape of the absorbent, here F+40. The following describes the case where is used as an absorbent.

ライン1のII,S, COS等のイオウ化合物を含有
する高温還元性ガスは、例えば石炭のガス化ガスを図示
省略の集塵装置でダスト濃度10mg/Nm3程度まで
脱塵したものであり、石炭の種類やガス化条件で異なる
が、ダスト以外に数10〜数1000ρppmのHgS
, COS, NHs及びハロゲン等が含まれており、
ガス温度はガス化が出口部での熱回収により250〜s
oo ’c、圧力はガス化炉の形状により異なるが、通
常、常圧〜25kg/cmtGである。
The high-temperature reducing gas containing sulfur compounds such as II, S, and COS in line 1 is, for example, the gasified gas of coal that has been dedusted with a dust collector (not shown) to a dust concentration of about 10 mg/Nm3. Although it differs depending on the type of gas and gasification conditions, in addition to dust, there may be several tens to several thousand ρppm of HgS.
, COS, NHs and halogens, etc.
The gas temperature is 250~s due to heat recovery at the outlet during gasification.
Although the pressure varies depending on the shape of the gasifier, it is usually normal pressure to 25 kg/cmtG.

第1図は反応器17. 18で再生工程を、反応器19
で吸収工程を、反応器20で還元工程を行っている状態
を示している。
Figure 1 shows reactor 17. Regeneration process is carried out in 18, reactor 19
2 shows a state in which an absorption process is performed in the reactor 20, and a reduction process is performed in the reactor 20.

第2図は、本実施例における反応器の吸収、再生、及び
還元工程のタイムスケジュールの例を示す図であり、反
応器17〜20はそれぞれNo.l−No.4として示
されている。
FIG. 2 is a diagram showing an example of the time schedule of the absorption, regeneration, and reduction steps of the reactors in this example, and the reactors 17 to 20 are Nos. 1 and 20, respectively. l-No. 4.

ここに、吸収(脱硫)、再生及び還元工程とイオウ回収
系の運転については、ラ.インlの脱塵ガス化ガスとば
ぼ同圧(常圧〜30kg/cm2G程度)で行われるも
のとして、第1図について、第2図のタイムスケジュー
ルのもとで、以下に説明する。
Here, regarding the absorption (desulfurization), regeneration and reduction processes and operation of the sulfur recovery system, see Section 3. 1 will be described below based on the time schedule of FIG. 2, assuming that the dedusting gasification gas is carried out at the same pressure (normal pressure to about 30 kg/cm2G).

第1図において、ラインl内の脱塵ガス化ガスは流路切
替ハルブ7を介して反応器l9に供給され、該ガス中の
イオウ化合物が、通常、300〜500゜Cで、(3)
, (41式によって吸収剤2■に吸収除去され、精製
ガスとなって流路切替バルブ52を介してライン58か
ら図示省略のガスタービンに供給される2。
In FIG. 1, the dedusting gasification gas in the line 1 is supplied to the reactor 19 through the flow path switching hub 7, and the sulfur compounds in the gas are normally at 300 to 500°C, (3)
, (2) is absorbed and removed by the absorbent 2 by the type 41, becomes purified gas, and is supplied from the line 58 to the gas turbine (not shown) via the flow path switching valve 52.

再生工程中の反応器l7と18はライン26によって?
・列に連結されており、反応器17の出口ガスはガス流
路切替バルブ35を介して反応器l8に導入されている
。第1図は反応器l7が再生工程へ入って、4時間後の
状態を示している。第2図のタイムスケジュールにおい
て、8時間で吸収剤の再生を完了させるが、最初の6時
間程度で再生はほぼ完了し、残りの2時間は再生の完遂
と冷却に費やされる。従って正味の再生時間は、約6時
間であり、再生時間4時間を終了した時点では、反応器
l7の吸収剤は大体2八程度再生を終えた状態にある。
Reactors l7 and 18 during the regeneration process are connected by line 26?
- The outlet gas of the reactor 17 is introduced into the reactor l8 via the gas flow path switching valve 35. FIG. 1 shows the state of reactor 17 4 hours after entering the regeneration process. In the time schedule shown in FIG. 2, the regeneration of the absorbent is completed in 8 hours, but the regeneration is almost completed within the first 6 hours, and the remaining 2 hours are spent on completing the regeneration and cooling. Therefore, the net regeneration time is about 6 hours, and at the end of the 4-hour regeneration time, the absorbent in the reactor 17 has been regenerated by approximately 28 hours.

反応器l7の再生開始4時間後にこれまでの反応器20
と17の直列再生を反応器17と18のそれに替える。
4 hours after the start of regeneration of reactor 17, the previous reactor 20
and 17 are replaced by those of reactors 17 and 18.

反応器l7の再生を約6時間経た後は、未反応の酸素ガ
ス(0■)が出てくるが、反応器l7出口の未反応0.
は後段反応器1Bの吸収剤の再生に用いられることとな
り、反応器17の再生の完全化、冷却と共に、反応器1
8の再生が行われる。本発明方法における再生工程は、
2塔直列に操作することを特徴としており、吸収工程を
終了した後の再生反応器に導入するガスは、もう一方の
再生反応器の再生に費やした後のガスが使用される。再
生工程の間、反応器出口ガス中の酸素ガス濃度は低→高
へ変化する。即ち、再生工程開始時点は、再生入口ガス
中の酸素濃度は低いが再生の進行と共にガス中の酸素濃
度は、徐々に高くなるので、吸収剤の高温化を防ぐ上か
ら好都合である。また2塔直列再生を行うために、再生
工程にある反応器の後流に位匿するイオウ回収系への酸
素ガスの漏れ込みを防ぐことができる利点もある。従っ
て2塔直列に連結した前後の再生工程にある反応器は再
生完了後も酸素含有ガスを受け入れることができ、吸収
剤の蓄熱の回収と再生の完遂をはかる冷却工程の導入が
可能となる。
After approximately 6 hours of regeneration of the reactor 17, unreacted oxygen gas (0.0cm) comes out, but unreacted oxygen gas (0.0cm) comes out at the outlet of the reactor 17.
will be used to regenerate the absorbent in the latter stage reactor 1B, and along with complete regeneration and cooling of the reactor 17, the reactor 1
8 is played back. The regeneration step in the method of the present invention is
It is characterized by operating two columns in series, and the gas introduced into the regeneration reactor after the absorption step is the gas that has been used for regeneration in the other regeneration reactor. During the regeneration process, the oxygen gas concentration in the reactor outlet gas changes from low to high. That is, at the start of the regeneration process, the oxygen concentration in the regeneration inlet gas is low, but as the regeneration progresses, the oxygen concentration in the gas gradually increases, which is advantageous in terms of preventing the absorbent from becoming high in temperature. In addition, because the two-column regeneration is carried out in series, there is an advantage that oxygen gas can be prevented from leaking into the sulfur recovery system located downstream of the reactor in the regeneration process. Therefore, the reactors in the two towers connected in series in the front and rear regeneration steps can receive oxygen-containing gas even after the regeneration is completed, making it possible to introduce a cooling step to recover the heat stored in the absorbent and complete the regeneration.

反応器l9は吸収工程開始後2時間を経た状態にある。Reactor 19 is in a state where 2 hours have passed since the start of the absorption process.

反応器には吸収剤が完全に破過するまで、6時間を要す
る吸収剤量が充填されており、2時間経過時点では今だ
充分な吸収能力を有しているために、反応器出口のH.
Sfi度は所定限界濃度以下となっている。このため、
吸収工程はこの時点ではl塔操作を行っている。さらに
吸収工程が進むと、反応器出口から未吸収のイオウ化合
物が出始め、吸収開始4時間頃から所定濃度を越えるこ
ととなるので、この時点から2塔直列操作とし、還元工
程を終了した反応器20に流路切替バルプ32、ライン
24を介して反応器19の出口ガスが導入される。この
状態で吸収工程が進むと反応器19は完全にFeSとな
り、イオウ化合物の吸収能力を全く有しないこととなる
ので、この時点でガス流路を切替え、反応器20単独の
吸収操作となる。完全にFeSと化した反応器19は次
に再生工程に移ることとなるが、反応器18の出口ガス
がライン27、流路切替バルプ36を介して導入される
。前述のように反応器18の出口ガス中の酸素ガスは低
濃度から徐々に高まるためにマイルドな再生を行うこと
ができる。
The reactor was filled with an amount of absorbent that would require 6 hours for the absorbent to completely break through, and after 2 hours, the reactor outlet still had sufficient absorption capacity. H.
The Sfi degree is below a predetermined limit concentration. For this reason,
At this point, the absorption process is carried out using a one-column operation. As the absorption process progresses further, unabsorbed sulfur compounds begin to come out from the reactor outlet, and the concentration exceeds the predetermined concentration from about 4 hours after the start of absorption.From this point on, the two columns are operated in series, and the reaction after the reduction process has been completed. The outlet gas of the reactor 19 is introduced into the reactor 20 via the flow path switching valve 32 and the line 24 . If the absorption process proceeds in this state, the reactor 19 will become completely FeS and will have no ability to absorb sulfur compounds at all, so at this point the gas flow path will be switched and the absorption operation will be performed by the reactor 20 alone. The reactor 19 that has been completely converted into FeS will then proceed to the regeneration step, and the outlet gas of the reactor 18 is introduced via the line 27 and the flow path switching valve 36. As mentioned above, since the concentration of oxygen gas in the outlet gas of the reactor 18 gradually increases from a low concentration, mild regeneration can be performed.

このように吸収工程を1塔単独操作と2塔直列操作を組
み合せることによって、吸収工程を終えた吸収剤は未反
応体が共存しない状態を常に作り出すことができる。
By combining the single-column operation and the two-column series operation in the absorption process in this way, it is possible to always create a state in which no unreacted substances coexist in the absorbent after the absorption process.

反応器19がl塔単独で吸収工程を行っている間、反応
器20は還元工程中であり、還元用ガスはガス?イン4
から分岐したガスライン54より流路切替バルブ45を
介して、反応器20に導入される。
While the reactor 19 is performing the absorption process in the L column alone, the reactor 20 is in the reduction process, and the reducing gas is gas? Inn 4
The gas is introduced into the reactor 20 via a flow path switching valve 45 from a gas line 54 branched from the gas line 54 .

反応器においては、再生工程中FeSの一部がS(hは
反応して不純物として硫酸鉄(Fet(so.) 3 
)が蓄積され、これが還元工程中に次の反応によって分
解してSO.が発生する。
In the reactor, during the regeneration process, a part of FeS reacts with S (h) to form iron sulfate (Fet (so.) 3 as an impurity).
) is accumulated, which is decomposed by the next reaction during the reduction process to form SO. occurs.

1’+3(504)3+ lollz=2Fes+sO
z +10HzOFG (S04) z + IOco
 = 2FeS + Sow + lOcO2このSO
2を含む反応器20の出口ガスl6は、流路切替バルブ
l2を介して再生処理後のSO■を含むガスと合流して
、熱交換器62により冷却されて、ライン64ヲ経てイ
オウ回収系に導入される。イオウ回収系に移されたガス
はライン66、SO■還元反応器67、熱交換器69、
ライン70、イオウ凝縮器71を通ってイオウ分離器7
3に導かれ、ライン80からイオウが回収される。その
後、イオウを分離したガスはブロワ76により、ライン
59からの空気又は酸素含有ガスの供給を受け、ライン
61を経て熱交換器62に送られ、再生反応に必要な温
度まで昇渇された後、再生ガス循環ライン63に戻され
る。
1'+3(504)3+ rollz=2Fes+sO
z +10HzOFG (S04) z + IOco
= 2FeS + Sow + lOcO2 this SO
The outlet gas l6 of the reactor 20 containing SO2 is combined with the gas containing SO2 after the regeneration treatment via the flow path switching valve l2, cooled by the heat exchanger 62, and sent to the sulfur recovery system via the line 64. will be introduced in The gas transferred to the sulfur recovery system is transferred to the line 66, SO■ reduction reactor 67, heat exchanger 69,
Line 70 passes through the sulfur condenser 71 to the sulfur separator 7
3, and sulfur is recovered from line 80. Thereafter, the gas from which the sulfur has been separated is supplied with air or oxygen-containing gas from the line 59 by the blower 76, and is sent to the heat exchanger 62 via the line 61, where it is raised to the temperature required for the regeneration reaction. , is returned to the regeneration gas circulation line 63.

?スライン63に戻されたガスは流路切替バルブ38を
経て、再生中の反応器l7及び18に導入され、再生反
応の促進に寄与した後、流路切替バルブ10を介して上
述と同様にして循環ガスとなる。
? The gas returned to the line 63 is introduced into the reactors 17 and 18 during regeneration through the flow path switching valve 38, and after contributing to the promotion of the regeneration reaction, is passed through the flow path switching valve 10 in the same manner as described above. It becomes a circulating gas.

なお還元用ガス54の流量はラインlの脱塵ガス化ガス
の1〜10%程度でζSO■還元工程における必要還元
性ガス(H.+CO)量とのバランスで決定される。
The flow rate of the reducing gas 54 is approximately 1 to 10% of the dedusting gasification gas in the line 1, and is determined in balance with the amount of reducing gas (H.+CO) required in the ζSO■ reduction process.

反応器19が吸収工程を終了すると、次に再生工程に移
るが同時に反応器17は還元工程へ、反応器l8は反応
器l9との直列再生工程へ、反応器20は脱硫工程へと
工程を変えていく。
When the reactor 19 completes the absorption process, the next step is the regeneration process, but at the same time, the reactor 17 goes to the reduction process, the reactor 18 goes to the regeneration process in series with reactor 19, and the reactor 20 goes to the desulfurization process. I will change it.

低負荷でラインlの高温還元性ガスの流量が減少したり
、あるいは低硫黄炭を使用する場合には吸収工程で吸収
剤を完全に破遇させるのに長時間かかることとなる.こ
のような場合は吸収剤を完全に破過させずに、運転を行
うシステムに変更することもできる。
When the load is low, the flow rate of high temperature reducing gas in line 1 decreases, or when low sulfur coal is used, it takes a long time to completely destroy the absorbent in the absorption process. In such cases, it is possible to change to a system that operates without completely allowing the absorbent to break through.

この際(3), (4)式の吸収反応で生成する吸収剤
中のFeS量が通常より少なくなり、再生反応熱量が?
少し、再生系の熱収支をとることが次第に困難になって
来る。
At this time, the amount of FeS in the absorbent produced by the absorption reactions of equations (3) and (4) will be smaller than usual, and the heat amount of the regeneration reaction will be ?
It is becoming increasingly difficult to maintain the heat balance of the regeneration system.

負荷が所定以下(例えば50%以下)になって熱収支を
とるのが難しくなった場合は、イオウ回収系のイオウ凝
縮器71を一部ハイバスして対応する方法を採ることも
できる。
If the load becomes less than a predetermined value (for example, less than 50%) and it becomes difficult to maintain a heat balance, a corresponding method may be adopted in which a portion of the sulfur condenser 71 of the sulfur recovery system is put into high-bus mode.

その際、バイパスガス中にHis,ガス状イオウ等のイ
オウ分が含有されており、それらのイオウ分は再生反応
器入口又は反応器内で燃焼するため、再生系内の補熱に
寄与することとなる。
At that time, the bypass gas contains sulfur components such as His and gaseous sulfur, and these sulfur components are combusted at the inlet of the regeneration reactor or within the reactor, so they contribute to reheating within the regeneration system. becomes.

再生反応で生成するSO■ガスの除去には、SO2還元
反応のみ又はSO■還元反応とクラウス反応との組み合
わせによる単体イオウとしての回収除去、石灰との湿式
反応による石膏としての回収除去等があるが、どの方法
によるかの制限はない。
Removal of SO gas generated in the regeneration reaction includes recovery and removal as simple sulfur by SO2 reduction reaction alone or a combination of SO reduction reaction and Claus reaction, recovery and removal as gypsum by wet reaction with lime, etc. However, there are no restrictions on which method to use.

ここでは、上記の01)〜03)式の還元反応による単
体イオウとしての回収除去方法で説明する。
Here, a method for recovering and removing sulfur as an elemental sulfur by the reduction reaction of the above-mentioned formulas 01) to 03) will be explained.

SO2還元反応に必要なライン2からの還元性ガスは、
ライン1の脱塵ガス化ガスの一部が使用され、流路切替
バルブ3を介して、SO■還元及びイオウ回?装置67
に供給される。このガスにより、ライン64からの再生
工程後のガスに含まれるSO■ガスが(11)〜Ol式
の反応で11■3やイオウ単体等となる。
The reducing gas from line 2 necessary for the SO2 reduction reaction is
A part of the dedusting gasification gas in line 1 is used, and through the flow path switching valve 3, it is used for SO ■ reduction and sulfur conversion. device 67
is supplied to With this gas, the SO2 gas contained in the gas from the line 64 after the regeneration process undergoes a reaction of the (11) to O1 formula to form 1123, simple sulfur, and the like.

SOi+31Iz →IhS+2LO  −−−−−−
−.−........−,,−,,−・00soz+
2oz −”へSx +211 zO   −一−−−
−−−−−− 02)SO2+211!S−+’八Sx
 + 211 zO  −一−−−−−−−θ湯但しx
=2〜8 次いで、熱交換器69、イオウ凝縮器71で130〜2
00゛Cで冷却され、イオウ分離器73でガス成分と分
離され、単体イオウがライン80より系外へ取り出され
る。
SOi+31Iz →IhS+2LO −−−−−−
−. −. .. .. .. .. .. .. .. -,,-,,-・00soz+
2oz −” to Sx +211 zO −1−−−
−−−−−− 02) SO2+211! S-+'8Sx
+ 211 zO −1−−−−−−θ Yutadashi x
= 2 to 8, then 130 to 2 in the heat exchanger 69 and sulfur condenser 71
The sulfur is cooled to 00°C, separated from gas components in a sulfur separator 73, and elemental sulfur is taken out of the system through a line 80.

このようにして、再生反応で生成するSOtガスの大部
分が除去され、再生工程にある反応器の処理ガス(再生
ガス循環ライン63中のガス)となる。
In this way, most of the SOt gas produced in the regeneration reaction is removed and becomes the processing gas (gas in the regeneration gas circulation line 63) of the reactor in the regeneration process.

なお、ここで使用する還元性ガスは、精製後のライン5
8のガス化ガスならばより好ましいのは当然である。
Note that the reducing gas used here is from line 5 after purification.
Naturally, gasification gas No. 8 is more preferable.

本発明方法では、再生工程のガスの流れ方向は吸収時の
流れ方向と逆流にしているが、吸収工程終了時の吸収剤
のFeS分布は上流、下流を問わずほぼ均一となってい
るので、再生用ガスの流れは順流、逆流のどちらでも採
用することができる。また還元用ガスの流れも順流、逆
流のどちらでも採用できる。
In the method of the present invention, the gas flow direction in the regeneration step is opposite to the flow direction during absorption, but the FeS distribution in the absorbent at the end of the absorption step is almost uniform regardless of whether it is upstream or downstream. The flow of the regeneration gas can be either forward flow or reverse flow. Further, the flow of the reducing gas can be either forward flow or reverse flow.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば吸収剤を充填した反応器を少なくと
も4塔使用し、吸収、再生、還元の工程からなり、吸収
工程において、一部2塔直列運転を行わせ、吸収剤を完
全に硫化物とすることによって、従来の固定床脱硫法に
比べて、次のような効果を有する。
According to the method of the present invention, at least four reactors filled with an absorbent are used, and the absorbent is completely sulfurized by using two reactors, which consist of absorption, regeneration, and reduction steps. Compared to conventional fixed bed desulfurization methods, this method has the following effects.

(1)吸収工程時、吸収剤を有効に活用することによっ
て、吸収剤必要量を374程度に少なくすることができ
る。
(1) By effectively utilizing the absorbent during the absorption process, the amount of absorbent required can be reduced to about 374.

(2)再生工程時、従来法において見られた未反応(未
硫化) Fe.O.等の反応熱に由来する温度上昇問題
が解消でき、吸収剤の熱劣化を保護し、寿命延長につな
がる。
(2) During the regeneration process, unreacted (unsulfurized) Fe. O. This solves the temperature rise problem caused by the heat of reaction, protects the absorbent from thermal deterioration, and extends its life.

・再生工程時、未反応(未硫化) Feze4等の酸化
に要していた再生用空気量が5%程度低減できるので、
結果的に電力消費量等のエネルギーの省力化に寄与する
・During the regeneration process, the amount of regeneration air required for oxidizing unreacted (unsulfurized) Feze4 etc. can be reduced by about 5%.
As a result, it contributes to energy savings such as power consumption.

φまた再生工程時、主としてFeS等の酸化反応のみが
生起するために、再生工程にある反応器出口のガス温度
及びsotfA度の変化が少なく、より安定化する。
φ Also, since only the oxidation reaction of FeS etc. mainly occurs during the regeneration process, there is little change in the gas temperature and sotfA degree at the reactor outlet during the regeneration process, making it more stable.

・還元工程時、吸収工程時の未反応(未硫化)Fe30
.等に起因するFe.O.等への還元のためのIf,,
 COの消費がないので、ガスタービンの燃料等に用い
られる++Z, COのロスを防止できる。
・Unreacted (unsulfurized) Fe30 during the reduction process and absorption process
.. Fe. O. If, for reduction to etc.
Since there is no consumption of CO, loss of ++Z and CO used as fuel for gas turbines can be prevented.

以上のように本発明は、高温還元性ガスの精製方法のト
ータルシステムにおいて、効果的な方法を実現すること
ができる。
As described above, the present invention can realize an effective method in a total system of a high-temperature reducing gas purification method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例のフロー図であり、第2
図は同実施例の吸収、再生、還元サイクルのタイムスケ
ジュールの例を示す説明図である。 1, 2, 4. 54−・・高温還元性ガスライン、
17, 18, 19、20・−・反応器、58−・精
製ガス取出ライン、 63一再生ガス循環ライン.、 64− イオウ化合物含有ガスライン、62. 69−
・一熱交換器、 67− イオウ回収装置、 73− イオウミスト分離器。
FIG. 1 is a flow diagram of one embodiment of the method of the present invention, and the second
The figure is an explanatory diagram showing an example of a time schedule for absorption, regeneration, and reduction cycles in the same embodiment. 1, 2, 4. 54--High temperature reducing gas line,
17, 18, 19, 20--Reactor, 58--Refined gas extraction line, 63-- Regeneration gas circulation line. , 64- Sulfur compound-containing gas line, 62. 69-
・One heat exchanger, 67- Sulfur recovery device, 73- Sulfur mist separator.

Claims (1)

【特許請求の範囲】[Claims] 高温還元性ガス中に含まれるイオウ化合物を吸収剤で吸
収除去する精製方法において、吸収剤を充填した反応器
を少なくとも4塔使用し、前記イオウ化合物を吸収剤で
吸収除去する吸収工程、該吸収剤を酸素含有ガスで再生
する再生工程、及び再生された吸収剤を高温還元性ガス
で還元する還元工程の三工程からなり、運転時、その一
部において2塔直列で操作する吸収工程とその一部にお
いて2塔直列で操作する再生工程とをそれぞれ組み込ん
だことを特徴とする高温還元性ガスの精製方法。
A purification method in which sulfur compounds contained in a high-temperature reducing gas are absorbed and removed by an absorbent, an absorption step in which at least four reactors filled with an absorbent are used and the sulfur compounds are absorbed and removed by the absorbent; It consists of three steps: a regeneration step in which the absorbent is regenerated with an oxygen-containing gas, and a reduction step in which the regenerated absorbent is reduced with a high-temperature reducing gas. A method for purifying a high-temperature reducing gas, characterized in that a part of the method incorporates a regeneration step in which two columns are operated in series.
JP1055087A 1989-03-09 1989-03-09 Purification method of high-temperature reducing gas Expired - Fee Related JP2617561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055087A JP2617561B2 (en) 1989-03-09 1989-03-09 Purification method of high-temperature reducing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055087A JP2617561B2 (en) 1989-03-09 1989-03-09 Purification method of high-temperature reducing gas

Publications (2)

Publication Number Publication Date
JPH02237613A true JPH02237613A (en) 1990-09-20
JP2617561B2 JP2617561B2 (en) 1997-06-04

Family

ID=12988943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055087A Expired - Fee Related JP2617561B2 (en) 1989-03-09 1989-03-09 Purification method of high-temperature reducing gas

Country Status (1)

Country Link
JP (1) JP2617561B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427752A (en) * 1990-10-08 1995-06-27 Mitsubishi Jukogyo Kabushiki Kaisha Process for purifying high-temperature reducing gases
EP0768364A1 (en) * 1995-10-11 1997-04-16 Mitsubishi Jukogyo Kabushiki Kaisha Gas refining system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427752A (en) * 1990-10-08 1995-06-27 Mitsubishi Jukogyo Kabushiki Kaisha Process for purifying high-temperature reducing gases
EP0768364A1 (en) * 1995-10-11 1997-04-16 Mitsubishi Jukogyo Kabushiki Kaisha Gas refining system
US5980846A (en) * 1995-10-11 1999-11-09 Mitsubishi Jukogyo Kabushiki Kaisha Gas refining system

Also Published As

Publication number Publication date
JP2617561B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JP2865845B2 (en) Purification method of high-temperature reducing gas
PL124813B1 (en) Method of purification of gaseous mixture
EP0377483B1 (en) Method for purifying high-temperature reducing gas
US4994257A (en) Method for purifying high-temperature reducing gas
CA2089263A1 (en) Process for sulfur recovery from a gaseous stream containing hydrogen sulfide under high pressure
JPH02237613A (en) Method for refining high-temperature reducing gas
CA1324875C (en) Method for purifying high-temperature reducing gas
JP2007182468A (en) Gas purification system and gas purification method
JPH10235128A (en) Dry desulfurization device and electric power plant with the same
CA1294113C (en) Sulfur recovery process using metal oxide absorber feed for regeneration
JP2651381B2 (en) Purification method of high-temperature reducing gas
JP2615057B2 (en) Purification method of high-temperature reducing gas
JPH0776348B2 (en) Refining method for high temperature reducing gas
JPH01203020A (en) Refining process for high temperature reducing gas
JPH10273681A (en) Dry desulfurization system
JPH06228575A (en) Purification of high-temperature reducing gas
JPH07106293B2 (en) Refining method for high temperature reducing gas
JPH0659377B2 (en) Refining method for high temperature reducing gas
CA1299842C (en) Reducing regeneration effluent rate by supplemental cooling and oxidantintroduction during regeneration of metal oxide absorbent
PRQCESSES ROUNDING
JPH0832893B2 (en) Dry desulfurization equipment for integrated coal gasification combined cycle power generation
JPH09241663A (en) Dry desulfurization equipment for high sulfur gas
JPS63122790A (en) Purification of high-temperature reducing gas
JPH01253168A (en) Absorption tower regeneration of gas refiner for fuel cell
JPS59184291A (en) Refining of high-temperature reducing gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees