JPH03238019A - Purification of high temperature reductive gas - Google Patents

Purification of high temperature reductive gas

Info

Publication number
JPH03238019A
JPH03238019A JP2032549A JP3254990A JPH03238019A JP H03238019 A JPH03238019 A JP H03238019A JP 2032549 A JP2032549 A JP 2032549A JP 3254990 A JP3254990 A JP 3254990A JP H03238019 A JPH03238019 A JP H03238019A
Authority
JP
Japan
Prior art keywords
ammonia
gas
zeolite
temperature
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2032549A
Other languages
Japanese (ja)
Inventor
Toshio Nakayama
中山 稔夫
Hiromitsu Matsuda
裕光 松田
Yoshimi Ishihara
石原 義巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2032549A priority Critical patent/JPH03238019A/en
Publication of JPH03238019A publication Critical patent/JPH03238019A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To concentrate and recover ammonia by adsorbing ammonia in high temp. reductive gas on zeolite and desorbing adsorbed ammonia by using the gas not containing the component adsorbed on zeolite and changing the temp. of a reactor. CONSTITUTION:A process using a plurality of reactors 11, 12 packed with zeolite 13 and adsorbing ammonia contained in high temp. reductive gas on zeolite 13 at 100-150 deg.C to remove the same and a regeneration process desorbing ammonia adsorbed on zeolite 13 from zeolite 13 by using gas not containing the component adsorbed on zeolite 13 and changing the temps. or pressures of the reactors are alternately performed. The high temp. reductive gas from which ammonia is removed is obtained and ammonia is recovered from the ammonia-containing gas generated in the regeneration process is recovered. As a result, ammonia in the high temp. reductive gas can be removed at high temp. under high pressure to be conc. and recovered.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温還元性ガスの中のアンモニアを除去する
方法に関する6更に詳述すると、本発明は、石炭ガス化
プロセスにおける精製ガスのような高温高圧の還元性ガ
スに含まれるアンモニアをそのまま乾式で連続的に除去
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for removing ammonia in a high temperature reducing gas. The present invention relates to a dry method for continuously removing ammonia contained in a high-temperature, high-pressure reducing gas.

(従来の技術) 近年、石油資源の枯渇、価格の高騰から燃料又は原料の
多用化か必須となり、石炭や重質油(タールサンド油、
オイルシ玉−ル油、大慶原油、マヤ原油あるいは減圧残
油等)の利用技術の開発が進められている。例えば、石
炭をガス化炉でガス化し、このガス化生成ガスを燃料と
して複合発電の高圧ガスタービンを稼動させることが従
来提案されている。
(Prior art) In recent years, due to the depletion of petroleum resources and soaring prices, it has become necessary to use more fuels or raw materials, and coal, heavy oil (tar sand oil,
Development of technologies for utilizing crude oil (oil silica oil, Daqing crude oil, Maya crude oil, vacuum residual oil, etc.) is underway. For example, it has been proposed in the past to gasify coal in a gasifier and operate a high-pressure gas turbine for combined power generation using the resulting gas as fuel.

このガス化生成ガスは、原料の石炭や重質油によっても
異なるが、数100〜数1000 ppmの硫化水素(
H2S)や硫化カルボニル(003)等の硫黄化合物を
含む。この硫黄化合物は、公害を防止するため、あるい
は後流機器の腐食を防止するため除去する必要がある6
更に、上述のガス中にはガス化する際に石炭中の窒素分
の一部がアンモニア(NH3)に転換するため、硫黄化
合物と同様に数10〜数1000 ppn+のアンモニ
ア等の窒素化合物を不純物として含む。この窒素化合物
は、燃焼の過程で窒素酸化物(NOx)に転換すること
から公害対策上生成ガス中から取り除くことが望まれる
Although this gasification product gas differs depending on the raw material coal and heavy oil, it contains several hundred to several thousand ppm of hydrogen sulfide (
Contains sulfur compounds such as H2S) and carbonyl sulfide (003). These sulfur compounds need to be removed to prevent pollution or to prevent corrosion of downstream equipment6.
In addition, some of the nitrogen in the coal is converted to ammonia (NH3) during gasification, so nitrogen compounds such as ammonia of several tens to several thousand ppn+ are added as impurities, similar to sulfur compounds. Included as Since these nitrogen compounds are converted into nitrogen oxides (NOx) during the combustion process, it is desirable to remove them from the generated gas as a pollution control measure.

従来、硫黄化合物の除去方法としては、乾式法が熱経済
的に有利であることから、酸化鉄などの金属酸化物を主
成分とする吸収剤に高温でガスを接触させ、金属酸化物
を金属硫化物として除去する方法が一般的である。しか
し、この硫黄化合物の除去方法では高温還元性ガス中の
アンモニアは除去されない。
Conventionally, as a method for removing sulfur compounds, the dry method is thermoeconomically advantageous, so gas is brought into contact at high temperature with an absorbent whose main component is a metal oxide such as iron oxide. A common method is to remove it as sulfide. However, this method of removing sulfur compounds does not remove ammonia in the high-temperature reducing gas.

一方、アンモニアの除去方法としては、ガスを水に通し
てアンモニアを水に解かす湿式法が一般的である。アン
モニアは水に吸収され易いため、ガス精製をスクラバー
などの湿式方法で行う場合には容易に除去できる。しか
し、この湿式法ではアンモニアが高温(100℃以上)
では水に解けないため低温で処理しなければならないこ
とから、石炭ガス化燃料の温度が下がり、石炭ガス化複
合発電システムにおける熱効率を低下させる問題を伴う
。このため、ガス化複合発電システムにおけるガス精製
はドライ(乾式)状態で行う方法が要望され、燃焼排ガ
ス中の窒素酸化物を排煙脱硝装置を設置することにより
除去することが従来考えられている。
On the other hand, a common method for removing ammonia is a wet method in which gas is passed through water to dissolve ammonia in water. Since ammonia is easily absorbed by water, it can be easily removed when gas purification is performed using a wet method such as a scrubber. However, in this wet method, ammonia is heated to a high temperature (over 100℃).
However, since it cannot be dissolved in water, it must be treated at low temperatures, which causes the problem of lowering the temperature of the coal gasification fuel and reducing the thermal efficiency of the coal gasification combined cycle power generation system. For this reason, there is a demand for a dry method for gas purification in gasification combined cycle power generation systems, and conventionally it has been considered to remove nitrogen oxides from the combustion exhaust gas by installing a flue gas denitrification device. .

(発明が解決しようとする課題) しかしながら、排煙脱硝装置は、燃焼後の膨張したガス
を処理するため、高温高圧状態の還元性ガスを利用する
上述の石炭ガス化複合発電システムに適用する場合、精
製ガスの約数十倍程度(例えば20kg/cJGで60
倍)のボリュームのガスを処理しなければならないため
、装置規模としても脱硫装置部と同程度の大きさになる
ことが予想され、装置建設費用が嵩み経済的に好ましく
ない。
(Problems to be Solved by the Invention) However, in order to treat expanded gas after combustion, the flue gas denitrification device is applied to the above-mentioned coal gasification combined cycle system that uses reducing gas in a high temperature and high pressure state. , about several dozen times that of purified gas (for example, 60 kg/cJG
Since it is necessary to process a volume of gas that is twice as large as that of the desulfurizer, it is expected that the scale of the equipment will be comparable to that of the desulfurization equipment, which is economically undesirable because the construction cost of the equipment will increase.

しかも、燃焼排ガス中のNOxは極めて低濃度であり、
大部分はNoの形であるため除去は極めて困難である。
Moreover, the concentration of NOx in the combustion exhaust gas is extremely low,
Since most of it is in the form of No, it is extremely difficult to remove it.

そこで、本発明は、高温還元性ガス中のアンモニアを高
温高圧下にて乾式で除去し、アンモニアを濃縮して回収
する精製方法を提供し、排煙脱硝装置を不要にして装置
建設費用の削減を達成することを目的とする。
Therefore, the present invention provides a purification method that dryly removes ammonia in high-temperature reducing gas under high temperature and high pressure, concentrates and recovers ammonia, and eliminates the need for flue gas denitrification equipment, reducing equipment construction costs. The purpose is to achieve the following.

(課題を解決するための手段) かかる目的を達成するため、本発明の高温還元性ガスの
精製方法は、ゼオライトを充填した反応器を複数塔使用
し、高温還元性ガス中に含まれるアンモニアを100〜
150℃の高温で前記ゼオライトに吸着させて除去する
除去工程と、前記ゼオライトに吸着されたアンモニアを
前記ゼオライトに吸着される成分を含まないガスを用い
かつ前記反応器温度若しくは圧力を変化させることによ
って前記ゼオライトより脱離させる再生工程とを交互に
実施し、アンモニアを除去した高温還元性ガスを得る一
方、前記再生工程で発生するアンモニア含有ガスからア
ンモニアを回収するようにしている。
(Means for Solving the Problem) In order to achieve the above object, the method for purifying high-temperature reducing gas of the present invention uses a plurality of reactors filled with zeolite to remove ammonia contained in the high-temperature reducing gas. 100~
a removal step of adsorbing and removing ammonia on the zeolite at a high temperature of 150° C.; and removing the ammonia adsorbed on the zeolite by using a gas that does not contain components adsorbed on the zeolite and changing the temperature or pressure of the reactor. A regeneration step in which the zeolite is desorbed is alternately carried out to obtain a high-temperature reducing gas from which ammonia has been removed, while ammonia is recovered from the ammonia-containing gas generated in the regeneration step.

(作用) したがって、高温還元性ガス中のアンモニアは、100
℃〜150℃の高温下でゼオライトに吸着・固定化され
て除去される(除去工程)。そして、アンモニアが除か
れた精製ガスはガスタービンやその他の燃焼装置等に供
給される。また、ゼオライI・に−固定化されたアンモ
ニアは、ゼオライトに吸着される成分を含まないガスを
通しながらセオライト温度若しくはガス圧力を変化させ
ることにより、吸着剤より脱離させ回収する(再生工程
)。
(Function) Therefore, ammonia in the high temperature reducing gas is 100
It is adsorbed and immobilized on zeolite and removed at a high temperature of 150°C to 150°C (removal step). The purified gas from which ammonia has been removed is then supplied to a gas turbine or other combustion device. In addition, the ammonia fixed on Zeolite I is desorbed from the adsorbent and recovered by changing the zeolite temperature or gas pressure while passing a gas that does not contain components adsorbed on the zeolite (regeneration step). .

アンモニアを脱離させたゼオライトは、再度高温還元性
ガス中のアンモニアの除去に用いられる。
The zeolite from which ammonia has been removed is used again to remove ammonia from high-temperature reducing gases.

以上のアンモニア除去工程とゼオライト再生工程を複数
の反応塔で切替えて運転することにより連続的なガス精
製運転を行う。
Continuous gas purification operation is performed by switching and operating the above ammonia removal step and zeolite regeneration step in a plurality of reaction towers.

(実施例) 以下、本発明の構成を図面に示す実施例に基づいて詳細
に説明する。
(Example) Hereinafter, the configuration of the present invention will be described in detail based on an example shown in the drawings.

第1図に本発明方法を実施する精製装置の一例を概要図
で示す。該図において、符号2は熱交換器、6は脱しん
装置、11.12は反応塔、22は再生ガス温度調節器
、23は再生ガス循環プロワ、24はアンモニア分離器
、31は圧力調節器、14.15.16,17,18.
19.20及び21はガス流路切替えバルブ、1.3,
4,5゜7.8,9,10.2’5,26,27.28
 29およ30は各装置を接続するライン(配管)であ
る。
FIG. 1 shows a schematic diagram of an example of a purification apparatus for carrying out the method of the present invention. In the figure, 2 is a heat exchanger, 6 is a desulfurization device, 11.12 is a reaction tower, 22 is a regeneration gas temperature regulator, 23 is a regeneration gas circulation blower, 24 is an ammonia separator, and 31 is a pressure regulator. , 14.15.16, 17, 18.
19.20 and 21 are gas flow path switching valves, 1.3,
4,5°7.8,9,10.2'5,26,27.28
29 and 30 are lines (pipes) connecting each device.

ここで、脱しん装置6としては、多孔質セララミックフ
ィルタ、バグフィルタ若しくはグラニュラ−充填材の使
用が好ましい。
Here, as the desulfurization device 6, it is preferable to use a porous ceramic filter, a bag filter, or a granular filler.

また、各反応塔11.12にはゼオライト13が充填さ
れている。ゼオライト13としては、その組成、形状等
に特に限定されるものではないが、H+基を有するH型
ゼオライトの使用が最も好ましい。
Moreover, each reaction column 11.12 is filled with zeolite 13. The zeolite 13 is not particularly limited in its composition, shape, etc., but it is most preferable to use an H-type zeolite having an H+ group.

以上のように構成した高温還元性ガスの精製システムに
おいて、H型ゼオライトを使用する場合につきアンモニ
ア除去工程及びゼオライト再生工程を説明する。
In the high-temperature reducing gas purification system configured as described above, the ammonia removal step and the zeolite regeneration step will be explained in the case where H-type zeolite is used.

一般に、高温還元性ガス中には、石炭の種類やガス化条
件によって異なるが、ダスト以外に数10〜数1000
 DDIIIの硫黄化合物、アンモニア及びハロゲン等
が含まれている。このうち硫黄化合物は一般に400〜
600℃の高温で酸化鉄などの金属酸化物と接触させて
除去される。そこで、本実施例ではアンモニア除去に先
立って、高温還元性ガス中の硫黄化合物を公知の脱硫装
置において除去する。
In general, high-temperature reducing gas contains several tens to thousands of particles in addition to dust, although it varies depending on the type of coal and gasification conditions.
Contains DDIII sulfur compounds, ammonia, halogens, etc. Of these, sulfur compounds generally have a
It is removed by contacting it with metal oxides such as iron oxide at a high temperature of 600°C. Therefore, in this example, prior to ammonia removal, sulfur compounds in the high-temperature reducing gas are removed using a known desulfurization device.

ライン1を経て導入されるアンモニアを含有する高温還
元性ガス例えば石炭ガス化ガスは、熱交換器2でライン
3より導入した水との間で熱交換が行なわれ、ガス温度
をゼオライト13がアンモニアを吸着するに最適な温度
即ち150℃付近まで下げられる。一方、高温還元性ガ
スとの熱交換によって得られた水蒸気はライン4を経て
熱利用設備等に供給され有効利用される。
A high-temperature reducing gas containing ammonia, such as coal gasification gas, introduced through line 1 undergoes heat exchange with water introduced from line 3 in heat exchanger 2, and zeolite 13 adjusts the gas temperature to The temperature can be lowered to around 150°C, which is the optimum temperature for adsorbing. On the other hand, the water vapor obtained by heat exchange with the high-temperature reducing gas is supplied to heat utilization equipment etc. through line 4 and is effectively utilized.

更に、熱交換器2において所定の温度例えば150℃前
後にまで冷却された高温還元性ガスは、ガスライン5を
経て脱塵装置6に導入され、ダスト濃度10■/ !1
n19程度まで脱塵される。そして、ガス温度が150
℃以下、圧力が(石炭ガス化炉の形状や条件によっても
異なる)通常、常圧〜25kg/cJGの高温還元性ガ
スとされる。
Further, the high-temperature reducing gas cooled to a predetermined temperature, for example, around 150°C in the heat exchanger 2, is introduced into the dust removal device 6 via the gas line 5, and the dust concentration is 10/! 1
Dust is removed to about n19. And the gas temperature is 150
℃ or less, and the pressure (which varies depending on the shape and conditions of the coal gasifier) is usually a high temperature reducing gas of normal pressure to 25 kg/cJG.

脱塵後の石炭ガス化ガスは、流路切替えバルブ14.1
5の操作によっていずれか一方の反応器11.12に供
給される。例えは、第1図の状態においては反応器11
に石炭ガス化ガスは供給され、通常150℃以下好まし
くは100〜150℃の範囲で、ゼオライト13に接触
するように設定される。アンモニアは第3図に示すよう
に、温度150℃の時には、温度200℃の時に比べて
アンモニアの吸着剤への吸着量か多いのがわかる。
The coal gasification gas after dust removal is transferred to the flow path switching valve 14.1.
5, it is supplied to either reactor 11 or 12. For example, in the state shown in FIG.
Coal gasification gas is supplied to the zeolite 13 and is set to contact the zeolite 13 at a temperature usually below 150°C, preferably in the range of 100 to 150°C. As shown in FIG. 3, it can be seen that the amount of ammonia adsorbed onto the adsorbent is greater when the temperature is 150°C than when the temperature is 200°C.

依って、本実施例では、吸収工程を150℃で再生工程
を200℃で行うことにより、効率的に高温還元性ガス
中のアンモニアを吸着除去し、かつゼオライト13に吸
着させたアンモニアを脱離させて回収することが可能で
ある。例えば、H型ゼオライトは、石炭ガス中のアンモ
ニアを温度150℃の時には、吸着剤1g当り1〜5Q
1111o1吸収する。したがって、反応器11を通過
したガス化ガスは、含有するアンモニアをゼオライト1
3に吸着され、アンモニアが取り除かれた精製ガスとな
って、ライン9、流路切替えバルブ18及びライン10
を経て図示していないガスタービン若しくは燃焼装置等
に供給される。
Therefore, in this example, by performing the absorption step at 150°C and the regeneration step at 200°C, ammonia in the high-temperature reducing gas can be efficiently adsorbed and removed, and ammonia adsorbed on the zeolite 13 can be desorbed. It is possible to recover it by letting it go. For example, H-type zeolite absorbs 1 to 5 Q of ammonia in coal gas per 1 g of adsorbent at a temperature of 150°C.
Absorbs 1111o1. Therefore, the gasified gas that has passed through the reactor 11 removes the ammonia contained in the zeolite 1.
3, the purified gas from which ammonia has been removed is passed through line 9, flow path switching valve 18, and line 10.
The gas is then supplied to a gas turbine, combustion device, etc. (not shown).

一方、高温還元性ガスが流されていない他方の反応塔1
2ではゼオライト13に吸着されたアンモニアを離脱さ
せてゼオライト13を再びアンモニア吸着に使用できる
ように再生させる作業か進められている。このアンモニ
アの離脱は、反応器12へ導入されるガスを圧力調整器
31によりアンモニア除去工程よりも減圧(常圧〜10
ksr/cJGに減圧)することによって、若しくは再
生ガス温度調節器22により200〜500℃へと昇温
することによって、あるいは減圧と昇温を同時に行なう
ことによって行なわれる。再生ガスとしては特に限定を
受けるものではないが、ゼオライトに吸着される成分(
水分を除く)を含まないガスの使用が好ましい6ゼオラ
イト13に吸着されていたアンモニアは、除去工程との
運転圧力差もしくは温度差によりゼオライト13より脱
離し、吸着塔12に導入された再生ガスと共に反応塔1
20 より出る。再生工程で発生したアンモニアは、圧力調整
器31で圧力が調整された後、アンモニア分離器24に
導入され、再生ガスと分離される。
On the other hand, the other reaction tower 1 to which high-temperature reducing gas is not flowing
2, work is underway to remove the ammonia adsorbed on the zeolite 13 and regenerate the zeolite 13 so that it can be used again for ammonia adsorption. This removal of ammonia is performed by reducing the pressure of the gas introduced into the reactor 12 by the pressure regulator 31 (normal pressure to 10%
ksr/cJG), or by raising the temperature to 200 to 500° C. using the regeneration gas temperature controller 22, or by simultaneously reducing the pressure and raising the temperature. There are no particular restrictions on the regeneration gas, but it may include components adsorbed by zeolite (
It is preferable to use a gas that does not contain water (excluding water) 6 The ammonia adsorbed on the zeolite 13 is desorbed from the zeolite 13 due to the operating pressure difference or temperature difference with the removal process, and is removed together with the regeneration gas introduced into the adsorption tower 12. Reaction tower 1
It comes out from 20. After the pressure of the ammonia generated in the regeneration process is adjusted by the pressure regulator 31, the ammonia is introduced into the ammonia separator 24 and separated from the regeneration gas.

そして、ライン30を介して回収される。再生ガスは、
ライン29、再生ガス循環ブロワ23及びライン25を
介して前述の所定温度に調整された後再度循環利用され
る。
Then, it is collected via line 30. Regeneration gas is
After being adjusted to the above-mentioned predetermined temperature via line 29, regeneration gas circulation blower 23, and line 25, it is recycled and used again.

尚、上述の実施例は本発明の好適な実施の一例ではある
がこれに限定されるものではなく本発明の要旨を逸脱し
ない範囲において種々変形実施可能である。例えば、第
1図ではゼオライト系吸着剤13が充填された同一構造
の反応塔11.12に流入するガスを交互に切替えるこ
とによってアンモニア除去工程と、ゼオライト再生工程
とを連続的に実施するようにしているが、特にこの固定
床式に限定されるものではなく、還元性ガス中のアンモ
ニアをH型ゼオライ1−系吸着剤で吸着除去後、再生工
程を繰り返すプロセスなら、流動床式、移動床式を問わ
ず適用できる。また、2塔以上の固定床式にも適応でき
るのはいうまでもない。
It should be noted that although the above-described embodiment is an example of a preferred embodiment of the present invention, the present invention is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, in FIG. 1, the ammonia removal process and the zeolite regeneration process are carried out continuously by alternately switching the gas flowing into the reaction towers 11 and 12 of the same structure filled with the zeolite adsorbent 13. However, it is not limited to this fixed bed type; if the process involves repeating the regeneration process after adsorbing and removing ammonia in the reducing gas with an H-type zeolite 1-based adsorbent, a fluidized bed type or a moving bed type can be used. It can be applied regardless of the formula. It goes without saying that it can also be applied to a fixed bed type with two or more towers.

1 (発明の効果〉 以上のように、本発明においては、ゼオライI・を充填
した反応器を2塔以上使用し、除去・再生工程を切り替
えて運転することにより、高温還元性ガス中のアンモニ
アを高温下で連続的に乾式除去する。ゼオライトに吸着
されたアンモニアは、再生工程において脱離され回収さ
れる。
1 (Effects of the Invention) As described above, in the present invention, ammonia in high-temperature reducing gas is The ammonia adsorbed on the zeolite is removed and recovered in the regeneration process.

したがって、本発明によると、高温還元性ガス例えば石
炭ガス化燃料中のアンモニアを乾式で除去することがで
き、システム全体の熱効率の低下を招かずに、しかもガ
スタービン燃焼器内で生成されるアンモニアに起因する
NOxをなくしてNOxの発生量を著しく低減すること
が可能となる。
Therefore, according to the present invention, it is possible to dry remove ammonia in a high-temperature reducing gas, such as coal gasified fuel, without causing a decrease in the thermal efficiency of the entire system, and without reducing the ammonia produced in the gas turbine combustor. This makes it possible to significantly reduce the amount of NOx generated by eliminating NOx caused by this.

また、燃焼排ガス中のNOx排除方法として従来、−船
釣な触媒式排煙脱硝方法に比べると、燃料そのものから
アンモニアを除去するため、体積比で1/3、複合発電
システムの稼動圧力(約20kg / aJ c )を
考慮に入れると1/60のガス処理量で従来と同じ脱硝
効果を得ることかでき、触媒交換時間の大幅な延長を可
能にして極めて経済的2 でかつシステム運転が容易なものとなる。
In addition, compared to the conventional catalytic exhaust gas denitration method, which is a method for removing NOx from combustion exhaust gas, because ammonia is removed from the fuel itself, the operating pressure of the combined power generation system (approximately 20kg/aJc), it is possible to obtain the same denitrification effect as conventional methods with 1/60 of the gas throughput, making it possible to significantly extend the catalyst replacement time, making it extremely economical2 and easy to operate the system. Become something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の高温還元性ガスの精製方法を実施する
装置の一実施例を示すブロック図である。 第2図はアンモニア除去サイクルとゼオライト再生サイ
クルのタイムスゲジュールで、(A)は反応塔11を、
(B)は反応塔12を夫々示す。 第3図はアンモニア吸収量と温度変化との関係を示すグ
ラフである。 11.12・・・反応器(反応塔)、 13・・・ゼオライト。
FIG. 1 is a block diagram showing an embodiment of an apparatus for implementing the high temperature reducing gas purification method of the present invention. Figure 2 shows the time schedule of the ammonia removal cycle and the zeolite regeneration cycle; (A) shows the reaction tower 11;
(B) shows the reaction tower 12, respectively. FIG. 3 is a graph showing the relationship between the amount of ammonia absorbed and temperature change. 11.12... Reactor (reaction tower), 13... Zeolite.

Claims (1)

【特許請求の範囲】[Claims]  ゼオライトを充填した反応器を複数塔使用し、高温還
元性ガス中に含まれるアンモニアを100〜150℃の
高温で前記ゼオライトに吸着させて除去する除去工程と
、前記ゼオライトに吸着されたアンモニアを前記ゼオラ
イトに吸着される成分を含まないガスを用いかつ前記反
応器温度若しくは圧力を変化させることによって前記ゼ
オライトより脱離させる再生工程とを交互に実施し、ア
ンモニアを除去した高温還元性ガスを得る一方、前記再
生工程で発生するアンモニア含有ガスからアンモニアを
回収することを特徴とする高温還元性ガスの精製方法。
A removal step in which ammonia contained in the high-temperature reducing gas is adsorbed and removed by the zeolite at a high temperature of 100 to 150°C using a plurality of reactors filled with zeolite, and ammonia adsorbed by the zeolite is removed by the A high-temperature reducing gas from which ammonia has been removed is obtained by alternately carrying out a regeneration step in which a gas that does not contain components adsorbed by the zeolite is desorbed from the zeolite by changing the temperature or pressure of the reactor. . A method for purifying a high-temperature reducing gas, comprising recovering ammonia from the ammonia-containing gas generated in the regeneration step.
JP2032549A 1990-02-15 1990-02-15 Purification of high temperature reductive gas Pending JPH03238019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2032549A JPH03238019A (en) 1990-02-15 1990-02-15 Purification of high temperature reductive gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2032549A JPH03238019A (en) 1990-02-15 1990-02-15 Purification of high temperature reductive gas

Publications (1)

Publication Number Publication Date
JPH03238019A true JPH03238019A (en) 1991-10-23

Family

ID=12362016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2032549A Pending JPH03238019A (en) 1990-02-15 1990-02-15 Purification of high temperature reductive gas

Country Status (1)

Country Link
JP (1) JPH03238019A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661374A1 (en) * 1993-12-30 1995-07-05 Shell Internationale Researchmaatschappij B.V. Process for removing nitrogen compounds from synthesis gas
US5711926A (en) * 1996-05-14 1998-01-27 Knaebel; Kent S. Pressure swing adsorption system for ammonia synthesis
KR100403244B1 (en) * 2001-04-06 2003-10-23 대백신소재주식회사 A method of ammonia gas purification for manufacturing highly pure nitrogen trifluoride
KR100482935B1 (en) * 1997-08-07 2005-08-17 미우라고교 가부시키카이샤 Adsorption removal device of dioxin
JP2006193563A (en) * 2005-01-11 2006-07-27 Central Res Inst Of Electric Power Ind Fuel gas-purifying apparatus
JP2014055094A (en) * 2012-09-14 2014-03-27 Japan Pionics Co Ltd Ammonia purification apparatus, and regeneration method thereof
JP2018137149A (en) * 2017-02-22 2018-08-30 トヨタ自動車株式会社 Fuel gas-supply method
JP2022533234A (en) * 2019-05-24 2022-07-21 インテグリス・インコーポレーテッド Methods and systems for removing ammonia from gas mixtures

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661374A1 (en) * 1993-12-30 1995-07-05 Shell Internationale Researchmaatschappij B.V. Process for removing nitrogen compounds from synthesis gas
EP0661375A1 (en) * 1993-12-30 1995-07-05 Shell Internationale Researchmaatschappij B.V. Process for removing nitrogen compounds from synthesis gas
US5711926A (en) * 1996-05-14 1998-01-27 Knaebel; Kent S. Pressure swing adsorption system for ammonia synthesis
KR100482935B1 (en) * 1997-08-07 2005-08-17 미우라고교 가부시키카이샤 Adsorption removal device of dioxin
KR100403244B1 (en) * 2001-04-06 2003-10-23 대백신소재주식회사 A method of ammonia gas purification for manufacturing highly pure nitrogen trifluoride
JP2006193563A (en) * 2005-01-11 2006-07-27 Central Res Inst Of Electric Power Ind Fuel gas-purifying apparatus
JP4573650B2 (en) * 2005-01-11 2010-11-04 財団法人電力中央研究所 Fuel gas purification equipment
JP2014055094A (en) * 2012-09-14 2014-03-27 Japan Pionics Co Ltd Ammonia purification apparatus, and regeneration method thereof
JP2018137149A (en) * 2017-02-22 2018-08-30 トヨタ自動車株式会社 Fuel gas-supply method
JP2022533234A (en) * 2019-05-24 2022-07-21 インテグリス・インコーポレーテッド Methods and systems for removing ammonia from gas mixtures

Similar Documents

Publication Publication Date Title
JP6977112B2 (en) Integrated system and method for removing acid gas from gas stream
US20110198861A1 (en) Method for producing energy and capturing co2
TWI482656B (en) Process and system with multiple fixed-fluidized beds for contaminant removal
JP7305606B2 (en) Methods and systems for reducing CO2 emissions from industrial processes
JPH03238019A (en) Purification of high temperature reductive gas
JP4594239B2 (en) Gas purification system and gas purification method
JP4775858B2 (en) Method for regenerating copper-based absorbent and method for removing mercury from source gas
WO2017140662A1 (en) A process and a gas treatment system for combined removal of siloxanes and sulfur containing compounds from biogas streams
JPH03293017A (en) Treatment of waste combustion gas
JP5601659B2 (en) Dry gas refining equipment and coal gasification combined power generation equipment
JPH07136456A (en) High desulfurization-denitration method and apparatus for exhaust gas
JP2651381B2 (en) Purification method of high-temperature reducing gas
SU1477454A1 (en) Method of removing carbon dioxide from gas
EP0375048B1 (en) Method and device for desulphurising gas
JPH07106293B2 (en) Refining method for high temperature reducing gas
JP5688748B2 (en) Dry gas refining equipment and coal gasification combined power generation equipment
JPH0790137B2 (en) Refining method for high temperature reducing gas
Kwong et al. Application of amines for treating flue gas from coal‐fired power plants
JPS6358605B2 (en)
JPH06228575A (en) Purification of high-temperature reducing gas
WO2024006645A1 (en) Processes to clean tail gas from carbon black production and system and facility for same
JPS60261526A (en) Solid-gas catalytic reactor
JPS6280411A (en) Operation process for fluidized bed type combustion device with low volume of discharging of sox, and nox and high efficiency of combustion
JPS63122790A (en) Purification of high-temperature reducing gas
JPH0631350B2 (en) Solid-gas contact reactor