JPH05228326A - Method for recovering dilute carbon dioxide - Google Patents

Method for recovering dilute carbon dioxide

Info

Publication number
JPH05228326A
JPH05228326A JP4035074A JP3507492A JPH05228326A JP H05228326 A JPH05228326 A JP H05228326A JP 4035074 A JP4035074 A JP 4035074A JP 3507492 A JP3507492 A JP 3507492A JP H05228326 A JPH05228326 A JP H05228326A
Authority
JP
Japan
Prior art keywords
adsorption
stage
gas
tower
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4035074A
Other languages
Japanese (ja)
Other versions
JP2994843B2 (en
Inventor
Jun Izumi
順 泉
Takashi Morimoto
敬 森本
Senichi Tsubakisaki
仙市 椿崎
Kazuaki Oshima
一晃 大嶋
Hiroshi Nohara
博 野原
Kiichiro Ogawa
紀一郎 小川
Hideo Nawata
秀夫 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4035074A priority Critical patent/JP2994843B2/en
Publication of JPH05228326A publication Critical patent/JPH05228326A/en
Application granted granted Critical
Publication of JP2994843B2 publication Critical patent/JP2994843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PURPOSE:To recover concd. CO2 at a high recovery rate by returning a gas leaving the parallel-flow purging stage of the second-stage PSA-II process to the second-stage adsorption stage or countercurrent pressure restoring stage. CONSTITUTION:An adsorption tower 16b with the CO2 adsorption zone moved backward after the adsorption stage is switched to a parallel-flow purging stage by opening valves 20b and 21b, and a highly concentrated CO2 from a product holder 27 is passed through a passage 19 and the valve 20b and then concurrently through the adsorption tower 16b. Consequently, gaseous nitrogen staying in the tower is purged and discharged outside the tower through the valve 21b and a passage 22, the discharged gas having a considerably high content of CO2 is returned directly before a blower 14 and introduced into the adsorption tower 16b in the second adsorption stage to recover CO2. An adsorption tower 16c after the second adsorption stage is switched to a reduced- pressure recovery stage, and CO2 is desorbed and stored in the product holder 27. A part of the CO. is taken out, and a part is returned to the adsorption tower 16c to purge the tower.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化学工業の基礎物質で
あるCO2 を圧力スィング吸着法(以下、PSA法とい
う)で回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering CO 2 which is a basic substance in the chemical industry by a pressure swing adsorption method (hereinafter referred to as PSA method).

【0002】[0002]

【従来の技術】図12は、従来の2塔式の圧力スィング
吸着法(以下、PSA−I法という)によりCO2 を濃
縮する装置のフローシートである。吸着塔36にはNa
−Xゼオライト(SiO2 /Al2 3 =2.7)等の
CO2 吸着剤35が充填され、吸着工程にある吸着塔3
6aのバルブ34a及び37aを開放する。CO2 含有
ガス31は、ブロア32で1atmから3atmに昇圧
され、流路33、バルブ34aを経て吸着塔36aに導
入され、CO2 を吸着して難吸着性成分ガスをバルブ3
7a、流路38を介して系外に流出する。(吸着工程) CO2 の吸着帯が塔の出口付近まで移動して吸着工程を
終了した吸着塔36bは、バルブ39bを開放して真空
ポンプ40により塔内を所定の減圧にし、次いでバルブ
42bを開放することにより、上記吸着工程で流路38
から流出する難吸着性成分ガスの一部を、減圧弁41、
バルブ42bを介して吸着塔36bに導入して向流パー
ジを行い、吸着剤35からCO2 を脱着して回収する。
(減圧向流パージ工程)
2. Description of the Related Art FIG. 12 is a flow sheet of an apparatus for concentrating CO 2 by a conventional two-column pressure swing adsorption method (hereinafter referred to as PSA-I method). The adsorption tower 36 has Na
Adsorption tower 3 in the adsorption step, which is filled with a CO 2 adsorbent 35 such as -X zeolite (SiO 2 / Al 2 O 3 = 2.7)
The valves 34a and 37a of 6a are opened. The CO 2 -containing gas 31 is pressurized from 1 atm to 3 atm by the blower 32, is introduced into the adsorption tower 36a via the flow path 33 and the valve 34a, and adsorbs CO 2 to remove the hardly adsorbed component gas from the valve 3.
7a, flows out of the system through the flow path 38. (Adsorption step) In the adsorption tower 36b in which the CO 2 adsorption zone has moved to the vicinity of the outlet of the tower and the adsorption step has been completed, the valve 39b is opened to reduce the pressure inside the tower to a predetermined level by the vacuum pump 40, and then the valve 42b is turned on. By opening the flow path 38 in the adsorption process.
A part of the hardly adsorbed component gas flowing out from the pressure reducing valve 41,
It is introduced into the adsorption tower 36b through the valve 42b to carry out countercurrent purging, and CO 2 is desorbed and recovered from the adsorbent 35.
(Decompression countercurrent purge process)

【0003】減圧向流パージ工程で回収されるガスのC
2 濃度C2 は、吸着されるCO2量をGCO2 、吸着塔
に残留する難吸着性成分ガス量をGCOADS 、向流パージ
ガス量をGpとすると、次式で表される。 C2 =GCO2 /(GCO2 +GCOADS +Gp) ・・・ なお、本発明者等の試験によると、共吸着窒素がCO2
分圧を脱着工程で低下させるので、Gpの必要量は、S
karstrom則によって提唱されるα=1.2より
かなり小さな0.4程度が良いので、次式のように表さ
れる。 Gp=α(Pd/Pa)Go(但し、α≧0.4) ・・・ 又、CO2 量GCO2 と共吸着成分量GCOADS との比率を
選択性βとすると、次式で表される。 β=GCO2 /GCOADS ・・・ そして、原料ガス中のCO2 濃度をC0 とし、GCO2
Go・C0 とすると、回収ガス中のCO2 濃度C2 は、
上記〜式より次式として求めることができる。 C2 =1/〔1+(1/β)+(αPd/C0 Pa)〕 ・・・ この式から明らかなように、CO2 は、選択性β、吸着
圧力Paが大きいほど、又、再生圧力Pdが小さいほ
ど、高い濃縮率が得られる。
C of the gas recovered in the reduced pressure countercurrent purging process
The O 2 concentration C 2 is expressed by the following equation, where G CO2 is the amount of CO 2 adsorbed, G COADS is the amount of the hardly adsorbed component gas remaining in the adsorption tower, and Gp is the countercurrent purge gas amount. C 2 = G CO2 / (G CO2 + G COADS + Gp) ... According to the test by the present inventors, the co-adsorbed nitrogen is CO 2
Since the partial pressure is reduced in the desorption process, the required amount of Gp is S
Since 0.4, which is considerably smaller than α = 1.2 proposed by the Karsstrom rule, is good, it is expressed by the following equation. Gp = α (Pd / Pa) Go (however, α ≧ 0.4) ... Also, when the ratio of the CO 2 amount G CO2 and the co-adsorbed component amount G COADS is the selectivity β, it is expressed by the following equation. It β = G CO2 / G COADS ... And CO 2 concentration in the raw material gas is C 0, and G CO2 =
Assuming Go · C 0 , the CO 2 concentration C 2 in the recovered gas is
From the above equations, the following equation can be obtained. C 2 = 1 / [1+ (1 / β) + (αPd / C 0 Pa)] As is clear from this equation, CO 2 is regenerated as the selectivity β and the adsorption pressure Pa increase. The smaller the pressure Pd, the higher the concentration rate.

【0004】図12の方法(PSA−I法)において、
CO2 吸着剤として、Na−Xゼオライト(SiO2
Al2 3 =2.7)を使用すると、C0 が10vol
%でβ=1.5となり、Pa=1.2atm、Pd=
0.2atmとすると、C2 は42vol%程度とな
る。この方法はCO2 の回収率を100%近くに設定す
ると、処理に適した原料ガスのCO2 濃度は40vol
%以下の比較的低濃度ガスである。
In the method of FIG. 12 (PSA-I method),
As a CO 2 adsorbent, Na-X zeolite (SiO 2 /
When Al 2 O 3 = 2.7) is used, C 0 is 10 vol.
% = Β = 1.5, Pa = 1.2 atm, Pd =
If it is 0.2 atm, C 2 will be about 42 vol%. In this method, when the CO 2 recovery rate is set to near 100%, the CO 2 concentration of the raw material gas suitable for the treatment is 40 vol.
% Is a relatively low concentration gas.

【0005】原料ガスのCO2 濃度が40vol%を越
える高濃度ガスの処理に適した方法としては、図13に
示す4塔式の圧力スィング吸着法(以下、PSA−II法
という)がある。4つの吸着塔56にはNa−Xゼオラ
イト(SiO2 /Al2 3=2.7)55が充填され
ており、吸着工程にある吸着塔56aは、バルブ54a
とバルブ57aを開放して、高濃度のCO2 を含有する
原料ガス51は、ブロア52で1atmから3atmに
圧縮され、流路53、バルブ54aを介して吸着塔56
aに供給され、CO2 を吸着して難吸着性成分ガスをバ
ルブ57a、流路58を介して系外に放出する。CO2
吸着帯が塔の後方まで移動した状態で吸着工程を終了す
る。
As a method suitable for treating a high-concentration gas having a CO 2 concentration of more than 40 vol% as a raw material gas, there is a four-column pressure swing adsorption method (hereinafter referred to as PSA-II method) shown in FIG. The four adsorption towers 56 are filled with Na—X zeolite (SiO 2 / Al 2 O 3 = 2.7) 55, and the adsorption tower 56a in the adsorption step has a valve 54a.
The valve 57a is opened, and the raw material gas 51 containing a high concentration of CO 2 is compressed by the blower 52 from 1 atm to 3 atm, and the adsorption tower 56 is passed through the flow passage 53 and the valve 54a.
is supplied to a and adsorbs CO 2 and releases the hardly adsorbed component gas to the outside of the system via the valve 57a and the flow path 58. CO 2
The adsorption process is terminated when the adsorption zone has moved to the rear of the tower.

【0006】吸着工程を終了した吸着塔56bは、バル
ブ60b、バルブ62bを開放し、次の減圧回収工程で
回収した高濃度のCO2 含有ガスを製品ホルダ66から
流路59、バルブ60bを介して吸着塔56bに導入
し、塔内に残留する難吸着性成分を並流パージし、バル
ブ62b、流路63から系外に放出される。並流パージ
工程終了後の吸着塔56cは、バルブ64cを開放して
真空ポンプ65により塔内を0.05〜0.3atmに
減圧し、吸着剤55からCO2 を脱着し、高濃度のCO
2 含有ガスを製品ホルダ66に貯蔵する。そして、その
一部を製品ガスとして流路67から採取する。減圧回収
工程で吸着剤55の再生を終えた吸着塔56dは、最大
の真空度に達しており、バルブ69dを開放することに
より、原料ガス51を流路68、バルブ69dを介して
吸着塔56dに導入し、大気圧に戻す。
In the adsorption tower 56b which has completed the adsorption process, the valves 60b and 62b are opened, and the high-concentration CO 2 -containing gas recovered in the next reduced pressure recovery process is passed from the product holder 66 through the flow path 59 and the valve 60b. Is introduced into the adsorption tower 56b, the hardly adsorbed component remaining in the tower is cocurrently purged, and is discharged from the system through the valve 62b and the flow passage 63. In the adsorption tower 56c after completion of the co-current purging step, the valve 64c is opened, the pressure inside the tower is reduced to 0.05 to 0.3 atm by the vacuum pump 65, CO 2 is desorbed from the adsorbent 55, and high concentration of CO
The gas containing 2 is stored in the product holder 66. Then, a part thereof is sampled from the flow channel 67 as a product gas. The adsorption tower 56d which has completed the regeneration of the adsorbent 55 in the reduced pressure recovery step has reached the maximum vacuum degree, and the valve 69d is opened to allow the raw material gas 51 to flow through the flow passage 68 and the valve 69d. Introduced into and returned to atmospheric pressure.

【0007】ここで、真空ポンプで回収されるガス量を
Go、並流パージ工程に使用されるガス量をGpとする
と、パージ率R(%)は次のように定義される。 R=(Gp/Go)×100 仮に、原料ガスのCO2 濃度を65vol%とし、パー
ジ率を55%、65%、80%の3つの場合を想定する
と、製品ガスのCO2 濃度は95vol%、99vol
%、99.9vol%に達する。このように、PSA−
II法は、製品濃度が最大99.9vol%に達する極め
て濃縮率の高い方法である。しかし、回収率は40〜7
0%に止まり、入口ガスのCO2 濃度が40vol%を
下回ると、Skarstrom形の向流パージを行わな
いためにPSA性能を維持することができなくなる。上
記のPSA−I法とPSA−II法を比較評価すると表1
のようになる。
Here, when the amount of gas collected by the vacuum pump is Go and the amount of gas used in the co-current purging step is Gp, the purge rate R (%) is defined as follows. R = (Gp / Go) × 100 If the CO 2 concentration of the source gas is 65 vol% and the purge rates are 55%, 65%, and 80%, the CO 2 concentration of the product gas is 95 vol%. , 99vol
%, 99.9 vol%. Thus, PSA-
Method II is a method with an extremely high concentration rate in which the product concentration reaches a maximum of 99.9 vol%. However, the recovery rate is 40-7
Blind to 0%, and the CO 2 concentration of the inlet gas falls below 40 vol% it is impossible to maintain the PSA performance for not performed countercurrent purge Skarstrom type. Table 1 shows a comparative evaluation of the above PSA-I method and PSA-II method.
become that way.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【発明が解決しようとする問題点】上記のPSA−I法
は、低濃度域で非常に高い回収率が得られるが、製品の
CO2 濃度が低く、また高濃度側で実施する場合は脱着
ガス量が多くなり、最高真空度に到達するのに時間を要
し、かつ、この操作で脱着が十分になされるため向流パ
ージを行ってもあまり効果がない。他方、PSA−II法
は、高濃度域で非常に高いCO2 濃度の製品を得ること
ができるが、回収率が低く、また低濃度側で実施する場
合は向流パージを採用していないために再生率が低く、
多大な吸着剤を必要とする。そして、並流パージに必要
とする製品ガス量を用意できなくなる。このように、P
SA−I法やPSA−II法を採用しても、40vol%
以下の低濃度のCO2 含有ガスから90vol%以上の
高濃度ガスを高い回収率で得ることは困難であった。そ
こで、本発明は、上記欠点を解消し、40vol%以下
の低濃度のCO2 含有ガスを原料として90vol%以
上の高濃度ガスを高い回収率で得ることのできるPSA
法を使用したCO2 の回収方法を提供しようとするもの
である。
The above-mentioned PSA-I method can obtain a very high recovery rate in a low concentration range, but the product has a low CO 2 concentration, and is desorbed when it is carried out on the high concentration side. The amount of gas increases, it takes time to reach the maximum vacuum degree, and desorption is sufficiently performed by this operation, so even if countercurrent purging is performed, it is not very effective. On the other hand, the PSA-II method can obtain a product with a very high CO 2 concentration in the high concentration range, but the recovery rate is low, and when it is carried out on the low concentration side, the countercurrent purge is not adopted. The reproduction rate is low,
Requires a large amount of adsorbent. Then, the amount of product gas required for the cocurrent purge cannot be prepared. Thus, P
40 vol% even if SA-I method or PSA-II method is adopted
It was difficult to obtain a high-concentration gas of 90 vol% or more with a high recovery rate from the following low-concentration CO 2 -containing gas. Therefore, the present invention solves the above-mentioned drawbacks and makes it possible to obtain a high concentration gas of 90 vol% or more with a high recovery rate from a low concentration CO 2 containing gas of 40 vol% or less as a raw material.
It is intended to provide a method for recovering CO 2 using the method.

【0010】[0010]

【問題点を解決するための手段】本発明は、CO2 吸着
剤を充填した吸着塔を2段に使用して、40vol%以
下の低濃度CO2 含有ガスからCO2 を回収する方法に
おいて、第1段吸着塔では(1)上記ガスを相対的に低
温、高圧で供給してCO2 を吸着させ、随伴する難吸着
性ガスを塔の後方部より回収する吸着工程と、(2)吸
着工程終了後の吸着塔前方部から減圧し、次いで上記難
吸着性ガスの一部を向流に導入してCO2濃度を40v
ol%以上に減容濃縮して回収する工程とを、交互に切
り換えて連続的にCO2 を回収し、次いで、第2段吸着
塔では(3)上記減容濃縮されたCO2 含有ガスを相対
的に低温、高圧で供給してCO2 を吸着させ、随伴する
難吸着性ガスを塔の後方部より回収する吸着工程と、
(4)吸着工程終了後の第2段吸着塔の前方部から高度
に濃縮されたCO2 含有ガスを並流に流過して塔内に残
留する難吸着性ガスを塔外に放出する並流パージ工程
と、(5)並流パージ工程終了後の第2段吸着塔の前方
部から減圧して高度に濃縮されたCO2 含有ガスを回収
する減圧回収工程と、(6)減圧回収工程終了後の吸着
塔に向流にガスを流して復圧する工程とを、交互に切り
換えて連続的に高濃度のCO2 ガスを回収するととも
に、第2段吸着塔の上記(4)の並流パージ工程から流
過するガスを上記(3)の吸着工程、又は、上記(6)
の向流復圧工程に戻すことを特徴とする圧力スィング吸
着法によるCO2 の回収方法である。なお、上記方法に
おいて、第2段吸着塔の上記(3)の吸着工程から流過
するガスは、第1段吸着塔の上記(1)の吸着工程に戻
して、大気汚染をもたらさない程度までCO2 濃度を低
下させることにより、大気への直接放出を容易にするこ
とが好ましい。
The present invention provides a method for recovering CO 2 from a low-concentration CO 2 -containing gas of 40 vol% or less by using an adsorption tower packed with a CO 2 adsorbent in two stages. In the first stage adsorption tower, (1) an adsorption step of supplying the above-mentioned gas at a relatively low temperature and high pressure to adsorb CO 2 and collecting the accompanying hardly adsorbed gas from the rear part of the tower, and (2) adsorption After the end of the process, the pressure was reduced from the front part of the adsorption tower, and then a part of the hardly adsorbed gas was introduced in a counterflow to adjust the CO 2 concentration to 40
CO 2 is continuously collected by alternately switching the step of reducing the volume to more than ol% and collecting the CO 2. Then, in the second-stage adsorption column, (3) the volume-reduced concentrated CO 2 -containing gas is collected. An adsorption step of supplying CO 2 at a relatively low temperature and high pressure to adsorb CO 2 and collecting the accompanying hardly adsorbed gas from the rear part of the tower;
(4) A high-concentration CO 2 -containing gas is passed in a cocurrent flow from the front part of the second-stage adsorption column after the adsorption step to release the hardly adsorbed gas remaining in the column to the outside of the column. Flow purging step, (5) decompression recovery step of decompressing the highly concentrated CO 2 -containing gas from the front part of the second-stage adsorption tower after completion of the co-current purging step, and (6) decompression recovery step The CO 2 gas having a high concentration is continuously recovered by alternately switching the step of flowing the gas countercurrently to the adsorption tower after the completion to restore the pressure, and the parallel flow of the above (4) of the second stage adsorption tower. The gas flowing from the purging step is adsorbed in the above (3) or the above (6)
The CO 2 recovery method by the pressure swing adsorption method is characterized by returning to the countercurrent re-pressurization step. In the above method, the gas flowing from the adsorption step (3) of the second stage adsorption tower is returned to the adsorption step (1) of the first stage adsorption tower to the extent that it does not cause air pollution. It is preferable to facilitate the direct release to the atmosphere by reducing the CO 2 concentration.

【0011】[0011]

【作用】本発明は、上記のPSA−I法とPSA−II法
を2段階に有機的に組み合わせることにより、40vo
l%以下の低濃度CO2 含有ガスから高い回収率で高濃
度CO2 ガスを回収することを可能にしたものである。
即ち、第2段目のPSA−II法の並流パージ工程から流
過するガスを第2段目の吸着工程又は向流復圧工程に戻
すことにより、従来のPSA−II法の欠点である低回収
率を改善し、第2段目のPSA−II法の吸着工程から流
過するガスを第1段目の吸着工程に戻すことにより、回
収率の一層の向上と、系外に放出するガス中のCO2
度を一層低下させて大気中への廃棄を可能にしたもので
ある。
The present invention organically combines the above-mentioned PSA-I method and PSA-II method in two steps to obtain 40 vo
The high concentration CO 2 gas can be recovered from the low concentration CO 2 containing gas of 1% or less at a high recovery rate.
That is, it is a drawback of the conventional PSA-II method by returning the gas flowing from the co-current purging step of the second PSA-II method to the adsorption step or the countercurrent recompression step of the second step. By improving the low recovery rate and returning the gas flowing from the adsorption step of the second stage PSA-II method to the first stage adsorption step, the recovery rate is further improved and the gas is released to the outside of the system. The CO 2 concentration in the gas is further reduced to enable disposal into the atmosphere.

【0012】[0012]

【実施例】図1に記載のPSA装置を用いて、CO2
0vol%、窒素90vol%からなる原料ガスからC
2 を99vol%まで濃縮した。第1段の2つの吸着
塔6には、それぞれ500kgのCO2 吸着剤5を充填
し、吸着工程にある吸着塔6aのバルブ4a及び7aを
開放し、上記原料ガス1をブロア2で1〜5atmに圧
縮し、流路3、バルブ4aを経て吸着塔6aに導入して
CO2 を吸着し、バルブ7a、流路8を経て難吸着性の
窒素ガスを回収した。そして、CO2 吸着帯が吸着塔6
aの後方部に移動した段階で吸着工程を終了した。
EXAMPLE Using the PSA apparatus shown in FIG. 1, CO 2 1
C from raw material gas consisting of 0 vol% and 90 vol% nitrogen
O 2 was concentrated to 99 vol%. The first two adsorption towers 6 are each filled with 500 kg of CO 2 adsorbent 5, the valves 4a and 7a of the adsorption tower 6a in the adsorption step are opened, and the raw material gas 1 is blown by compressed into 5 atm, the flow path 3, adsorbed CO 2 is introduced into the adsorption tower 6a past valve 4a, the valve 7a, to recover the flame adsorbable nitrogen gas through the flow path 8. The CO 2 adsorption zone is the adsorption tower 6
The adsorption process was completed when the film was moved to the rear part of a.

【0013】吸着工程を終了した吸着塔6bは、バルブ
9b、バルブ12bを開放して真空ポンプ10に連通
し、38〜380Torrまで減圧する間に、吸着工程
で回収した窒素ガスの一部を流路8、減圧弁11、バル
ブ12bを介して吸着塔6bに導入し、向流パージして
吸着剤5からCO2 を脱着させ、バルブ9b、真空ポン
プ10、流路13から回収した。回収ガス中のCO2
度は40vol%以上になるように設定した。向流パー
ジ工程を終了した吸着塔6bは、バルブ4bのみを開放
して原料ガスを導入し、大気圧に戻した。
In the adsorption tower 6b which has completed the adsorption step, the valves 9b and 12b are opened to communicate with the vacuum pump 10 and a part of the nitrogen gas recovered in the adsorption step is flowed while the pressure is reduced to 38 to 380 Torr. It was introduced into the adsorption tower 6b through the passage 8, the pressure reducing valve 11 and the valve 12b, and was subjected to countercurrent purging to desorb CO 2 from the adsorbent 5 and to collect it from the valve 9b, the vacuum pump 10 and the passage 13. The CO 2 concentration in the recovered gas was set to be 40 vol% or higher. In the adsorption tower 6b having completed the countercurrent purging step, only the valve 4b was opened to introduce the raw material gas, and the atmospheric pressure was restored.

【0014】第2段の4つの吸着塔16には、それぞれ
250kgのCO2 吸着剤5を充填し、第1段の減圧向
流パージ工程で回収されたガスを流路13からブロア1
4に導いて1〜5atmに圧縮する。吸着工程にある吸
着塔16aのバルブ15a及び17aを開放し、上記回
収ガスをバルブ15aを経て吸着塔16aに導入してC
2 を吸着し、バルブ17a、流路18を経て難吸着性
の窒素ガスを回収した。この回収ガスは、第1段の吸着
工程から流過するガスと比べてCO2 濃度が高いため、
大気中にそのまま放出することができない。そこで、こ
の回収ガスは流路18を経てブロア2の直前に戻して第
1段の吸着工程にある吸着塔6aに導入することによ
り、CO2 を吸着分離してCO2 濃度を極めて低い状態
にして窒素ガスを流路8から回収し、第1段の向流パー
ジに使用する分を除いて大気中に放出した。
The four adsorption towers 16 of the second stage are each filled with 250 kg of CO 2 adsorbent 5, and the gas recovered in the depressurizing countercurrent purging step of the first stage is blown from the flow passage 13 to the blower 1.
4 and compress to 1-5 atm. The valves 15a and 17a of the adsorption tower 16a in the adsorption step are opened, and the recovered gas is introduced into the adsorption tower 16a via the valve 15a to introduce C
O 2 was adsorbed and the hardly adsorbed nitrogen gas was recovered through the valve 17 a and the flow path 18. Since this recovered gas has a higher CO 2 concentration than the gas flowing from the first-stage adsorption step,
It cannot be released directly into the atmosphere. Therefore, this recovered gas is returned immediately before the blower 2 via the flow path 18 and introduced into the adsorption tower 6a in the adsorption step of the first stage, whereby CO 2 is adsorbed and separated to make the CO 2 concentration extremely low. Nitrogen gas was recovered from the flow path 8 and discharged into the atmosphere except for the amount used for the countercurrent purging in the first stage.

【0015】CO2 吸着帯が吸着塔の後方部に移動し、
吸着工程を終了した吸着塔16bは、バルブ20b及び
バルブ21bを開放することにより並流パージ工程に移
行し、製品ホルダ27から高度に濃縮されたCO2 を流
路19、バルブ20bを経て吸着塔16bに並流に流過
することにより、塔内に滞留する窒素ガスをパージして
バルブ21b、流路22を経て塔外に放出される。この
放出ガスはCO2 濃度が相当に高いので、ブロア14の
直前に戻して第2段の吸着工程にある吸着塔16aに導
入してCO2 を回収した。
The CO 2 adsorption zone moves to the rear part of the adsorption tower,
The adsorption tower 16b that has completed the adsorption step shifts to the cocurrent purge step by opening the valve 20b and the valve 21b, and CO 2 highly concentrated from the product holder 27 is passed through the flow path 19 and the valve 20b. By flowing in parallel to 16b, the nitrogen gas staying in the tower is purged and discharged outside the tower through the valve 21b and the flow path 22. Since this released gas has a considerably high CO 2 concentration, it was returned immediately before the blower 14 and introduced into the adsorption tower 16a in the second stage adsorption step to recover CO 2 .

【0016】並流パージ工程を終了した吸着塔16c
は、バルブ25cを開放することにより減圧回収工程に
移行し、真空ポンプ26で再生圧力の高真空まで吸引し
て吸着剤5に吸着されているCO2 を脱着して回収し、
製品ホルダ27に貯蔵した。貯蔵されたCO2 の一部
は、流路28から系外に製品として取り出すとともに、
一部は上記の並流パージ工程の吸着塔16cに戻してパ
ージ用に使用した。
Adsorption tower 16c which has completed the co-current purging process
Shifts to the reduced pressure recovery step by opening the valve 25c, and the CO 2 adsorbed on the adsorbent 5 is desorbed and recovered by suctioning to a high vacuum of the regeneration pressure by the vacuum pump 26,
Stored in product holder 27. Part of the stored CO 2 is taken out of the system from the channel 28 as a product, and
A part of them was returned to the adsorption tower 16c in the above parallel flow purging step and used for purging.

【0017】減圧回収工程を終了した吸着塔16dは、
バルブ24dを開放することにより向流復圧工程に移行
し、並流パージ工程の吸着塔16bから放出されたガス
の一部を流路22、流量制御バルブ23を介して吸着塔
16dに導入して復圧し、次の吸着工程に備えた。この
間の第1段の吸着塔のシーケンスは図2のとおりであ
り、第2段の吸着塔のシーケンスは図3のとおりであっ
た。なお、各ステップの所要時間の単位は秒である。
The adsorption tower 16d which has completed the reduced pressure recovery step is
By opening the valve 24d, the countercurrent decompression process is started, and a part of the gas released from the adsorption tower 16b in the cocurrent purge step is introduced into the adsorption tower 16d through the flow path 22 and the flow control valve 23. Then, the pressure was restored to prepare for the next adsorption step. The sequence of the first-stage adsorption tower during this period was as shown in FIG. 2, and the sequence of the second-stage adsorption tower was as shown in FIG. The unit of time required for each step is seconds.

【0018】最適な吸着剤を選定するために、表2に記
載のCO2 吸着剤を用い、CO2 濃度10vol%、窒
素90%のガスを原料とし、第1段の吸着塔の吸着圧力
を1.2atm、吸着温度を50℃、再生圧力を0.2
atm、パージ率αを40%、サイクルタイム5分とし
て第1段の吸着操作を行い、回収ガスのCO2 濃度(v
ol%)と1Tonの吸着剤に換算した原料ガスの処理
能力(Nm3 /Ton)を表2に記載した。表2から明
らかなように、Na−XゼオライトCO2 吸着剤におい
ては、SiO2 /Al2 3 比が2.7以上の従来のC
2 吸着剤に比べ、X型として実用上最も低い2.5の
ものが優れていることが分かる。また、Naの30mo
l%以上をCaに交換したCa−Xゼオライト(SiO
2 /Al2 3 =2.7)がCa交換率の低いものに比
べて優れていることが分かる。
In order to select the optimum adsorbent, the CO 2 adsorbents shown in Table 2 were used, a gas with a CO 2 concentration of 10 vol% and nitrogen of 90% was used as the raw material, and the adsorption pressure of the first stage adsorption tower was adjusted. 1.2 atm, adsorption temperature 50 ° C, regeneration pressure 0.2
Atm, the purge rate α is 40%, the cycle time is 5 minutes, the first stage adsorption operation is performed, and the CO 2 concentration (v
ol%) and the treatment capacity (Nm 3 / Ton) of the raw material gas converted into an adsorbent of 1 Ton are shown in Table 2. As is clear from Table 2, in the Na—X zeolite CO 2 adsorbent, the conventional C having an SiO 2 / Al 2 O 3 ratio of 2.7 or more was used.
It can be seen that, as compared with the O 2 adsorbent, the X-type one having the lowest practical value of 2.5 is superior. Also, 30mo of Na
Ca-X zeolite (SiO) with 1% or more exchanged for Ca
It can be seen that 2 / Al 2 O 3 = 2.7) is superior to that having a low Ca exchange rate.

【0019】[0019]

【表2】 [Table 2]

【0020】そこで、第1段吸着塔のCO2 吸着剤とし
て、Na−Xゼオライト(SiO2/Al2 3 =2.
5)を、第2段吸着塔のCO2 吸着剤として、Ca交換
率が60%のCa−Xゼオライト(SiO2 /Al2
3 =2.5)を使用して、全システムの評価を以下のと
おり行った。
Therefore, as a CO 2 adsorbent for the first stage adsorption tower, Na-X zeolite (SiO 2 / Al 2 O 3 = 2.
5) is used as a CO 2 adsorbent in the second stage adsorption tower, and Ca-X zeolite (SiO 2 / Al 2 O) having a Ca exchange rate of 60% is used.
3 = 2.5) was used to evaluate the entire system as follows.

【0021】第1段の吸着塔について、吸着圧力を1.
2atm、再生圧力を0.2atm、第1段吸着塔の原
料ガスのCO2 濃度を10vol%、パージ率を40%
にし、吸着温度を変化させて第1段の回収ガス中のCO
2 濃度(vol%)を測定し、吸着温度とCO2 濃度の
関係を図4に示した。上記Na−X吸着剤は25〜12
0℃の比較的低温域に適用性があるのに対し、上記Ca
−X吸着剤は40〜200℃の比較的高温域に適用性が
あることが分かる。
With respect to the first-stage adsorption tower, the adsorption pressure was 1.
2 atm, regeneration pressure 0.2 atm, CO 2 concentration of raw material gas in the first stage adsorption tower 10 vol%, purge rate 40%
And the adsorption temperature is changed to change the CO in the recovered gas of the first stage.
Two concentrations (vol%) were measured, and the relationship between the adsorption temperature and the CO 2 concentration is shown in FIG. The Na-X adsorbent is 25 to 12
While it is applicable to a relatively low temperature range of 0 ° C, the above Ca
It can be seen that the -X adsorbent is applicable to a relatively high temperature range of 40 to 200 ° C.

【0022】第1段の吸着塔について、上記の条件のう
ち吸着温度を50℃とし、第1段の入口ガス中のCO2
濃度を変化させるときの、第1段の回収ガス中のCO2
濃度を測定して対比したのが図5である。CO2 濃度が
8vol%の入口ガスを使用するときに、第1段の回収
ガス中のCO2 濃度は40vol%に達し、40vol
%の入口ガスを使用するときには、第1段の回収ガス中
のCO2 濃度は80vol%に達した。
Regarding the first-stage adsorption tower, the adsorption temperature is set to 50 ° C. among the above-mentioned conditions, and CO 2 in the inlet gas of the first stage is set.
CO 2 in the recovery gas of the first stage when changing the concentration
FIG. 5 shows the measured concentrations for comparison. When the inlet gas having a CO 2 concentration of 8 vol% is used, the CO 2 concentration in the recovered gas of the first stage reaches 40 vol% and is 40 vol%.
When using a% inlet gas, the CO 2 concentration in the first stage recovered gas reached 80 vol%.

【0023】第1段の吸着塔について、上記の条件のう
ち吸着温度を50℃、パージ率を40%、第1段の入口
ガス中のCO2 濃度を10vol%とし、第1段の再生
圧力を変化させるときの、第1段の回収ガス中のCO2
濃度を測定して対比したのが図6である。真空到達圧力
が高真空になるほど、パージガス量を低減することがで
き、理論的には1Torr以下でのパージも考えられる
が、真空ポンプの効率、バルブのリークを考慮すると、
30Torr程度が下限である。
Regarding the first stage adsorption tower, the adsorption temperature is 50 ° C., the purge rate is 40%, the CO 2 concentration in the inlet gas of the first stage is 10 vol%, and the regeneration pressure of the first stage is CO 2 in the recovery gas of the first stage when changing the
FIG. 6 shows the measured concentrations for comparison. The higher the ultimate vacuum pressure is, the smaller the amount of purge gas can be reduced, and theoretically, a purge at 1 Torr or less can be considered. However, considering the efficiency of the vacuum pump and the leak of the valve,
The lower limit is about 30 Torr.

【0024】第1段の吸着塔について、上記の条件のう
ち再生圧力を0.2atm、吸着温度を50℃、パージ
率を40%、第1段の入口ガス中のCO2 濃度を10v
ol%とし、第1段の吸着圧力を変化させ、第1段の回
収ガス中のCO2 濃度を測定して対比したのが図7であ
る。吸着圧力の上昇に伴い、パージガス量の低減によ
る、回収濃度の向上も可能である。但し、CO2 の分圧
が1atmを越えると吸着量が飽和傾向に向かうため4
atmが上限である。省エネルギーを計るためには、吸
着塔圧損を見合う吸着圧力1.05〜1.3atm程度
で操作するのが好ましい。
Regarding the first stage adsorption tower, of the above conditions, the regeneration pressure is 0.2 atm, the adsorption temperature is 50 ° C., the purge rate is 40%, and the CO 2 concentration in the first stage inlet gas is 10 v.
FIG. 7 shows that the CO 2 concentration in the recovered gas in the first stage was measured and compared with the adsorption pressure in the first stage changed with the ol%. It is also possible to improve the recovery concentration by reducing the purge gas amount as the adsorption pressure rises. However, when the partial pressure of CO 2 exceeds 1 atm, the amount of adsorption tends to saturate, so 4
atm is the upper limit. In order to save energy, it is preferable to operate at an adsorption pressure of 1.05 to 1.3 atm, which corresponds to the pressure loss of the adsorption tower.

【0025】第2段の吸着塔について、上記の条件のう
ち吸着圧力を1.2atm、再生圧力を0.2atm、
吸着温度を50℃、第2段入口のCO2 濃度を55vo
l%とし、上記と同様に第2段の吸着分離を行うと、パ
ージ率と第2段の回収ガスのCO2 濃度との関係は図8
のとおりであり、上記Na−X、Ca−Xともに、パー
ジ率60%、70%、85%で、第2段の回収ガスのC
2 濃度は95vol%、99vol%、99.9vo
l%と達した。
Regarding the second stage adsorption tower, the adsorption pressure is 1.2 atm, the regeneration pressure is 0.2 atm,
Adsorption temperature is 50 ° C, CO 2 concentration at the second stage inlet is 55 vo
If the second stage adsorption / separation is carried out in the same manner as above with 1%, the relationship between the purge rate and the CO 2 concentration of the second stage recovered gas is shown in FIG.
And the purge rates of 60%, 70%, and 85% for both Na-X and Ca-X, and C of the recovered gas of the second stage.
O 2 concentration is 95 vol%, 99 vol%, 99.9vo
reached 1%.

【0026】第2段の吸着塔について、上記の条件のう
ち吸着圧力を1.2atm、再生圧力を0.2atm、
吸着温度を50℃、パージ率を65%に固定し、第2段
入口のCO2 濃度を変化させ、第2段の回収ガスのCO
2 濃度を測定したところ、図9のとおりであり、第2段
入口のCO2 濃度が40vol%を越えると、第2段の
回収ガスのCO2 濃度も90vol%を越えることが分
かる。
Regarding the second stage adsorption tower, the adsorption pressure is 1.2 atm, the regeneration pressure is 0.2 atm,
The adsorption temperature was fixed at 50 ° C, the purge rate was fixed at 65%, the CO 2 concentration at the inlet of the second stage was changed, and the CO 2 concentration of the recovered gas at the second stage was changed.
The measurement of the two concentrations is as shown in FIG. 9, and it can be seen that when the CO 2 concentration at the inlet of the second stage exceeds 40 vol%, the CO 2 concentration of the recovered gas of the second stage also exceeds 90 vol%.

【0027】第2段の吸着塔について、上記の条件のう
ち吸着圧力を1.2atm、吸着温度を50℃、パージ
率を70%に固定し、第2段入口のCO2 濃度を55v
ol%にし、再生圧力を変化させ、第2段の回収ガスの
CO2 濃度を測定したところ、図10のとおりであり、
再生圧力が高真空になるほど、第2段の回収ガスのCO
2 濃度は上昇するが、0.05atm以下では濃度上昇
は鈍化し、また、真空ポンプの容量も大きくなるので経
済的でない。
Regarding the second-stage adsorption tower, the adsorption pressure was 1.2 atm, the adsorption temperature was 50 ° C., the purge rate was 70%, and the CO 2 concentration at the second-stage inlet was 55 v.
It was set to ol%, the regeneration pressure was changed, and the CO 2 concentration of the recovered gas in the second stage was measured.
The higher the regeneration pressure, the higher the CO
2 The concentration increases, but if it is less than 0.05 atm, the concentration increase slows down, and the capacity of the vacuum pump increases, which is not economical.

【0028】第2段の吸着塔について、上記の条件のう
ち再生圧力を0.2atm、吸着温度を55℃、パージ
率を70%、第2段入口のCO2 濃度を55vol%に
し、吸着圧力を変化させ、第2段の回収ガスのCO2
度を測定したところ、図11のとおりであり、吸着圧力
が高くなるほど、第2段の回収ガスのCO2 濃度は上昇
するが、3atmを越えると鈍化し、また、ブロアの消
費電力からも経済的でない。
Regarding the second stage adsorption tower, the regeneration pressure was 0.2 atm, the adsorption temperature was 55 ° C., the purge rate was 70%, the CO 2 concentration at the second stage inlet was 55 vol%, and the adsorption pressure was When the CO 2 concentration of the second-stage recovered gas was measured, it was as shown in FIG. 11. The higher the adsorption pressure, the higher the CO 2 concentration of the second-stage recovered gas, but above 3 atm. And it is not economical from the power consumption of the blower.

【0029】(実施例1)以上の傾向を把握した上で下
記の操作条件でCO2 の回収を行い、第2段吸着塔の回
収ガスのCO2 濃度とCO2 の回収率を比較した。な
お、ケースIでは、第2段吸着塔の吸着工程からの流出
ガスは、第1段吸着塔のブロアの前段に戻して原料ガス
とともに吸着工程に導入し、かつ、第2段の並流パージ
工程の流出ガスは、第2段吸着塔の減圧回収工程を終了
した吸着塔に向流で供給して復圧した。ケースIIでは、
第2段吸着塔の吸着工程からの流出ガス、及び、第2段
の並流パージ工程の流出ガスは、直接系外に放出した。
(Example 1) After grasping the above tendency, CO 2 was recovered under the following operating conditions, and the CO 2 concentration of the recovered gas in the second stage adsorption tower and the CO 2 recovery rate were compared. In case I, the outflow gas from the adsorption step of the second-stage adsorption tower is returned to the previous stage of the blower of the first-stage adsorption tower and introduced into the adsorption step together with the raw material gas, and the second-stage co-current purge is performed. The effluent gas of the process was countercurrently supplied to the adsorption tower after the decompression recovery process of the second-stage adsorption tower was completed to restore the pressure. In case II,
The effluent gas from the adsorption step of the second stage adsorption tower and the effluent gas of the second stage co-current purging step were directly discharged to the outside of the system.

【0030】第1段吸着塔 吸着剤 Na−X(シリカ/アルミ
ナ=2.5) 吸着圧力 1.2atm 再生圧力 0.2atm 向流パージ率 40% 吸着温度 50℃ 入口ガスのCO2 濃度 10vol% 出口ガスのCO2 濃度 2vol% 回収ガスのCO2 濃度 43vol% 第2段吸着塔 吸着剤 Na−X(シリカ/アルミ
ナ=2.5) 吸着圧力 1.2atm 再生圧力 0.2atm 並流パージ率 75% 吸着温度 50℃ 入口ガスのCO2 濃度 43vol% 回収ガスのCO2 濃度 99vol%(ケースI) 回収ガスのCO2 濃度 95vol%(ケースII) 総合的なCO2 の回収率は、ケースIが95%であるの
に対し、ケースIIは40%であり、ケースIが極めて有
効であることが分かる。
First-stage adsorption tower Adsorbent Na-X (silica / alumina = 2.5) Adsorption pressure 1.2 atm Regeneration pressure 0.2 atm Countercurrent purge ratio 40% Adsorption temperature 50 ° C. CO 2 concentration of inlet gas 10 vol% outlet of the CO 2 concentration of 2 vol% recovered gas in the gas CO 2 concentration 43 vol% second stage adsorption tower adsorbent Na-X (silica / alumina = 2.5) adsorption pressure 1.2atm regeneration pressure 0.2atm cocurrent purge rate 75 % adsorption temperature 50 ° C. inlet CO 2 concentration 99 vol% of CO 2 concentration 43 vol% recovered gas in the gas (case I) the CO 2 concentration 95 vol% of the recovered gas (case II) recovery of overall CO 2 are cases I It is 95%, whereas Case II is 40%, which shows that Case I is extremely effective.

【0031】(実施例2)実施例1の条件でCO2 の回
収を行い、ケースIでは、第2段吸着塔の吸着工程から
の流出ガスを、第1段吸着塔のブロアの前段に戻して原
料ガスとともに吸着工程に導入し、第2段吸着塔の並流
パージ工程からの流出ガスを、第2段吸着塔のブロアの
前段に戻して第2段の吸着工程に導入した。ケースIIで
は、第2段吸着塔の吸着工程からの流出ガス、及び、第
2段の並流パージ工程の流出ガスは、直接系外に放出し
た。第2段吸着塔の回収ガスのCO2 濃度は、ケースI
で98vol%であり、ケースIIでは90vol%であ
るが、総合的なCO2 の回収率は、ケースIが90%で
あるのに対し、ケースIIは40%であり、ケースIが極
めて有効であることが分かる。
(Example 2) CO 2 was recovered under the conditions of Example 1, and in case I, the outflow gas from the adsorption step of the second stage adsorption tower was returned to the stage before the blower of the first stage adsorption tower. Was introduced into the adsorption step together with the raw material gas, and the outflow gas from the co-current purging step of the second-stage adsorption tower was returned to the front stage of the blower of the second-stage adsorption tower and introduced into the second-stage adsorption step. In Case II, the outflow gas from the adsorption process of the second stage adsorption tower and the outflow gas of the second stage co-current purging process were directly discharged to the outside of the system. The CO 2 concentration in the recovered gas of the second stage adsorption tower is case I
In case II, the total CO 2 recovery rate is 90%, whereas in case II, it is 40%, and case I is extremely effective. I know there is.

【0032】[0032]

【発明の効果】本発明は、吸着塔を2段で使用し、第2
段吸着塔の吸着工程の流出ガスを第1段の吸着工程に戻
したり、第2段吸着塔の並流パージ工程の流出ガスを第
2段吸着塔の向流復圧工程か、吸着工程に流すことによ
り、従来の向流パージ法と並流パージ法の利点を兼ね備
えた、高濃度のCO2 を高い回収率で回収することを可
能とした。
The present invention uses the adsorption tower in two stages,
The effluent gas of the adsorption step of the two-stage adsorption tower is returned to the first-stage adsorption step, and the effluent gas of the co-current purging step of the second-stage adsorption tower is returned to the countercurrent recompression step or adsorption step of the second-stage adsorption tower. By flowing, it has become possible to recover a high concentration of CO 2 at a high recovery rate, which has the advantages of the conventional countercurrent purge method and the parallel flow purge method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のPSA法を実施するための装置のフロ
ーシートである。
FIG. 1 is a flow sheet of an apparatus for carrying out the PSA method of the present invention.

【図2】実施例における第1段吸着塔のシーケンスを図
示したものである。
FIG. 2 is a diagram showing a sequence of a first-stage adsorption tower in an example.

【図3】実施例における第2段吸着塔のシーケンスを図
示したものである。
FIG. 3 is a diagram showing the sequence of the second-stage adsorption tower in the examples.

【図4】実施例において、吸着温度と、第1段吸着塔の
回収ガスのCO2 濃度との関係を示したグラフである。
FIG. 4 is a graph showing the relationship between the adsorption temperature and the CO 2 concentration of the recovered gas in the first stage adsorption tower in the examples.

【図5】実施例において、第1段吸着塔の入口ガスのC
2 濃度と、第1段吸着塔の回収ガスのCO2 濃度との
関係を示したグラフである。
[FIG. 5] In Example, C of the inlet gas of the first-stage adsorption tower
It is a graph showing the relationship between the O 2 concentration and the CO 2 concentration of the recovered gas of the first stage adsorption tower.

【図6】実施例において、第1段吸着塔の再生圧力と、
第1段吸着塔の回収ガスのCO 2 濃度との関係を示した
グラフである。
FIG. 6 shows the regeneration pressure of the first-stage adsorption column in the example,
CO in the recovered gas of the first stage adsorption tower 2Showed the relationship with concentration
It is a graph.

【図7】実施例において、第1段吸着塔の吸着圧力と、
第1段吸着塔の回収ガスのCO 2 濃度との関係を示した
グラフである。
FIG. 7 shows the adsorption pressure of the first-stage adsorption tower in Examples,
CO in the recovered gas of the first stage adsorption tower 2Showed the relationship with concentration
It is a graph.

【図8】実施例において、第2段吸着塔のパージ率と、
第2段吸着塔の回収ガスのCO 2 濃度との関係を示した
グラフである。
FIG. 8 shows the purge rate of the second-stage adsorption tower in Examples,
CO of recovered gas in the second stage adsorption tower 2Showed the relationship with concentration
It is a graph.

【図9】実施例において、第2段吸着塔の入口ガスの硫
化水素濃度と、第2段吸着塔の回収ガスのCO2 濃度と
の関係を示したグラフである。
FIG. 9 is a graph showing the relationship between the hydrogen sulfide concentration of the inlet gas of the second-stage adsorption tower and the CO 2 concentration of the recovered gas of the second-stage adsorption tower in the examples.

【図10】実施例において、第2段吸着塔の再生圧力
と、第2段吸着塔の回収ガスのCO 2 濃度との関係を示
したグラフである。
FIG. 10 shows the regeneration pressure of the second-stage adsorption tower in the examples.
And CO of the recovered gas of the second stage adsorption tower 2Show relationship with concentration
It is a graph.

【図11】実施例において、第2段吸着塔の吸着圧力
と、第2段吸着塔の回収ガスのCO 2 濃度との関係を示
したグラフである。
FIG. 11 is an adsorption pressure of the second-stage adsorption tower in Examples.
And CO of the recovered gas of the second stage adsorption tower 2Show relationship with concentration
It is a graph.

【図12】従来の向流パージ法を実施するための装置の
フローシートである。
FIG. 12 is a flow sheet of an apparatus for performing a conventional countercurrent purging method.

【図13】従来の並流パージ法を実施するための装置の
フローシートである。
FIG. 13 is a flow sheet of an apparatus for performing a conventional co-current purging method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大嶋 一晃 長崎県長崎市飽の浦1番1号 三菱重工業 株式会社長崎造船所内 (72)発明者 野原 博 長崎県長崎市飽の浦1番1号 三菱重工業 株式会社長崎造船所内 (72)発明者 小川 紀一郎 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 縄田 秀夫 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuaki Oshima 1-1 No. 1 Atsunoura, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Hiroshi Nohara 1-1 No. 1 Atsunoura, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Kiichiro Ogawa 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) Hideo Nawata 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Within

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 CO2 吸着剤を充填した吸着塔を2段に
使用して、40vol%以下の低濃度CO2 含有ガスか
らCO2 を回収する方法において、第1段吸着塔では
(1)上記ガスを相対的に低温、高圧で供給してCO2
を吸着させ、随伴する難吸着性ガスを塔の後方部より回
収する吸着工程と、(2)吸着工程終了後の吸着塔前方
部から減圧し、次いで上記難吸着性ガスの一部を向流に
導入してCO2 濃度を40vol%以上に減容濃縮して
回収する工程とを、交互に切り換えて連続的にCO2
回収し、次いで、第2段吸着塔では(3)上記減容濃縮
されたCO2 含有ガスを相対的に低温、高圧で供給して
CO2 を吸着させ、随伴する難吸着性ガスを塔の後方部
より回収する吸着工程と、(4)吸着工程終了後の第2
の吸着塔の前方部から高度に濃縮されたCO2 含有ガス
を並流に流過して塔内に残留する難吸着性ガスを塔外に
放出する並流パージ工程と、(5)並流パージ工程終了
後の第2段吸着塔の前方部から減圧して高度に濃縮され
たCO2 含有ガスを回収する減圧回収工程と、(6)減
圧回収工程終了後の吸着塔に向流にガスを流して復圧す
る工程とを、交互に切り換えて連続的に高濃度のCO2
を回収するとともに、第2段吸着塔の上記(4)の並流
パージ工程から流過するガスを上記(3)の吸着工程、
又は、上記(6)の向流復圧工程に戻すことを特徴とす
る圧力スィング吸着法によるCO2 の回収方法。
1. A method for recovering CO 2 from a low-concentration CO 2 -containing gas of 40 vol% or less by using an adsorption tower packed with a CO 2 adsorbent in two stages, wherein (1) is used in the first-stage adsorption tower. The above gas is supplied at a relatively low temperature and high pressure to produce CO 2
Adsorption step of adsorbing the adsorbed gas and collecting the accompanying hardly adsorbed gas from the rear part of the tower, and (2) decompressing from the front part of the adsorption tower after the adsorption step, and then counterflowing a part of the hardly adsorbed gas. CO 2 concentration is reduced to 40 vol% or more for concentration and recovery, and CO 2 is continuously recovered, and then in the second-stage adsorption tower, (3) above-mentioned volume reduction is carried out. An adsorption step of supplying a concentrated CO 2 -containing gas at a relatively low temperature and a high pressure to adsorb CO 2 and collecting the accompanying hardly adsorbed gas from the rear part of the tower, and (4) after the adsorption step Second
Co-current purging step of flowing a highly concentrated CO 2 -containing gas in a co-current direction from the front part of the adsorption tower and discharging the hardly adsorbed gas remaining in the tower to the outside of the tower, (5) co-current flow After the purging process is completed, a pressure reduction recovery process is performed in which pressure is reduced from the front part of the second-stage adsorption tower to recover highly concentrated CO 2 -containing gas; And the step of re-pressurizing are alternately switched to continuously produce high-concentration CO 2
And the gas flowing through from the parallel flow purging step (4) of the second stage adsorption tower is collected,
Alternatively, the method of recovering CO 2 by the pressure swing adsorption method is characterized by returning to the countercurrent recompression step of (6) above.
【請求項2】 第2段吸着塔の上記(3)の吸着工程か
ら流過するガスを、第1段吸着塔の上記(1)の吸着工
程に戻すことを特徴とする請求項1記載のCO2 の回収
方法。
2. The gas flowing from the adsorption step (3) of the second stage adsorption tower is returned to the adsorption step (1) of the first stage adsorption tower. CO 2 recovery method.
JP4035074A 1992-02-21 1992-02-21 Recovery method of low concentration carbon dioxide Expired - Fee Related JP2994843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4035074A JP2994843B2 (en) 1992-02-21 1992-02-21 Recovery method of low concentration carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4035074A JP2994843B2 (en) 1992-02-21 1992-02-21 Recovery method of low concentration carbon dioxide

Publications (2)

Publication Number Publication Date
JPH05228326A true JPH05228326A (en) 1993-09-07
JP2994843B2 JP2994843B2 (en) 1999-12-27

Family

ID=12431857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4035074A Expired - Fee Related JP2994843B2 (en) 1992-02-21 1992-02-21 Recovery method of low concentration carbon dioxide

Country Status (1)

Country Link
JP (1) JP2994843B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0947624A (en) * 1995-08-04 1997-02-18 Mitsubishi Heavy Ind Ltd Method for adsorption and separation of gas
KR100565210B1 (en) * 2004-08-19 2006-03-30 엘지전자 주식회사 Air separator
CN100444933C (en) * 2006-03-22 2008-12-24 四川省达科特化工科技有限公司 Pressure-changing adsorption method for recovering low-partial-pressure gas
CN111023611A (en) * 2019-12-16 2020-04-17 浙江英诺绿能科技有限公司 Carbon dioxide refrigerating system capable of cooling in stages and control method thereof
WO2023037854A1 (en) * 2021-09-07 2023-03-16 エア・ウォーター株式会社 Method for manufacturing purified gas, method for manufacturing dry ice, device for manufacturing purified gas, and device for manufacturing dry ice
WO2023095683A1 (en) * 2021-11-24 2023-06-01 株式会社Ihi Carbon dioxide recovering system and carbon dioxide recovering method
WO2023140238A1 (en) * 2022-01-18 2023-07-27 エア・ウォーター株式会社 Method and apparatus for manufacturing purified gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0947624A (en) * 1995-08-04 1997-02-18 Mitsubishi Heavy Ind Ltd Method for adsorption and separation of gas
KR100565210B1 (en) * 2004-08-19 2006-03-30 엘지전자 주식회사 Air separator
CN100444933C (en) * 2006-03-22 2008-12-24 四川省达科特化工科技有限公司 Pressure-changing adsorption method for recovering low-partial-pressure gas
CN111023611A (en) * 2019-12-16 2020-04-17 浙江英诺绿能科技有限公司 Carbon dioxide refrigerating system capable of cooling in stages and control method thereof
WO2023037854A1 (en) * 2021-09-07 2023-03-16 エア・ウォーター株式会社 Method for manufacturing purified gas, method for manufacturing dry ice, device for manufacturing purified gas, and device for manufacturing dry ice
WO2023095683A1 (en) * 2021-11-24 2023-06-01 株式会社Ihi Carbon dioxide recovering system and carbon dioxide recovering method
WO2023140238A1 (en) * 2022-01-18 2023-07-27 エア・ウォーター株式会社 Method and apparatus for manufacturing purified gas

Also Published As

Publication number Publication date
JP2994843B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
US6245127B1 (en) Pressure swing adsorption process and apparatus
US4781735A (en) Enrichment in oxygen gas
US5085674A (en) Duplex adsorption process
US4440548A (en) Pressure swing absorption system
CA1193982A (en) Process for removing a nitrogen gas from mixture comprising n.sub.2 and co or n.sub.2, co.sub.2 and co
US5429664A (en) Pressure swing absorption with recycle of void space gas
US6524370B2 (en) Oxygen production
JPS6026571B2 (en) Method and apparatus for increasing the proportion of component gases in a gas mixture
JP3073917B2 (en) Simultaneous pressure change adsorption method
US6045603A (en) Two phase pressure swing adsorption process
JPH0257972B2 (en)
JP2994843B2 (en) Recovery method of low concentration carbon dioxide
JPS6137970B2 (en)
JP2999050B2 (en) Recovery method of low concentration hydrogen sulfide
JP2948402B2 (en) Recovery method of low concentration sulfur dioxide
JPS60819A (en) Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method
EP0055669B1 (en) Repressurization for pressure swing adsorption system
EP0055962B1 (en) Repressurisation for pressure swing adsorption system
KR19980016382A (en) Pressure swing adsorption method for producing high purity carbon dioxide
EP0055961B1 (en) Repressurization process for pressure swing adsorption system
JPH04227018A (en) Manufacture of inert gas of high purity
JPH0967104A (en) Oxygen concentrating method by pressure swing adsorption
JPS62241523A (en) Separation and purification for carbon monoxide excellent in recovery efficiency
JPH04161214A (en) Concentration of oxygen gas
JPH05228323A (en) Separation of gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees