JPS621434A - Dehumidification/heat recovery method of gas separation apparatus - Google Patents

Dehumidification/heat recovery method of gas separation apparatus

Info

Publication number
JPS621434A
JPS621434A JP60138683A JP13868385A JPS621434A JP S621434 A JPS621434 A JP S621434A JP 60138683 A JP60138683 A JP 60138683A JP 13868385 A JP13868385 A JP 13868385A JP S621434 A JPS621434 A JP S621434A
Authority
JP
Japan
Prior art keywords
tower
gas
adsorption
pressure
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60138683A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tsutaya
博之 蔦谷
Seiichi Shirakawa
白川 精一
Jun Izumi
順 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60138683A priority Critical patent/JPS621434A/en
Publication of JPS621434A publication Critical patent/JPS621434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To reduce power cost, in a pressure swing method, by interposing a dehumidifying part and a heat exchange part in a flow passage, which supplies a gaseous mixture to an adsorbing tower, from the upstream side and performing dehumidification and cooling in an adsorbing process while reversely flowing adsorbed gas in a regeneration process. CONSTITUTION:Air compressed by a compressor 32 is passed through a dehumidifying tower 37 and subsequently cooled by a plate fin heat exchanger 41 and further cooled by a cooling tower 43 and again cooled by a heat exchanger 47 to enter a N2-adsorbing tower 50 to adsorb N2 while a product O2 is collected. The N2-adsorbing tower 50' in a regeneration process is reduced in pressure by a vacuum pump 55 and desorbed N2 reaches a cooling tower 43' through a heat exchanger 47' to recover cold heat and reversely flows through a dehumidifying tower 37' while dry N2 is flowed to regenerate the humidifying tower 37' and moisture is discharged out of the system along with N2 from the vacuum pump 55.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧力スイング法によるガス分離装置に関し、
吸着工程に於て使用された脱湿剤、冷熱を、吸着剤の再
生工程で脱湿剤の再生と冷熱の回収を行う方法に関する
ものである0 〔従来の技術〕 混合ガスの分離の1つの方法として、圧力スイング法が
ある。これは特定のガスを吸着する吸着剤を用いてガス
を分離し、圧力を変化させる(スイング)ことにより吸
着されたガスを脱着する方法である。吸着剤としては様
々なものが提供されており、各種の混合ガスの分離がな
されている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas separation device using a pressure swing method.
This relates to a method for regenerating the dehumidifying agent and recovering the cold energy used in the adsorption process in the adsorbent regeneration process.0 [Prior Art] One of the methods of separating mixed gases One method is the pressure swing method. This is a method in which gases are separated using an adsorbent that adsorbs specific gases, and the adsorbed gases are desorbed by changing the pressure (swing). Various adsorbents are available, and various mixed gases are separated.

N2を選択的に吸着する吸着剤を用いて、空気をN2と
02とに分離する分離法は、装置が小型簡易であり、又
無人運転に近い殆ど保守を必要としない利点をもつ。こ
の為、02製造量10〜3,00ONtr?−〇2/)
1程度の中小型酸素製造装置として近年使用例が増えて
きており、深冷分離装置で作られる液体酸素を輸送して
使用するケースについての代替が進行している。
A separation method in which air is separated into N2 and O2 using an adsorbent that selectively adsorbs N2 has the advantage that the equipment is small and simple, and requires almost no maintenance as it can be operated unmanned. For this reason, 02 production volume is 10 to 3,00ONtr? -〇2/)
In recent years, the number of uses for small and medium-sized oxygen production equipment has been increasing, and replacement of cases where liquid oxygen produced in cryogenic separation equipment is transported and used is progressing.

この装置の代表的なものの概要を述べると。Let me give an overview of the typical devices.

装置は空気圧縮器、及び2塔又はそれ以上のN2吸着塔
、又場合によっては真空ポイズ等から構成される。この
装置において、1塔に圧縮空気を送ると、充填されたN
2吸着剤により空気中のN2は吸着除去されて、残る高
圧02は吸着塔の後方に流出し回収される。一方、他塔
では吸着したN2を減圧条件で放出させ(時として製品
02の一部を向流で流すとか、真空ポンプで強力にN2
を除去する方法もとられる)再生する。これを交互にく
り返して連続的に02、N2を分離する。上記の吸着塔
に充填していたN2吸着剤の代表的なものは、ユニオン
カーバイド社により実用化されたNa −A型ゼオライ
トの60〜70%Ca交換体であり、02 N2の2成
分混合ガスからN2’に選択的に吸着するものであって
、空気条件下での02の共吸着はN2吸着の10チ以下
と推定される。
The apparatus consists of an air compressor, two or more N2 adsorption towers, and possibly a vacuum poise. In this device, when compressed air is sent to one column, the N
N2 in the air is adsorbed and removed by the 2 adsorbent, and the remaining high pressure 02 flows out to the rear of the adsorption tower and is recovered. On the other hand, in other towers, the adsorbed N2 is released under reduced pressure conditions (sometimes a part of product 02 is flowed in a countercurrent, or a vacuum pump is used to forcefully release N2).
(There are also methods for removing the .). This is repeated alternately to continuously separate 02 and N2. A typical N2 adsorbent packed in the adsorption tower mentioned above is a 60-70% Ca exchanger of Na-A type zeolite, which was put into practical use by Union Carbide. The co-adsorption of 02 under air conditions is estimated to be less than 10 times the amount of N2 adsorption.

この吸着による02.N2分離装置は中小型領域で有利
と前述したが、 IN−の02を製造するのに0.75
〜IKwhを必要とし、大容量深冷分離法で製造される
02の0.45 Kwhに比し消費電力は大きい。又装
置容量の増大に対するスケールメリットが少(、3,0
0ON7!’ Os+/h以上の領域では深冷分離法に
競合できないといわれている。
02 due to this adsorption. As mentioned above, N2 separation equipment is advantageous in small and medium-sized areas, but it takes 0.75 to produce IN-02.
The power consumption is larger than the 0.45 Kwh of 02, which is manufactured by large-capacity cryogenic separation method. Also, there is little merit of scale for increasing equipment capacity (3,0
0ON7! ' It is said that it cannot compete with the cryogenic separation method in the range of Os+/h or higher.

従って、これら欠点についての改善方法が種々考えられ
るが1本発明に関連して改善方法を述べると以下のよう
な障害が通常出現する。
Therefore, various methods of improving these drawbacks can be considered, but when describing methods of improvement in connection with the present invention, the following problems usually occur.

先ず、消費電力の低減については、送風圧力を低くして
低圧で吸着操作を行なう事が考えられるがp N2吸着
量が圧力にほぼ比例して低下する為、装置の容量が極め
て増大する。
First, in order to reduce power consumption, it is possible to lower the blowing pressure and perform the adsorption operation at low pressure, but since the amount of pN2 adsorption decreases almost in proportion to the pressure, the capacity of the device increases significantly.

次に、吸着量の増大を図る為に、低温条件で吸着操作を
行なイ事が考えられるが、この場合はN2吸着量は増大
するものの吸着・脱着速度が著しく低下する為、同一塔
長での製品02濃度が室温時よりもかえって低下してし
まう。
Next, in order to increase the amount of adsorption, it may be possible to perform the adsorption operation under low temperature conditions, but in this case, although the amount of N2 adsorption increases, the adsorption/desorption rate will decrease significantly, so the length of the column remains the same. The concentration of product 02 at room temperature is actually lower than that at room temperature.

又温度の低下に伴ないN2吸着時の02共吸着量が上昇
する為、動力原単位が漸次上昇する。
Furthermore, as the temperature decreases, the amount of 02 co-adsorbed during N2 adsorption increases, so the power consumption rate gradually increases.

そこで既に本発明者らは、上記欠点を改善した低温・低
圧吸着条件下での高性能な02゜N2の分離方法につき
鋭意研究・実験を進める過程で、ゼオライト系吸着剤、
特にNa−X型ゼオライトに代表される鉱物名ナトリウ
ムファウジアサイI−i充填したN2吸着塔や、N2吸
着塔の空気入口側の02濃度の低い領域にCa2/3−
Na上/3−A型吸着剤を入れ、後方の高02濃度域に
Na−X型吸着剤を充填しfc 、N2吸着塔を用いる
と、低温・低圧吸着条件下でN2吸着量が増大するとと
もに実用的な範囲でのN2吸着速度の維持が可能であり
、かつN2吸着選択性の減少が小さいことを見出し友。
Therefore, the present inventors have already conducted intensive research and experiments on a high-performance separation method for 02°N2 under low-temperature, low-pressure adsorption conditions that improves the above-mentioned drawbacks.
In particular, Ca2/3-
If a Na/3-A type adsorbent is inserted and a Na-X type adsorbent is filled in the rear high 02 concentration area and a N2 adsorption tower is used, the amount of N2 adsorption will increase under low temperature and low pressure adsorption conditions. We discovered that it is possible to maintain the N2 adsorption rate within a practical range, and that the decrease in N2 adsorption selectivity is small.

以下、その方法を第3図を用いて説明する。The method will be explained below with reference to FIG.

入口側ライン1を通じて圧縮機2で1.05〜3 at
mに加圧された空気は、流路3から脱湿塔4に入り、極
めて清浄な加圧空気となる。
1.05 to 3 at compressor 2 through inlet side line 1
The air pressurized to m enters the dehumidification tower 4 from the flow path 3 and becomes extremely clean pressurized air.

流路子の後流に設置されたバルブ5は開となっており、
清浄な加圧空気は流路6及び開状態のバルブ7を通じて
吸着塔8に入る。吸着塔8に入った加圧空気はN2吸着
剤9でN2が吸着除去されて後方に行くに従って02濃
度が上昇する。この後加圧空気は開状態のバルブ10゜
11.12及びバルブ11.12の間に挿入された製品
02タンク13を通じて製品02として回収される。一
方製品02の一部は流路14の途中にある減圧弁15で
減圧されて、開状態のバルブ10′を通じて吸着塔ぎに
入り吸着塔8′は開状態のバルブ16′及び流路17′
ヲ通じて連結された真空ポンプ18でひかれており。
The valve 5 installed downstream of the channel element is open,
Clean pressurized air enters adsorption tower 8 through channel 6 and valve 7 which is open. The pressurized air that has entered the adsorption tower 8 has N2 adsorbed and removed by the N2 adsorbent 9, and the 02 concentration increases as it goes toward the rear. The pressurized air is then recovered as product 02 through the product 02 tank 13 inserted between the open valves 10.11.12 and 11.12. On the other hand, a part of the product 02 is depressurized by the pressure reducing valve 15 located in the middle of the flow path 14, and enters the adsorption tower through the open valve 10', and enters the adsorption tower 8' through the open valve 16' and the flow path 17'.
It is powered by a vacuum pump 18 connected through the air.

この為吸着塔8′は空気流れと反対方向に製品02の一
部が負圧状態で流れ、吸着塔8′中の吸着剤9′に吸着
されていたN2は容易に離脱され吸着剤9′は短時間で
再生される。吸着塔8のN2吸着剤9が飽和し、一方吸
着塔8′のN2吸着剤qからN2が離脱して再生が済む
と、入口空気の流路6を6′に切り換え、今迄述べた方
法を交互に行なうと製品02が連続的に回収できる。な
お、入口の清浄な加圧空気のライン3′と離脱N2を主
成分とするガスライン17の間は熱交換器19で、熱交
換可能となっており。
For this reason, part of the product 02 flows in the adsorption tower 8' in the opposite direction to the air flow under negative pressure, and the N2 adsorbed on the adsorbent 9' in the adsorption tower 8' is easily separated from the adsorbent 9'. will be played in a short time. When the N2 adsorbent 9 of the adsorption tower 8 is saturated and, on the other hand, N2 is separated from the N2 adsorbent q of the adsorption tower 8' and regeneration is completed, the inlet air flow path 6 is switched to 6' and the method described so far is performed. By performing these steps alternately, product 02 can be collected continuously. Note that a heat exchanger 19 is provided between the clean pressurized air line 3' at the inlet and the gas line 17 whose main component is separated N2, allowing heat exchange.

製品02ライン21と流路3′との間も又熱交換器22
で熱交換可能となっている。又流路3′には圧縮式冷凍
[20が設置されている為。
There is also a heat exchanger 22 between the product 02 line 21 and the flow path 3'.
Heat exchange is possible. Also, a compression type refrigeration system [20] is installed in the flow path 3'.

極めて能率的に吸着塔8及′o−8′は冷却され低温条
件に設定される。なお、吸着塔の切り換えにあたっては
、単純に流路6から6′へ(又はその逆)切り換えるだ
けでなく、切り換え直後の昇圧に伴なう入口空気の吹き
ぬけを防ぎかつ、吸着塔の後方に残存する02及び前方
の加圧空気の系外への放出を最小にする為。
Very efficiently, adsorption towers 8 and 'o-8' are cooled and set to low temperature conditions. In addition, when switching the adsorption tower, it is necessary to not only simply switch from flow path 6 to 6' (or vice versa), but also to prevent inlet air from blowing away due to pressure increase immediately after switching, and to prevent air from remaining at the rear of the adsorption tower. To minimize the release of pressurized air from the front and outside of the system.

先ず、バルブ10,15.10’を全開にして吸着直後
の吸着塔8の後方の残存02を再生直後の吸着塔8′に
一部移す。この時吸着塔8の圧力をPt]s (atm
 )吸着塔8′の圧力1pt(atm)なる。この後約
P o +P I (atm)となつ几吸着塔8′はバ
ルブ10’、11’を開として製品02タンク13と吸
着塔を均圧化して吸着塔8′ヲ更に高圧の02で・満、
光−す。製品02タンク13との均圧時の圧力P2(a
tm)は吸着塔8,8′の死容量(吸着塔内の吸着剤で
占められていない空間の容積)をV+(L)、製品02
タンクの容量をvl(1)とし、均圧前の製品02タン
ク13の圧力をPo(atm)にほぼ等しいとすると、
均圧化圧となり、単に塔を切り換える時のpt(atm
)からPo(atm)への急速な昇圧に比べ9以上の操
作ではpt(atm) 、  ””(atm) 、  
Pz(atm) 。
First, the valves 10, 15, and 10' are fully opened, and a portion of the remaining 02 at the rear of the adsorption tower 8 immediately after adsorption is transferred to the adsorption tower 8' immediately after regeneration. At this time, the pressure of the adsorption tower 8 is Pt]s (atm
) The pressure of the adsorption tower 8' is 1 pt (atm). After this, the pressure of the adsorption tower 8' is equalized by opening the valves 10' and 11' to equalize the pressure of the product 02 tank 13 and the adsorption tower at approximately P o + P I (atm). Full,
Light. Pressure P2 (a
tm) is the dead capacity of the adsorption towers 8 and 8' (the volume of the space not occupied by the adsorbent in the adsorption tower) is V + (L), and the product 02
Assuming that the capacity of the tank is vl (1) and the pressure of product 02 tank 13 before pressure equalization is approximately equal to Po (atm),
The pressure becomes equalized, and the pt (atm
) to Po(atm) in operations above 9, pt(atm), ""(atm),
Pz(atm).

Po(atm)とゆるやかに昇圧する為、昇圧時の空気
の吹き抜けを防止しつつ、脱着工程での残存02.高圧
空気の系外への放出を最小にする様な対策が可能となっ
ている。
Since the pressure is gradually increased to Po (atm), it prevents air from blowing through when the pressure increases, and reduces the residual 0.2. Measures can be taken to minimize the release of high-pressure air outside the system.

以上の操作方法で第3図に示した空気分離装置で空気分
離を行なった。装置の操作諸元を第1表に示す。
Air separation was carried out using the air separation apparatus shown in FIG. 3 using the above operating method. The operating specifications of the device are shown in Table 1.

第1表 吸着装置諸元 第1表の操作条件で空気から02 、 N2 全分離し
た。
Table 1: Adsorption device specifications Under the operating conditions shown in Table 1, 02 and N2 were completely separated from air.

なお、第3図に示す工程の中、製品02の一部を流路1
4.バルブ15.バルブ10′の順に再生工程にある塔
の中を減圧条件下向流に流す事は必ずしも必要なもので
はない。
In addition, in the process shown in FIG.
4. Valve 15. It is not necessarily necessary to flow countercurrently under reduced pressure through the column in the regeneration step in the order of valve 10'.

なお、吸着工程(及び再生工程)終了時の塔間均圧に少
くとも6秒以上行なうのが望ましい。
Note that it is desirable to equalize the inter-column pressure at the end of the adsorption step (and regeneration step) for at least 6 seconds or more.

=発明が解決しようとする問題点〕 しかし、第3図に示す圧力スイング方式に於いては、以
下に列挙する欠点を有している為設備費及び動力費が上
昇する難点がある。
=Problems to be Solved by the Invention] However, the pressure swing method shown in FIG. 3 has the drawbacks listed below, and has the disadvantage of increasing equipment costs and power costs.

すなわち ■脱湿塔4を独立して設置している為、それだけ設備費
が上昇する。脱湿塔4としては。
That is, (1) Since the dehumidification tower 4 is installed independently, the equipment cost increases accordingly. As the dehumidification tower 4.

再生方式によって温度スイング法と圧力スイング法のい
ずれかが考えられるが、温度スイング法であればヒータ
ー用電力消費と吸着剤の補充が必要でアリ、圧力スイン
グ法であれば真空ポンプの付設(この場合吸着圧力が低
いため、大気圧再生では不充分。)とその為の電力消費
が追加される。
Either the temperature swing method or the pressure swing method can be considered depending on the regeneration method, but the temperature swing method requires power consumption for the heater and the replenishment of adsorbent, while the pressure swing method requires the addition of a vacuum pump (this In some cases, the adsorption pressure is low, so atmospheric pressure regeneration is insufficient), and the power consumption for this is additional.

■入口空気と脱着N2間の冷熱回収用熱交換器19はガ
ス−ガス熱交換となる為1価格も高く、かなりのスペー
スを必要とする。
(2) The cold heat recovery heat exchanger 19 between the inlet air and the desorption N2 performs gas-gas heat exchange, so it is expensive and requires a considerable amount of space.

■脱湿塔4の出口露点が何らかの理由で上昇5五 した場合、吸着工程の濃度(又は熱交換器/の表面温度
)が0℃以下になると、熱交換器19,22.圧縮冷凍
機20.パルプ5゜6、 6’、  7. 7’に水分
が氷結し正常な操作が不可能となる。又除去はかなり難
しい。
(2) If the dew point at the outlet of the dehumidification tower 4 rises for some reason, and the concentration in the adsorption process (or the surface temperature of the heat exchanger) falls below 0°C, the heat exchanger 19, 22. Compression refrigerator20. Pulp 5゜6, 6', 7. Water freezes at 7', making normal operation impossible. It is also quite difficult to remove.

■バルブ5 、6..6’、 7.7′1.1□e、 
167、1o、′1.o’;11.11’、12.15
が低温域になる為。
■Valve 5, 6. .. 6', 7.7'1.1□e,
167, 1o, '1. o';11.11', 12.15
is in the low temperature range.

保冷等について考慮する必要がある。It is necessary to consider cold storage, etc.

空気k N2と02に分離するには、上述のよりなN2
吸着剤を用いず02吸着剤を使用することもある。
To separate the air into N2 and 02, use the above-mentioned more N2
02 adsorbent may be used without using an adsorbent.

また、排気ガス中のCOを分離したり、放射性オフガス
からKrやXeを分離回収する場合においても、圧力ス
イング法は使われている。
The pressure swing method is also used to separate CO in exhaust gas and to separate and recover Kr and Xe from radioactive off-gas.

これらの場合に使う吸着剤の種類、温度・圧力条件等に
ついて今後検討されるべき点も多いが、低温域で効率の
良い吸着剤も多数党い出されている。しかし、混合ガス
を冷却するための動力費が高く、実機として作動してい
る装置はないものと思われる。
Although there are many points to be considered in the future regarding the type of adsorbent used in these cases, temperature and pressure conditions, etc., many adsorbents that are efficient in the low temperature range have been developed. However, the cost of power to cool the mixed gas is high, and it is thought that there are no devices in actual operation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の方法は、圧力スイング方式によって混合ガスを
分離する装置に用いられるもので、吸着塔に混合ガスを
供給する流路へ、上流側より脱湿部、熱交換部を介装し
、吸着工程に於ては混合ガスの脱湿・冷却を行い、しか
る後吸着塔内に充填、された吸着剤により特  定のガ
スを吸着させ、再生工程に於ては吸着ガスを上記混合ガ
ス流路を通して逆流させ。
The method of the present invention is used in a device that separates mixed gas using a pressure swing method, and a dehumidification section and a heat exchange section are interposed from the upstream side of the flow path that supplies mixed gas to an adsorption tower. In the process, the mixed gas is dehumidified and cooled, and then a specific gas is adsorbed by the adsorbent packed in the adsorption tower.In the regeneration process, the adsorbed gas is passed through the mixed gas flow path. Let it flow back through.

吸着ガスの有する冷熱を熱交換部で回収し。The cold energy of the adsorbed gas is recovered in the heat exchange section.

昇温された吸着ガスで脱湿部を再生する方法である。This is a method of regenerating the dehumidifying section with heated adsorbed gas.

〔作用〕[Effect]

吸着剤の種類によっては、混合ガスを冷却することがガ
ス分離上望ましい場合がある。
Depending on the type of adsorbent, cooling the mixed gas may be desirable for gas separation.

本発明の方法では、吸着工程に於て混合ガスを脱湿部で
まず脱湿し、熱交換部で冷却した後吸着塔に供給される
。吸着塔で吸着されたガスは脱着され混合ガスの流路を
逆流し、熱交換部、脱湿部を経由して回収されるが吸着
ガスは十分に冷えており、再生工程において脱着された
ガスの冷熱は熱交換器で回収される。従って、そのガス
温度は上昇し、かつ吸着ガスは乾燥しており湿分が少な
いので脱湿部を通る際に脱湿剤に吸着された水分を離脱
し脱湿剤を再生する。
In the method of the present invention, in the adsorption step, the mixed gas is first dehumidified in the dehumidification section, cooled in the heat exchange section, and then supplied to the adsorption tower. The gas adsorbed in the adsorption tower is desorbed, flows back through the mixed gas flow path, and is recovered via the heat exchange section and dehumidification section, but the adsorbed gas is sufficiently cooled and the gas desorbed in the regeneration process is recovered. The cold energy is recovered by a heat exchanger. Therefore, the gas temperature rises, and since the adsorbed gas is dry and has little moisture, when passing through the dehumidifying section, the moisture adsorbed by the dehumidifying agent is removed and the dehumidifying agent is regenerated.

また流路内に氷結し几氷も乾燥した吸着ガスが流れるこ
とによって昇華され除かれる。
Furthermore, the ice that has formed in the flow path is sublimated and removed by the flow of the dry adsorbed gas.

〔実施例〕〔Example〕

以下本発明の方法について実施例により詳細に説明する
The method of the present invention will be explained in detail below with reference to Examples.

実施例1 本発明の有効性を実証する為第1図に示す空気分離装置
で空気からのNa−X等のナトリウムファウジャサイト
系のN2吸着剤による02.N2分離を試みた。
Example 1 In order to demonstrate the effectiveness of the present invention, 02. N2 separation was attempted.

以下第1図に基づいて実施した内容を説明する。The details of the implementation will be explained below based on FIG.

フィルター30人口流路31を通じて圧縮機32で約7
50 Nrr?/hの空気が1.05〜3atmに加圧
され、流路33.アフタークー234を通過して30℃
迄冷却される。この後間いたパルプ35流路36を通じ
て脱湿塔37に入る。脱湿塔37には脱湿剤38として
シリカゲルが約25 kg充填されており、露点−70
℃まで水分が除去される。
Through the filter 30 and the artificial flow path 31, the compressor 32
50 Nrr? /h of air is pressurized to 1.05 to 3 atm, and the flow path 33. Passed through aftercool 234 to 30℃
cooled until After this, the pulp 35 enters a dehumidification tower 37 through a channel 36. The dehumidifying tower 37 is filled with approximately 25 kg of silica gel as a dehumidifying agent 38, and has a dew point of -70.
Moisture is removed up to ℃.

その後渡の流路39と製品o2ライン4゜とにはプレー
トフィン熱交換器41が設置されており、製品02温度
はプレートフィン熱交換器41で一15℃から30℃に
上昇する。その時脱湿塔37で脱湿された空気はプレー
トフィン熱交換器41で30℃から25℃に冷却されて
流路42を通じて。
A plate fin heat exchanger 41 is installed between the flow path 39 and the product O2 line 4°, and the temperature of the product 02 is raised from -15°C to 30°C by the plate fin heat exchanger 41. At this time, the air dehumidified in the dehumidification tower 37 is cooled from 30° C. to 25° C. in a plate-fin heat exchanger 41 and passes through a flow path 42.

蓄冷材式の熱交換器である蓄冷基43に入り、蓄冷材4
4と接触しながら降温し、蓄冷基43の出口では一10
℃まで冷却される。
The cold storage material 4 enters the cold storage base 43 which is a cold storage material type heat exchanger.
4, and at the outlet of the cold storage base 43, the temperature drops to 110
Cooled to ℃.

本実施例では蓄冷材44として厚さ0.6態幅16y+
amのアルミニウム波板を使用し。
In this embodiment, the cold storage material 44 has a thickness of 0.6 and a width of 16y+.
Uses am aluminum corrugated plate.

1塔轟シ50kli’充填し念。−10℃に冷却された
空気は、冷凍機45から流路46を通じて流れる一22
℃のフレオンが流れる熱交換器47でさらに冷却され約
−15℃の最寒冷温度となり流路48を通じてN2吸着
剤49としてNa−Xが約2.5 TON充填されたN
2吸着塔50に至る。空気中のN2はN2吸着剤49で
吸着除去されてo2濃度は上昇し、出口流路である製品
02ライン40の熱交換器41.開いたバルブ51を通
じて流路52から、02濃度93%の製品02が11O
Nm’02/h採取される。
One tower Todoroki filled with 50kli'. The air cooled to -10°C flows from the refrigerator 45 through the flow path 46.
℃ is further cooled in the heat exchanger 47 through which Freon flows, reaching the coldest temperature of approximately -15℃.N
2 adsorption tower 50. N2 in the air is adsorbed and removed by the N2 adsorbent 49, and the O2 concentration increases. Product 02 with a 02 concentration of 93% is passed through the flow path 52 through the opened valve 51 to 110
Nm'02/h was collected.

一方再生工程にあろN2吸着塔50′は、バルブ35’
、51’、53,54を閉じた状態でバルブ53′を開
は真空ポンプ55により流路56を通じて減圧されてお
り、 N2吸着剤49′からはN2が吸着時とは向流方
向に離脱している。離脱したN2は、流路48′、熱交
換器47′を経て蓄冷基43′に入り蓄冷材44′によ
り冷熱を回収され、流路39′では約25℃にまで昇温
する。この後脱湿塔37′を吸着時とは向流に減圧条件
下で乾燥N2が流れる為、水分は脱湿剤38′から離脱
してN2と共に流路36′、バルブ53′、流路56を
通じて真空ポンプ55から系外へ放出される。
On the other hand, the N2 adsorption tower 50' which is in the regeneration process has a valve 35'.
, 51', 53, and 54 are closed, and when the valve 53' is opened, the pressure is reduced through the flow path 56 by the vacuum pump 55, and N2 is released from the N2 adsorbent 49' in a direction countercurrent to that during adsorption. ing. The separated N2 enters the cold storage base 43' through the flow path 48' and the heat exchanger 47', and its cold heat is recovered by the cold storage material 44', and the temperature rises to about 25° C. in the flow path 39'. After that, dry N2 flows through the dehumidifying tower 37' in a countercurrent direction to that during adsorption under reduced pressure conditions, so water leaves the dehumidifying agent 38' and goes along with the N2 to the channel 36', the valve 53', and the channel 56. It is discharged from the vacuum pump 55 to the outside of the system through the vacuum pump 55.

本実施例に於ては、吸着工程を75秒。In this example, the adsorption step was carried out for 75 seconds.

再生工程を60〜240秒で交互に切シ換えた。The regeneration steps were alternately switched from 60 to 240 seconds.

なお、塔を切り換える直前に、バルブ35゜35’、5
1,51’、53.53’を閉じバルブ54のみを開い
て吸着工程時のN2吸着塔50の後方に濃縮した残存0
2を減圧条件下にあるN2吸着塔50′へ移して2塔間
の圧力を等しくした。これは02回収率の向上及び圧力
の昇降をゆるやかにして塔内じよう乱を抑制する上で極
めて効果がある。(本工程を省略すると02の回収率は
70%前後から約40%に激減する。) なお、N2吸着塔50.50’、熱交換器47.47’
、蓄冷基43.43’、プレートフィン熱交換器41.
41’は全体を保冷材57で囲まれている。
In addition, just before switching the tower, close the valves 35°35' and 5.
1, 51', and 53.53' are closed and only the valve 54 is opened to remove the remaining 0 concentrated at the rear of the N2 adsorption tower 50 during the adsorption process.
2 was transferred to the N2 adsorption tower 50' under reduced pressure conditions to equalize the pressure between the two towers. This is extremely effective in improving the 02 recovery rate and slowing down the rise and fall of pressure to suppress disturbances within the column. (If this step is omitted, the recovery rate of 02 will drastically decrease from around 70% to about 40%.) In addition, N2 adsorption tower 50.50', heat exchanger 47.47'
, cold storage base 43.43', plate fin heat exchanger 41.
41' is entirely surrounded by a cold insulating material 57.

以上の操作方法で第1図に示した空気分離装置で空気分
離を行なった。装置の操作諸元を第2表に示す。
Air separation was carried out using the air separation apparatus shown in FIG. 1 using the above operating method. The operating specifications of the device are shown in Table 2.

第2表 吸着装置諸元 第2表の操作条件で空気から02.Nzi分離し友。Table 2 Adsorption device specifications 02.0 from air under the operating conditions shown in Table 2. Nzi separated friends.

第3図および第1表に示す従来例と、第1図および第2
表に示す本発明の一実施例との実験結果の比較を第3表
に要約する。
The conventional example shown in Figure 3 and Table 1, and the conventional example shown in Figure 1 and Table 2.
Table 3 summarizes the comparison of the experimental results with one example of the invention shown in the table.

(従来例脱湿工程としては、吸着圧力1.2atm再生
圧力0.05atmの圧力スイング法を前提とした。) 第3表従来例と本発明の一実施例の比較(操作条件°°
°吸着1力”・′°“″・再生圧力Q、2at“・切換
時間°°秒・ )塔間均圧時間10秒、吸着温度−15
℃実施例2 第2図に示す様に実施例1に於ては、脱湿塔37.37
’、プレートフィン熱交換器41.41’、蓄冷基43
.43’、熱交換器47、 47’、 N2吸着塔50
,50’は流路39.39’、42.42’、48.4
8’により連結されていたが、この実施例では、 N2
吸着塔50又は50′の中に入口空気側より脱湿剤38
.38’、空気−製品02熱交換器41.41’、蓄冷
剤44.44’、最寒冷熱交換器47.47’を組み込
み、実施例1よりも更に簡略化を計ったものである。な
お。
(The conventional dehumidification process was based on a pressure swing method with an adsorption pressure of 1.2 atm and a regeneration pressure of 0.05 atm.) Table 3 Comparison of the conventional example and an embodiment of the present invention (Operating conditions °°
°Adsorption 1 force"・'°""・Regeneration pressure Q, 2at"・Switching time °° seconds・) Inter-column pressure equalization time 10 seconds, adsorption temperature -15
℃ Example 2 As shown in Figure 2, in Example 1, the dehumidification tower 37.37
', plate fin heat exchanger 41.41', cold storage base 43
.. 43', heat exchanger 47, 47', N2 adsorption tower 50
, 50' are flow paths 39.39', 42.42', 48.4
8', but in this example, N2
A dehumidifying agent 38 is introduced into the adsorption tower 50 or 50' from the inlet air side.
.. 38', an air-product 02 heat exchanger 41.41', a cold storage agent 44.44', and a coldest cold heat exchanger 47.47'. In addition.

実施例2を例示する第2図に於て、実施例1(第1図)
と同一の部品には同一の符番を付けている。作用及び機
能は全く変らないが。
In FIG. 2 illustrating Example 2, Example 1 (FIG. 1)
The same parts are given the same numbers. The action and function remain the same.

装置を簡略化する事により塔槽類の設備費  ゛を10
%軽減した。又侵入熱を約15%低減した為冷凍機45
.最寒冷熱交換器47゜47′、保冷材57もそれに比
例して節約された。
By simplifying the equipment, equipment costs for towers and tanks can be reduced by 10%.
% reduced. In addition, since the intrusion heat was reduced by approximately 15%, the refrigerator 45
.. The coldest heat exchanger 47°47' and the cold insulation material 57 were also saved proportionately.

実施例3 実施例2に於いて、 Na−XのかわりにN2吸着塔5
0.50’の前方にN2吸着剤49゜49′としてCa
 2/3−Na 1/3−Aを、後方にNa−Xを充填
する事により実施例1〜2で110 Ni−02/hの
93%の02を製造するの[N2吸着剤49.49’l
塔当り2.5 TON充填していたのに対し、2.IT
ONの充填に節約(約15%)できた。なお1回収率は
ほとんど変らない。
Example 3 In Example 2, N2 adsorption tower 5 was used instead of Na-X.
Ca as N2 adsorbent 49°49' in front of 0.50'
In Examples 1 and 2, 93% of 110 Ni-02/h was produced by filling 2/3-Na 1/3-A with Na-X [N2 adsorbent 49.49 'l
Whereas 2.5 TON was charged per column, 2. IT
Savings (approximately 15%) were achieved in ON filling. Note that the recovery rate remains almost unchanged.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、所要の動力原単位及び設備費が
従来のガス分離装置に比べ少なく、産業上非常に有用な
混合ガスからの成分ガスの分離装置の脱湿・冷熱回収方
法を提案するものである。
According to the method of the present invention, the required power unit and equipment cost are lower than that of conventional gas separation equipment, and a method for dehumidifying and recovering cold heat is proposed for an equipment for separating component gases from a mixed gas, which is very useful industrially. It is something to do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を具現化するガス分離装置の脱湿
・冷熱回収方法の実施例1を実施するのに用いられる装
置の例示図、第2図は本発明の実施例2を実施するのに
用いられる装置の例示図2第3図は従来の分離方法を実
施するのに用いられる装置の例示図である。 37・37′・・・脱湿塔、41・41′・・・熱交換
器。 43・43′・・・陰奏喚場咲蓄冷塔矢、49・49′
6・・・吸着剤、50・50′・・・吸着塔。
Figure 1 is an illustrative diagram of an apparatus used to implement Example 1 of the dehumidification/cold heat recovery method for a gas separation device that embodies the method of the present invention, and Figure 2 is an illustration of the apparatus used to implement Example 2 of the present invention. FIG. 2 is an illustration of the apparatus used to carry out the conventional separation method. 37, 37'... Dehumidification tower, 41, 41'... Heat exchanger. 43.43'...Insoukaba Saki cold storage tower arrow, 49.49'
6...Adsorbent, 50.50'...Adsorption tower.

Claims (1)

【特許請求の範囲】[Claims] 大気圧以上の圧力で室温以下の混合ガスを吸着塔に流入
させ、該吸着塔に充填された吸着剤へ上記混合ガス中の
特定のガスを選択的に吸着させ、上記吸着塔から未吸着
ガスを流出させた後、上記吸着塔内を減圧せしめて吸着
剤に吸着されたガスを流出させて吸着剤を再生させるガ
ス分離装置において、上記混合ガスの流路へ上流側より
脱湿部、熱交換部を介装し、吸着工程に於ては混合ガス
の脱湿、冷却を行い該混合ガスを上記吸着剤と接触させ
、再生工程に於ては、吸着ガスを、上記混合ガス流路を
通して逆流させ、吸着ガスの有する冷熱を熱交換部で回
収し、昇温された吸着ガスで脱湿部を再生させることを
特徴とするガス分離装置の脱湿・冷熱回収方法。
A mixed gas at room temperature or lower is flowed into an adsorption tower at a pressure higher than atmospheric pressure, a specific gas in the mixed gas is selectively adsorbed by the adsorbent packed in the adsorption tower, and unadsorbed gas is left in the adsorption tower. In a gas separation device that regenerates the adsorbent by reducing the pressure inside the adsorption tower and releasing the gas adsorbed by the adsorbent, a dehumidification section, a heat An exchange section is provided to dehumidify and cool the mixed gas in the adsorption step, and bring the mixed gas into contact with the adsorbent, and in the regeneration step, the adsorbed gas is passed through the mixed gas flow path. 1. A dehumidification/cold heat recovery method for a gas separation device, which comprises causing the adsorbed gas to flow backwards, recovering the cold heat of the adsorbed gas in a heat exchange section, and regenerating the dehumidification section with the heated adsorbed gas.
JP60138683A 1985-06-25 1985-06-25 Dehumidification/heat recovery method of gas separation apparatus Pending JPS621434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60138683A JPS621434A (en) 1985-06-25 1985-06-25 Dehumidification/heat recovery method of gas separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60138683A JPS621434A (en) 1985-06-25 1985-06-25 Dehumidification/heat recovery method of gas separation apparatus

Publications (1)

Publication Number Publication Date
JPS621434A true JPS621434A (en) 1987-01-07

Family

ID=15227663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60138683A Pending JPS621434A (en) 1985-06-25 1985-06-25 Dehumidification/heat recovery method of gas separation apparatus

Country Status (1)

Country Link
JP (1) JPS621434A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614000A (en) * 1995-10-04 1997-03-25 Air Products And Chemicals, Inc. Purification of gases using solid adsorbents

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614000A (en) * 1995-10-04 1997-03-25 Air Products And Chemicals, Inc. Purification of gases using solid adsorbents

Similar Documents

Publication Publication Date Title
US4472178A (en) Adsorptive process for the removal of carbon dioxide from a gas
EP0232840A2 (en) Removal of water and carbon dioxide from atmospheric air
JP2000317244A (en) Method and device for purifying gas
JPH0459926B2 (en)
JPS6241055B2 (en)
CN208626969U (en) A kind of freezing-micro-heat regeneration absorbent combination drying device
JPH0592120A (en) Oxygen enriching method
JPH0378126B2 (en)
JPS621434A (en) Dehumidification/heat recovery method of gas separation apparatus
JPH0530762B2 (en)
JPH09122432A (en) Gas separator using pressure swing adsorption process
JPS59179127A (en) Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressure
JP6965127B2 (en) Nitrogen and oxygen production method
JPH0768042B2 (en) High-purity oxygen production method
JPH0455964B2 (en)
JP2644823B2 (en) Regeneration method of helium gas purification adsorber
JP3544860B2 (en) Pretreatment device in air separation unit
JPS6125619A (en) Pressure swing system gas separation utilizing cold heat
JPS60231401A (en) Production of oxygen with ca-na-a and na-x-nacl in n2 adsorption tower
JPH0768041B2 (en) Oxygen-enriched gas manufacturing method
JPH0141379B2 (en)
JPS6161611A (en) Separation of oxygen and nitrogen from gaseous mixture
JPH0573449B2 (en)
JP6851839B2 (en) Heat recovery type oxygen nitrogen supply system
JPH06178933A (en) Oxygen adsorbent and separation of oxygen and nitrogen