JPS61129020A - Separation of oxygen and nitrogen from gaseous mixture - Google Patents

Separation of oxygen and nitrogen from gaseous mixture

Info

Publication number
JPS61129020A
JPS61129020A JP59250503A JP25050384A JPS61129020A JP S61129020 A JPS61129020 A JP S61129020A JP 59250503 A JP59250503 A JP 59250503A JP 25050384 A JP25050384 A JP 25050384A JP S61129020 A JPS61129020 A JP S61129020A
Authority
JP
Japan
Prior art keywords
pressure
adsorption
adsorbent
ata
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59250503A
Other languages
Japanese (ja)
Other versions
JPH0423563B2 (en
Inventor
Seiichi Shirakawa
白川 精一
Hiroyuki Tsutaya
博之 蔦谷
Jun Izumi
順 泉
Hiroshi Onoe
宏 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59250503A priority Critical patent/JPS61129020A/en
Publication of JPS61129020A publication Critical patent/JPS61129020A/en
Publication of JPH0423563B2 publication Critical patent/JPH0423563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To reduce power consumption and the amount of an absorbent, by pacing two or more of adsorbing towers with Na-A type zeolite containing divalent or more Fe and selectively adsorbing O2 at room temp. or less by said zeolite while producing O2 by pressure swing. CONSTITUTION:Air compressed by a compressor 2 enters a dehumidification and CO2-removal tower 4 from an inlet side line 1 and subsequently enters an adsorbing tower 8. The adsorbing tower 8 is packed with Na-A type zeolite 9 containing divalent or more Fe and O2 is adsorbed with said zeolite 9 while N2 is taken out through a product tank 13. an adsorbing tower 8' is evacuated to 0.08-0.5 ata by a vacuum pump 18 and O2 adsorbed by the adsorbent 9' is released and the adsorbent 9' is regenerated within a short time. When the adsorbent 9 of the adsorbing tower 8 is saturated, the flow passage of inlet air is changed over to perform adsorption in the adsorbing tower 8'.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空気等の02 + ”鵞を主成分とする混合気
体より選択的に0!を吸着する03吸着剤を使用しての
02 + ”2を主成分とする混合気体より0鵞。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides 02 ``It is less than a mixed gas whose main component is 2.

M雪を分離する方法に関するものである。This relates to a method of separating M snow.

〔従来の技術〕[Conventional technology]

03吸着剤を利用した空気からの0鵞、N鵞吸着分離法
は、装置が小屋簡易であシ、又無人運転に近い殆ど保守
を必要としない利点をもつ為、N鵞製造量10〜100
0 Mm”−H2/ h程度の中小型N、製造装置とし
て近年使用例が増えてきており、深冷分離装置で作られ
る液窒素を輸送して使用するケースについての代替が進
行している。なり O=吸着剤としては活性炭系のモレ
キュラーシーブスカーボン4Aが最つとも実用に供され
ている。
The adsorption separation method of 0 and N from the air using 03 adsorbent has the advantage that the equipment is simple and requires almost no maintenance and is almost unmanned, so the production volume of N and N is 10 to 100.
In recent years, the use of small and medium-sized N gases of the order of 0 Mm''-H2/h has been increasing as production equipment, and replacement is progressing for cases in which liquid nitrogen produced in cryogenic separation equipment is transported and used. O = As an adsorbent, activated carbon-based molecular sieve carbon 4A is the most commonly used adsorbent.

この装置の代表的なものの概要を述べると、装置は空気
圧縮機、及び2塔又はそれ以上の0!吸着塔、又場合に
よっては空気ポンプ等から構成される。この装置におい
て、1塔に圧縮空気を送ると、充填された03吸着剤に
よシ空気中の02は吸着されて、残る高圧N、は吸着塔
の後方に流出し回収される。一方、他塔では吸着した0
2を減圧条件で放出させ(時として製品N、の一部を向
流で流すとか、真空ポンプで強力に02を除去する方法
もとられる)再生する。これを交互にくり返して連続的
にo!、 N、を分離する。上記の吸着塔に充填してい
た03吸着剤の代表的なものは、ペルグ・(ウフオルシ
ュング社により実用化された窓径約4Aを有すると推定
されるカーボンモレキュラーシーブステ’5 ’) 、
Ox 、Nt 2 成分混合ガスから02の方がN、よ
りも吸着速度の速い事を利用して0鵞を選択的に吸着す
るものである。
To give an overview of typical equipment, the equipment consists of an air compressor and two or more towers. It consists of an adsorption tower and, in some cases, an air pump. In this device, when compressed air is sent to one tower, O2 in the air is adsorbed by the O3 adsorbent packed therein, and the remaining high pressure N flows out to the rear of the adsorption tower and is recovered. On the other hand, in other towers, the adsorbed 0
2 is released under reduced pressure conditions (sometimes a method of flowing a part of the product N in a countercurrent or strongly removing 02 with a vacuum pump is also used) to regenerate it. Repeat this alternately and continue o! , N, are separated. Typical 03 adsorbents packed in the above adsorption tower are Pelg (carbon molecular sieve '5', which is estimated to have a window diameter of approximately 4A and was put into practical use by Ufforschung);
This method selectively adsorbs O2 from a mixed gas of Ox and Nt 2 components by taking advantage of the fact that the adsorption rate of O2 is faster than that of N.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この吸着による02 r NZ分離装置は中小型領域で
有利と前述したが、INm”のN、を製造するのに、9
9%N、で0.45 KWh、  99.9 %N、で
α65KWhを必要とし、大容量深冷分離法で製造され
るN、の[145K’Whに比し消費電力は大きい。
It was mentioned above that the 02r NZ separation device using this adsorption is advantageous in the small and medium-sized area, but in order to produce N of INm'',
9% N requires 0.45 KWh, and 99.9% N requires α65 KWh, and the power consumption is large compared to [145 K'Wh of N produced by large-capacity cryogenic separation method.

又0.については上記運転条件に於いて、lNm3のN
2を製造する時に25〜30%の0鵞富化空気が脱着側
から五5〜4Nm”回収される。
Also 0. Under the above operating conditions, N of lNm3
25-30% of zero-enriched air is recovered from the desorption side at a rate of 55-4 Nm''.

又装置容量の増大に対するスケールメリットが少く、1
000 Nm”−N鵞/h以上の領域では深冷分離法に
競合できないといわれている。
In addition, there is little merit of scale for increasing equipment capacity, and 1
It is said that it cannot compete with the cryogenic separation method in the region of 000 Nm''-N/h or more.

従って、これら欠点についての改善方法が種々考えられ
るが、本発明に関連して改善方法を述べると以下のよう
な障害が通常出現する。
Therefore, various methods of improving these drawbacks can be considered, but when describing the method of improvement in relation to the present invention, the following obstacles usually appear.

先ず、消費電力の低減については、送風圧力を低くして
低圧で吸着操作を行なう事が考えられるが、O1吸着量
が圧力にはぼ比例して低下する為、装置の容量が極めて
増大する。次に、N冨製造量(03富化空気)の増大を
図る為に、サイクルタイムの短縮が考えられるが、バル
ブ、吸着剤、回転機械の消耗の増大が考えられ、限度が
ある。
First, in order to reduce power consumption, it is possible to lower the blowing pressure and perform the adsorption operation at a low pressure, but since the amount of O1 adsorption decreases approximately in proportion to the pressure, the capacity of the device increases significantly. Next, in order to increase the amount of N-rich production (03-enriched air), it is possible to shorten the cycle time, but there is a limit because it increases the consumption of valves, adsorbents, and rotating machinery.

そこで本発明者らは、上記欠点を改善した低温、低圧吸
着条件下での高性能なo= l Ntの分離方法につき
鋭意研究、実験を進める過程で、少くとも2価以上の鉄
を含有するHa −A Wゼオライトは、低温、低圧吸
着条件下で08吸着量が増大するとともに01選択性が
増大する事を見出し、室温領域での高圧吸着、大気圧(
真空減圧)再生に比べ、吸着塔の増大を計る事なく大幅
な消費電力の低減を計り得る事を見出し本発明を完成す
るに到ったものである。
Therefore, the present inventors conducted intensive research and experiments on a high-performance separation method for o = l Nt under low temperature and low pressure adsorption conditions that improved the above-mentioned drawbacks. It was found that Ha-A W zeolite increases the 08 adsorption amount and the 01 selectivity under low temperature and low pressure adsorption conditions.
The present invention was completed based on the discovery that compared to regeneration (vacuum depressurization), it is possible to significantly reduce power consumption without increasing the number of adsorption towers.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は、少くとも2価以上の鉄を含有するN
a −A型ゼオライトを少くとも2塔の吸着塔に充填し
、室温以下の温度下で、酸素及び窒素を主成分とする混
合気体を大気圧以上3ata以下で、吸着塔に流入させ
て該混合気体に含まれる酸素を選択的に吸着させ、該吸
着塔出口から高純度窒素又は窒素富化ガスを流出させ、
一方酸素を吸着した吸着塔を0.08 ata以上Q、
5ata以下に減圧させて再生して02富化空気を製造
することを特徴とする低温、低圧条件下での混合気体か
らの酸素及び窒素の分離方法を提案するものである。
That is, the present invention provides N containing at least divalent or higher iron.
a - At least two adsorption towers are filled with A-type zeolite, and a mixed gas containing oxygen and nitrogen as main components is allowed to flow into the adsorption tower at a pressure above atmospheric pressure and below 3 ata to mix the mixture. selectively adsorbing oxygen contained in the gas and flowing out high-purity nitrogen or nitrogen-enriched gas from the outlet of the adsorption tower;
On the other hand, the adsorption tower that adsorbed oxygen was heated to Q of 0.08 ata or more,
This paper proposes a method for separating oxygen and nitrogen from a mixed gas under low temperature and low pressure conditions, which is characterized by producing 02-enriched air by reducing the pressure to 5ata or less and regenerating it.

〔実施例〕〔Example〕

本発明の有効性を実証する為第1図に示す空気分離装置
で空気からの少くとも2価以上の鉄を含有してなるNa
 −A型ゼオライトの02吸着剤による01.N鵞分離
を試みた。
In order to demonstrate the effectiveness of the present invention, an air separation device shown in FIG.
-01 with 02 adsorbent of type A zeolite. An attempt was made to separate the N-goose.

この02吸着剤は次のようにして調製した。This 02 adsorbent was prepared as follows.

先ず、pH9〜11を呈するHa−A型ゼオライトスラ
リー溶液に’l’@C1@又はFe04 a I M濃
度水溶液を、Ha−A型ゼオライト重量に対し鉄元素換
算でCL1〜1vt%となるように添加し、吸着剤の表
面に沈澱させる。この時、母液のpHが6以下になると
FeとNaイオンとの交換が起り、O1選択性を失うの
で避ける必要がある。この後、ろ過水洗を行ない、カオ
リン及びシリカゾルをバインダーとして混合し、成を後
、650℃以上の高温の焼成により、上記Ha−A型ゼ
オライトは02選択性を呈するようになる。なおFeと
同時にKを添加するとより低温での熱処理でもO1選択
性を得る事ができる。
First, 'l'@C1@ or Fe04 a IM concentration aqueous solution was added to a Ha-A type zeolite slurry solution exhibiting a pH of 9 to 11 so that CL was 1 to 1 vt% in terms of iron element based on the weight of Ha-A type zeolite. and precipitate on the surface of the adsorbent. At this time, if the pH of the mother liquor becomes 6 or less, exchange of Fe and Na ions will occur and O1 selectivity will be lost, so this must be avoided. Thereafter, filtration and water washing are performed, kaolin and silica sol are mixed as a binder, and after formation, the Ha-A type zeolite exhibits 02 selectivity by firing at a high temperature of 650° C. or higher. Note that by adding K at the same time as Fe, O1 selectivity can be obtained even during heat treatment at a lower temperature.

本発明に於いては上記調製範囲の中、IFe  をQ、
 5 vt% (as IFe )添加し、温度720
℃、2時間で焼成したものを使用した。
In the present invention, within the above preparation range, IFe is Q,
5 vt% (as IFe) added, temperature 720
The sample was baked at ℃ for 2 hours.

以下第1図に基づいて実施した内容を説明する。The details of the implementation will be explained below based on FIG.

入口側ライン1を通じて圧縮機2で1.05〜5 at
aに加圧された空気は、流路3から脱湿脱・:02塔4
に入り、極めて清浄な加圧空気となる。
1.05 to 5 at compressor 2 through inlet side line 1
The air pressurized to a is dehumidified and dehumidified from the flow path 3.:02 tower 4
The air enters the air and becomes extremely clean pressurized air.

流路3′の後流に設置されたバルブ5は開となっており
、清浄な加圧空気は流路6及び開状態のベルブ7を通じ
て吸着塔8に入る。吸着塔8に入った加圧空気はO1吸
着剤9で02が吸着除去されて後方に行くに従がいN2
濃度が上昇する。この後加圧空気は開状態のバルブ10
.11.12 及びバルブ11. 12の間に挿入され
た製品Ntタンク13を通じて製品N、として回収され
る。
The valve 5 installed downstream of the flow path 3' is open, and clean pressurized air enters the adsorption tower 8 through the flow path 6 and the open bell 7. The pressurized air that has entered the adsorption tower 8 is O1 adsorbent 9 where 02 is adsorbed and removed, and as it goes to the rear, it becomes N2.
concentration increases. After this, the pressurized air is supplied to the valve 10 in the open state.
.. 11.12 and valve 11. The product Nt is recovered as product N through the tank 13 inserted between the two.

一方、吸着塔8′は閉状態のバルブ10′、開状態のバ
ルブ1番及び流路17を通じて連結された真空ポンプ1
8で減圧されひかれておシ、この為吸着塔8′は負圧状
態で吸着塔8′中の08吸着剤9′に吸着されていたO
lは容易KMI脱され0.吸着剤9′は短時間で再生さ
れる。
On the other hand, the adsorption tower 8' has a valve 10' in a closed state, a valve 1 in an open state, and a vacuum pump 1 connected through a flow path 17.
Therefore, the adsorption tower 8' is under negative pressure and the O adsorbed on the 08 adsorbent 9' in the adsorption tower 8' is removed.
l is easily removed from KMI and 0. The adsorbent 9' is regenerated in a short time.

吸着塔8の02吸着剤9が飽和し、一方吸着塔8′の0
2吸着剤9′から0.が離脱して再生が済むと、入口空
気の流路6を6′に切り換え、今迄述べた方法を交互に
行なうと製品Ml及びQ、富化空気が連続的に回収でき
る。
The 02 adsorbent 9 of the adsorption tower 8 is saturated, while the 02 adsorbent 9 of the adsorption tower 8' is saturated.
2 adsorbent 9' to 0. When the inlet air is removed and regeneration is completed, the inlet air flow path 6 is switched to 6', and the methods described so far are carried out alternately, so that the products Ml and Q and the enriched air can be continuously recovered.

なお、入口の清浄な加圧空気のライン3′と離脱0鵞を
主成分とするガスライン17の間は熱交換器19で、熱
交換可能となっており、製品N1ライン21と流路3′
との間も又熱交換器22で熱交換可能となっている。又
流路5′には圧縮式冷凍機20が設置されている為、極
めて能率的に吸着塔8及び8′は冷却され低温条件に設
定される。なお、吸着塔の切り換えにあたっては、単純
に流路6から6′へ(又はその逆)切り換えるだけでな
く、切り換え直後の昇圧に伴なう入口空気の吹きぬけを
防ぎ、かつ吸着塔の後方に残存するN、及び前方の加圧
空気の系外への放出を最小にする為、先ず、バルブ10
 、10’を全開にして他の全てのバルブを全閉として
吸着直後の吸着塔8の後方の残存N、を再生直後の吸着
塔8’に一部移す。この時、吸着塔8の圧力をP。
A heat exchanger 19 is installed between the clean pressurized air line 3' at the inlet and the gas line 17 whose main component is separable gas. ′
A heat exchanger 22 also allows heat exchange between the two. Furthermore, since a compression type refrigerator 20 is installed in the flow path 5', the adsorption towers 8 and 8' are extremely efficiently cooled and set to a low temperature condition. In addition, when switching the adsorption tower, it is necessary not only to simply switch from flow path 6 to 6' (or vice versa), but also to prevent inlet air from blowing through due to pressure increase immediately after switching, and to prevent air from remaining behind the adsorption tower. In order to minimize the release of N and pressurized air from the front to the outside of the system, first, close the valve 10.
, 10' are fully opened and all other valves are fully closed, and a portion of the residual N at the rear of the adsorption tower 8 immediately after adsorption is transferred to the adsorption tower 8' immediately after regeneration. At this time, the pressure of the adsorption tower 8 is set to P.

(ata )、吸着塔8′の圧力をPl(ata )と
すると、均圧後の圧力は約−p、、+Fl (ata)
となる。この後、約 pn ” ’+ (6t a ’
)  となった吸着塔8′はパルプ10’、11を開と
して製品N!タンク13と吸着塔を均圧化して吸着塔8
′を更に高圧のN、で満たす。製品N、タンク13との
均圧時の圧力p。
(ata), and the pressure of the adsorption tower 8' is Pl (ata), the pressure after pressure equalization is approximately -p, +Fl (ata)
becomes. After this, about pn ” '+ (6t a '
), the adsorption tower 8' opens the pulps 10' and 11 to produce product N! The tank 13 and the adsorption tower are pressure-equalized and the adsorption tower 8
' is further filled with high pressure N. Pressure p when equalizing pressure with product N and tank 13.

(ata)は吸着塔8,8′の死容積(吸着塔内の吸着
剤で占められていない空間の容積)を7. (t’)、
製品N、タンクの容量をV鵞(t)とし′、均圧前の製
品Niタンク15の圧力をP。(ata)にほぼ等しい
とすると、均圧化圧力Pz (ata)は、概略となり
、単に塔を切り換える時のPH(ata)からP(1(
ata)への急速な昇圧に比べ、以上の操作ではP、 
(ata)、P0+P1(ata) 、p、 (ata
)、Po(ata’。
(ata) is the dead volume of the adsorption towers 8, 8' (the volume of the space not occupied by the adsorbent in the adsorption tower).7. (t'),
Product N, the capacity of the tank is V (t), and the pressure of the product Ni tank 15 before pressure equalization is P. (ata), the pressure equalization pressure Pz (ata) is approximately equal, and is simply calculated from PH(ata) when switching columns to P(1(
Compared to rapid pressure increase to (ata), the above operation reduces P,
(ata), P0+P1(ata), p, (ata
), Po(ata'.

とゆるやかに昇圧する為、昇圧時の空気の吹き抜けを防
止しつつ、脱着工程での残存N鵞、高圧空気の系外へ、
の放出を最小にするような対策が可能となっている。な
お脱着工程での0鵞富化空気の回収を主体とする運転で
は上記操作は製品0、濃度を下げて有効でない事はいう
までもない。
Because the pressure is increased slowly, it prevents air from blowing through during the pressure increase, and also allows residual nitrogen and high-pressure air from the desorption process to escape from the system.
Measures can be taken to minimize the release of It goes without saying that the above operation is not effective in reducing the concentration of the product in an operation where the main purpose is to recover zero-enriched air in the desorption process.

以上の操作方法で第1図に示した空気分離装置で空気分
離を行なった。装置の操作諸元を第1表に示す。
Air separation was carried out using the air separation apparatus shown in FIG. 1 using the above operating method. The operating specifications of the device are shown in Table 1.

第1表 吸着装置諸元 第1表の操作条件で空気から0鵞r N2を分離した。Table 1 Adsorption device specifications Under the operating conditions shown in Table 1, 0% N2 was separated from air.

この時の結果を第2図以下に要約する。The results are summarized in Figure 2 and below.

以下第2図から逐次少くとも2価の鉄を含有するNa 
−A型ゼオライトO鵞吸着剤(以下Na−A−Feと記
す)による空気からの圧力スイング式o鵞。
From Figure 2 below, Na containing at least divalent iron
- Pressure swing type odor from air using A-type zeolite adsorbent (hereinafter referred to as Na-A-Fe).

N、吸着分離の従来のカーボン分子篩4 A テの室温
高圧吸着による空気分離に対する主たる改善点を説明す
る。
The main improvements over the conventional carbon molecular sieve 4 A te for air separation by room temperature and high pressure adsorption will be explained.

第2図は吸着圧力と動力原単位との関係を示すグラフで
あり、第2図に於いて、横軸は吸着圧力P6ata、縦
軸はINm’/hでM、を製造するに必要な消費電力(
KW)である。吸着剤としてFe(ffI)をQ、 5
 wt911+含有するHa−Aを使用し、温度−50
℃、脱着圧力pl:== o、 1 ata 、出口N
2濃度99、9 %に設定して、吸着塔圧力を1.05
〜4.5ata K変更した時の消費電力を調べたもの
である。
Figure 2 is a graph showing the relationship between adsorption pressure and power consumption. In Figure 2, the horizontal axis is the adsorption pressure P6ata, and the vertical axis is the consumption required to produce M in INm'/h. Electric power (
KW). Fe(ffI) as an adsorbent Q, 5
Using Ha-A containing wt911+, temperature -50
°C, desorption pressure pl: == o, 1 ata, outlet N
2 concentration was set to 99.9%, and the adsorption tower pressure was set to 1.05%.
The power consumption was investigated when changing to ~4.5ataK.

第2図から判るよう(、圧力の低下に伴ない大幅な動力
原単位の低減が計られており、吸着圧力5 ata以下
でカーボン分子篩4ムのa65KWh / Nm’ −
N2  (99,9% N2 )に対し、よシ小さな動
力原単位で空気から窒素及び0鵞富化空気を分離し得る
極めて有用な事実を見出した。これは従来の実用化され
たいかなるO1吸着剤を利用した空気分離方法において
も低圧、低温領域でのO,吸着が利用されていない事、
又従来のいかなる文献にも記載されていない事からも全
く新しい事実といえる。
As can be seen from Fig. 2, the power consumption is significantly reduced as the pressure decreases, and at an adsorption pressure of 5 ata or less, the carbon molecular sieve of 4 ml is a65KWh/Nm'-
For N2 (99.9% N2), we have discovered the extremely useful fact that nitrogen and zero-enriched air can be separated from air with a much smaller power unit. This is because any conventional air separation method using an O1 adsorbent that has been put into practical use does not utilize O adsorption in the low-pressure, low-temperature region.
Moreover, it can be said to be a completely new fact since it has not been described in any conventional literature.

次に、上記の有効性が成立する領域である吸着圧力PQ
 = 1.2 ata 、出口N2濃度99.9 % 
、温度−30℃に操作条件を設定して脱着圧力P、をC
L1〜α5 ata迄変更して動力原単位を測定しこれ
を第3図に示した。第3図は脱着圧力と動力原単位との
関係を示すグラフである。第3図に於いて横軸は脱着圧
力PI(ata) 、縦軸はN、 1mm’/h製造時
の動力原単位を示す。カーボン分子篩でのN、製造動力
原単位がα65 KWh / Nm3− It (99
,9% 11. 、)である事からそれよシも低原単位
を示す脱着圧力α1〜α3 ataの領域が有効と考え
られる。
Next, the adsorption pressure PQ, which is the region where the above effectiveness holds true, is
= 1.2 ata, outlet N2 concentration 99.9%
, the operating conditions were set to -30°C, and the desorption pressure P was set to C.
The power consumption was measured by changing L1 to α5 ata, and the results are shown in FIG. FIG. 3 is a graph showing the relationship between desorption pressure and power consumption. In FIG. 3, the horizontal axis shows the desorption pressure PI (ata), and the vertical axis shows the power unit when manufacturing 1 mm'/h (N). N in carbon molecular sieve, production power consumption is α65 KWh / Nm3-It (99
,9% 11. , ), it is considered that the desorption pressure range α1 to α3 ata, which shows a low unit consumption, is effective.

次いで、吸着塔を室温から一305℃の領域での冷却条
件下での吸着分離を試みた。これは、低温条件に設定す
る事により吸着量の上昇と0゜選択性の向上が一般的に
おこるので吸着時の破過帯が縮少し装置の小型化と分離
効率の向上が期待できた為である。その他の操作条件を
吸着圧力1.2 ata 、再生圧力(L 1 ata
 、 @品N2濃度999チに設定し、温度を室温から
漸次低温へ下げてN21 Nm3./ h製造時の動力
原単位を求めた。第4図は操作温度と動力原単位との関
係を示すグラフである。第4図において横軸は温度、縦
軸は動力原単位を示している。
Next, an attempt was made to perform adsorption separation under cooling conditions in the adsorption tower in the range from room temperature to -305°C. This is because the adsorption amount and 0° selectivity generally increase by setting the temperature to low temperature conditions, so the breakthrough zone during adsorption is reduced, which can be expected to reduce the size of the device and improve separation efficiency. It is. Other operating conditions are adsorption pressure 1.2 ata, regeneration pressure (L 1 ata
, @Product The N2 concentration was set to 999 degrees, and the temperature was gradually lowered from room temperature to a low temperature to N21 Nm3. / h The power consumption rate during manufacturing was determined. FIG. 4 is a graph showing the relationship between operating temperature and power consumption rate. In FIG. 4, the horizontal axis shows temperature, and the vertical axis shows power consumption.

第4図から判るように、温度の低下に俸ない動力原単位
は低下し続けたつ一60℃迄の領域での本発明の02吸
着剤の動力原単位を調べたが、空気の吸着分離に関して
特に問題は発生しなかった。更に、小規模な試験での予
測によると、−100℃程度でもその有効性は失なわれ
ない。
As can be seen from Figure 4, the power consumption rate continues to decrease as the temperature decreases.The power consumption rate of the 02 adsorbent of the present invention in the temperature range up to 60°C was investigated, and it was found that No particular problems occurred. Furthermore, small-scale tests predict that it will not lose its effectiveness even at temperatures as low as -100°C.

しかしながら、−70℃以下の温度では、冷却に要する
消費電力が一50℃の約4倍、−60℃の2倍となり設
備費も割高となる為、実用上好ましくない。
However, at a temperature below -70°C, the power consumption required for cooling is approximately four times that of 150°C and twice that of -60°C, and the equipment cost becomes relatively high, which is not preferred in practice.

第5図は温度と吸着塔出口N2中の01濃度との関係を
示すグラフであり、図中横軸は温度、縦軸は吸着浴出ロ
N、中の02濃度を示している。操作条件を吸着圧力R
) = 1.2 ata 、脱着圧力pl=0、1 a
ta、空筒速度σ=α451 、/ secに設定し、
温度を4CI’Cから一10Q℃まで変化させて吸着分
離を行った。
FIG. 5 is a graph showing the relationship between temperature and 01 concentration in the adsorption tower outlet N2, in which the horizontal axis shows the temperature and the vertical axis shows the 02 concentration in the adsorption bath outlet N2. The operating conditions are adsorption pressure R
) = 1.2 ata, desorption pressure pl=0, 1 a
ta, cylinder speed σ = α451, / sec,
Adsorption separation was carried out by varying the temperature from 4CI'C to -110QC.

第5図から、判るように、本発明の02吸着剤では吸着
塔出口N2中の01濃度が低温域に於いて温度の低下に
伴ない大幅に減少する。
As can be seen from FIG. 5, in the 02 adsorbent of the present invention, the 01 concentration in N2 at the outlet of the adsorption tower decreases significantly as the temperature decreases in the low temperature range.

以上述べてきた事は、主として動力費+ 02純度に関
連する事であるが、次に初期設備費に関連する項目につ
いてのべる。吸着圧力Po== 1.2at& 、脱着
圧力P1 = 0.1 ataにおいて、出ロ製品N、
中の08濃度がα1チになるように製品M2採取量を調
製し、温度を40℃から一100℃まで変化させて、I
 Mm”/hのHz (02濃度0.1%)を採取する
に必要な吸着剤量を評価し、この結果を第6図に示した
。第6図は1度と上記の吸着剤量との関係を示すグラフ
であシ、図中横軸は温度、縦軸は前述の毎時INm’の
N、を製造するに必要な吸着剤重量〔ゆ〕である。
What has been described above is mainly related to power cost + 02 purity, but next we will discuss items related to initial equipment cost. At adsorption pressure Po == 1.2 at&, desorption pressure P1 = 0.1 ata, output product N,
The amount of product M2 collected was adjusted so that the concentration of 08 in
The amount of adsorbent required to collect Hz (02 concentration 0.1%) of Mm”/h was evaluated and the results are shown in Figure 6. Figure 6 shows the amount of adsorbent and This is a graph showing the relationship between the following: In the figure, the horizontal axis is temperature, and the vertical axis is the adsorbent weight required to produce the above-mentioned INm'N per hour.

第6図から判るように、カーボン分子篩が室温、4〜/
、 atmでの吸着条件で毎時INm”の島の製造を行
なう場合必要吸着剤が25ゆ′であるのに対し、本吸着
条件下では圧力が大気圧付近に低下しても一50℃の温
度条件では251Kgと大差なり0 以上詳細に述べたように、本発明によれば、少くとも2
価以上の鉄を含有するHa−A 型ゼオライトを使用し
、吸着工程圧力を5 ata以下、脱着工程力を0.1
〜(L 5 ataの圧力領域下におき、室温以下の温
度域を利用して混合気体例えば空気の圧力スイング式吸
着分離を行えば、従来毎時INm”のN、を製造するの
に要する動力原単位が深冷分離法で[145〜α65 
KWh現行の吸着分離でl 65 KWh以上を要して
いたものを、−挙にα25 KWh近傍迄低減せしめ、
併せて吸着剤使用量も現行の吸着剤法と同程度に維持し
得る。
As can be seen from Figure 6, the carbon molecular sieve is
When producing islands of INm per hour under the adsorption conditions of , atm, the amount of adsorbent required is 25 yu', but under these adsorption conditions, even if the pressure drops to around atmospheric pressure, the temperature remains at -50°C. As described in detail above, according to the present invention, at least 251 kg
Ha-A type zeolite containing more than the iron content is used, the adsorption process pressure is 5 ata or less, and the desorption process force is 0.1
~ (If pressure swing type adsorption separation of a mixed gas, such as air, is carried out under a pressure region of L 5 ata and using a temperature range below room temperature, the power required to produce N of INm" per hour conventionally can be reduced. Unit is cryogenic separation method [145~α65
KWh The current adsorption separation, which requires more than l 65 KWh, has been reduced to around α25 KWh,
In addition, the amount of adsorbent used can be maintained at the same level as the current adsorbent method.

以上主として0鵞吸着剤を利用したN2製造について述
べたが、次KO,富化空気製造について説明する。
The above description has mainly been about N2 production using the zero adsorbent, but next we will explain about KO and enriched air production.

この場合、本発明では大気圧近傍での空気の送風が可能
な為、O雪吸着塔の後方からM、に0鵞が随伴しても動
力原単位は上昇しない。むしろ出口N雪中の03濃度を
上昇して03吸着塔の0鵞分圧を上げて回収0鵞濃度を
上昇するのが望ましい。
In this case, in the present invention, since air can be blown at near atmospheric pressure, the power consumption rate does not increase even if the O snow adsorption tower is accompanied by M from the rear of the O snow adsorption tower. Rather, it is preferable to increase the 03 concentration in the snow at the outlet N and increase the 03 partial pressure of the 03 adsorption tower to increase the recovered 03 concentration.

本発明者等は、第1図の装置を使用し、入口空気量10
 Mt/切換時間、出口N雪中0.濃度5%迄上昇せし
め、温度−50℃、吸着圧力1.1ata 、再生圧力
11 ataの条件で脱着側再生ラインから約65%の
0鵞濃度の0鵞富化空気4 MLを採取した。
The inventors used the apparatus shown in FIG. 1, and the inlet air amount was 10
Mt/switching time, exit N snow 0. The concentration was increased to 5%, and 4 ML of O-enriched air with an O-O concentration of about 65% was collected from the desorption side regeneration line under the conditions of a temperature of -50°C, an adsorption pressure of 1.1 ata, and a regeneration pressure of 11 ata.

更に、回収0.の一部を吸着終了直後の塔に空気流れと
同一方向に流して残留N會をパージすると約80%迄O
s濃度は上昇した。この条件下での物質収支に基づいて
動力原単位を計算すると、1oo*−0鵞換算値で(L
 27 KWh / Nm’ −02となシ、極めて有
効な(深冷法がa、45 KWh/MW”−O,) o
8富化空気の製造手法となり得る。
In addition, the recovery was 0. If a portion of the nitrogen is passed through the tower immediately after adsorption in the same direction as the air flow to purge the residual N, the O
s concentration increased. Calculating the power unit based on the material balance under these conditions, the power consumption is calculated as (L
27 KWh/Nm'-02, extremely effective (cryogenic method is a, 45 KWh/MW"-0,) o
This can be a method for producing 8-enriched air.

以上詳細に説明したように、本発明は所要の動力原単位
及び吸着剤量が従来の吸着剤法に比べ少なく、産業上非
常に有用な混合気体からの酸素及び窒素の分離方法を提
案するものである。
As explained in detail above, the present invention proposes a method for separating oxygen and nitrogen from a mixed gas that requires less power consumption and less adsorbent than conventional adsorbent methods, and is very useful industrially. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の分離方法を実施するのに用いられる空
気分離装置の例示図、第2図は吸着圧力と動力原単位と
の関係を示す゛グラフ、第3図は脱着圧力と動力原単位
との関係を示すグラフ、第4図は温度と動力原単位との
関係を示すグラフ、第5図は温度と吸着塔出口N1中の
O,濃度との関係を示すグラフ、第6図は温度と11m
3− Nl /hを製造するに必要な吸着剤との関係を
示すグラフである。 2・・・圧縮機、4・・・脱湿脱CO,塔、8・・・吸
着塔、13・・・製品02タンク、18・・・真空ポン
プ、2゜・・・圧縮式冷凍機 復代理人  内 1)  明 復代理人  萩 原 亮 − 第2図 第3図 脱着圧力Pt Cata) 第5図 温度(0C〕 温度〔°C〕
Figure 1 is an illustration of an air separation device used to carry out the separation method of the present invention, Figure 2 is a graph showing the relationship between adsorption pressure and power consumption, and Figure 3 is a graph showing the relationship between adsorption pressure and power consumption. Figure 4 is a graph showing the relationship between temperature and power unit, Figure 5 is a graph showing the relationship between temperature and O concentration at the adsorption tower outlet N1, and Figure 6 is a graph showing the relationship between temperature and power consumption. temperature and 11m
3- is a graph showing the relationship with the adsorbent required to produce Nl/h. 2...Compressor, 4...Dehumidification/Dehumidification CO, tower, 8...Adsorption tower, 13...Product 02 tank, 18...Vacuum pump, 2゜...Compression refrigerator recovery Agents 1) Akifuku Agent Ryo Hagihara - Figure 2 Figure 3 Desorption pressure Pt Cata) Figure 5 Temperature (0C) Temperature [°C]

Claims (1)

【特許請求の範囲】[Claims] 少くとも2価以上の鉄を含有するNa−A型ゼオライト
を少くとも2塔の吸着塔に充填し、室温以下の温度で、
酸素及び窒素を主成分とする混合気体を大気圧以上3a
ta以下で吸着塔に流入させて該混合気体に含まれる酸
素を選択的に吸着させ、該吸着塔出口から高純度窒素又
は窒素富化ガスを流出させ、一方酸素を吸着した吸着塔
を0.08ata以上0.5ata以下に減圧させて再
生し酸素富化空気を回収することを特徴とする低温、低
圧条件下での混合気体からの酸素及び窒素の分離方法。
At least two adsorption towers are filled with Na-A zeolite containing at least divalent iron, and at a temperature below room temperature,
Mixed gas containing oxygen and nitrogen as main components at atmospheric pressure or higher 3a
ta or less to selectively adsorb oxygen contained in the mixed gas, and high-purity nitrogen or nitrogen-enriched gas flows out from the outlet of the adsorption tower, while the adsorption tower that has adsorbed oxygen is heated to 0. 1. A method for separating oxygen and nitrogen from a mixed gas under low temperature and low pressure conditions, characterized by recovering oxygen-enriched air by reducing the pressure to 0.08 ata or more and 0.5 ata or less.
JP59250503A 1984-11-29 1984-11-29 Separation of oxygen and nitrogen from gaseous mixture Granted JPS61129020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59250503A JPS61129020A (en) 1984-11-29 1984-11-29 Separation of oxygen and nitrogen from gaseous mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59250503A JPS61129020A (en) 1984-11-29 1984-11-29 Separation of oxygen and nitrogen from gaseous mixture

Publications (2)

Publication Number Publication Date
JPS61129020A true JPS61129020A (en) 1986-06-17
JPH0423563B2 JPH0423563B2 (en) 1992-04-22

Family

ID=17208847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59250503A Granted JPS61129020A (en) 1984-11-29 1984-11-29 Separation of oxygen and nitrogen from gaseous mixture

Country Status (1)

Country Link
JP (1) JPS61129020A (en)

Also Published As

Publication number Publication date
JPH0423563B2 (en) 1992-04-22

Similar Documents

Publication Publication Date Title
US6616732B1 (en) Zeolite adsorbents, method for obtaining them and their use for removing carbonates from a gas stream
EP0876994B1 (en) Ozone recovery by zeolite adsorbents
TW555587B (en) Process for the decarbonation of gas flows using zeolite adsorbents
US4453952A (en) Oxygen absorbent and process for the separation of oxygen and nitrogen using the same
JPH0459926B2 (en)
KR860001167B1 (en) Air separation process
JPH1099676A (en) Adsorbent for air separation, its production and air separation using said adsorbent
US3893827A (en) Selective removal of constituents from fluids
JP2596952B2 (en) Nitrogen production method
JPS61129020A (en) Separation of oxygen and nitrogen from gaseous mixture
JPS59179127A (en) Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressure
JPH0530762B2 (en)
JPH0378126B2 (en)
JPH0768042B2 (en) High-purity oxygen production method
JPH0455964B2 (en)
JPH06178933A (en) Oxygen adsorbent and separation of oxygen and nitrogen
JPH0768041B2 (en) Oxygen-enriched gas manufacturing method
JPH06178934A (en) Oxygen adsorbent and separation of oxygen and nitrogen
JP2955139B2 (en) Nitrogen adsorbent and method for separating oxygen and nitrogen
JPS60231401A (en) Production of oxygen with ca-na-a and na-x-nacl in n2 adsorption tower
JP4107781B2 (en) Method for producing 13CO enriched CO gas
JPS6358614B2 (en)
JPH0825727B2 (en) Nitrogen production method
JPS6125619A (en) Pressure swing system gas separation utilizing cold heat
JPH10128106A (en) Adsorbent for oxygen psa(pressure swing adsorption), its preparation and preparation of oxygen using it