JPS6358614B2 - - Google Patents

Info

Publication number
JPS6358614B2
JPS6358614B2 JP55072701A JP7270180A JPS6358614B2 JP S6358614 B2 JPS6358614 B2 JP S6358614B2 JP 55072701 A JP55072701 A JP 55072701A JP 7270180 A JP7270180 A JP 7270180A JP S6358614 B2 JPS6358614 B2 JP S6358614B2
Authority
JP
Japan
Prior art keywords
oxygen
adsorption
nitrogen
type zeolite
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55072701A
Other languages
Japanese (ja)
Other versions
JPS56168833A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7270180A priority Critical patent/JPS56168833A/en
Priority to EP81302162A priority patent/EP0040935B1/en
Priority to DE8181302162T priority patent/DE3171473D1/en
Publication of JPS56168833A publication Critical patent/JPS56168833A/en
Priority to US06/516,541 priority patent/US4453952A/en
Publication of JPS6358614B2 publication Critical patent/JPS6358614B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、空気中の酸素を分離、除去、又は濃
縮するための酸素選択的吸着剤及びそれを使用し
ての酸素と窒素の分離方法に関する。 空気からの酸素の分離、除去、又は濃縮におけ
る最大の問題点は、通常原料を空気に求めるため
原料コストは存せず、酸素に付加される価格が (a) 分離、濃縮に設けられる設備費 (b) 装置を稼動させるに必要な諸動力費 (c) 分離媒体が必要な場合、その価格及び補充費
用 等に依存することである。 又、分離、濃縮のプロセスは原料を空気に求め
る限り酸素の分離、窒素の分離の二つの方法のい
ずれをとつてもかまわない。 これらの点から経済的に有利なものとしては、
従来実施されてきた酸素、窒素分離プロセスの代
表的なものとして、空気を極低温に冷却し酸素、
窒素の沸点の違いにより分離する深冷分離装置が
挙げられる。この装置は、大容量の酸素製造に適
しており国内の酸素、窒素製造の大半が深冷分離
プロセスに依存しているが、大電力、大設備を要
するという欠点がある。 他には、近年ユニオンカーバイド社等により開
発され実用化されている分離方法に、アルミノシ
リケート系高分子吸着剤を使用したものがある。
このうち、モレキユラーシーブス5A,13X(ユニ
オンカーバイド社製、商品名)と称されるもの
は、窒素に対して極めて大きな吸着能(1.2g
N2/100gat NTP)を有し、これらにより空気
中から窒素の選択的除去を行ない酸素を分離、濃
縮するプロセスが実用化されている。実際には、
5A,13X型モレキユラーシーブスは、その吸着
能がラングミユア(Langmuir)型吸着等温線に
従い、圧力が1.5ataに達すると圧力の増加に比し
あまり吸着能が伸びないこと、又、空気中N2
O2モル比が4のため、極めて多量の窒素の除去
が必要となる。そのため、装置の大容量化にとも
なうスケールメリツトが小さく、小容量設備に限
定されているのが実状である。 又他には、酸素を選択的に吸収する遷移金属系
の有機錯体の利用も考えられる。 例えば、サルコミンと呼ばれる環状コバルト錯
体は、2モルのサルコミンで1モルの酸素を吸収
する。この吸収は、温度、圧力の変動に対して可
逆的であるので空気の昇温−降温サイクル、昇圧
−降圧サイクルにより原理的には酸素の分離、濃
縮が達成される。実際には吸収、放出にともない
劣化が甚だしく、又、高価なため、適用は極めて
特殊な酸素キヤリアーとしての使用に限定されよ
う。 これらの他、未だに実用化に至らないが原理的
にも充分に可能なものとして酸素選択透過フイル
ター、酸化ジルコニウムによる酸素ポンプ等が挙
げられる。 以上のように、酸素の分離、濃縮、除去に関し
ては実用上小容量酸素製造プロセスでは、モレキ
ユラーシーブスによる空気中の窒素除去による圧
力スイングプロセスが採用されている。又、大容
量型では空気の極低温冷却による深冷分離プロセ
スが採用されているが、いずれも動力費、設備費
の低減に関してはほとんど限界に到達したと考え
られる。 本発明は上記の酸素製造プロセスの欠点を改善
し、酸素の優先的な吸着剤を供することにより大
幅な酸素製造価格の低減、酸素製造プロセスの大
幅な設備の小型化を達成することを目的として提
案するものである。 本発明者等は、前述のモレキユラーシーブスの
うちNa−A型ゼオライトは、室温においては吸
着塔に充填し高圧で空気を流過しても殆ど酸素を
選択的に吸着せず、むしろ前述の5A,13Xと同
様に窒素選択型吸着剤として挙動するのに対し、
Na−A型ゼオライトに少くとも2価以上の価数
を有するFeを湿状態で接触させた後、450℃近傍
の温度条件で熱処理してNa−A型ゼオライト結
晶にFeを溶解させ更にこれをKを含む水溶液と
接触させてNa−A型ゼオライトの一部をKで交
換したNa−型ゼオライト(以下、Fe溶解Na−
K−A型ゼオライトと呼ぶ)は純粋なNa−A型
ゼオライトのNaの一部をKと交換したもの(以
下、Na−K−A型ゼオライトと呼ぶ)と著しく
異なり、酸素選択性が上昇しかつO2一成分系で
の酸素吸着量が増大する事を見出した。 又、低温になるに従い酸素吸着速度は低下する
が、一方窒素は全く吸着されず、極めて高濃度の
窒素ガスからの酸素の除去も可能であることをも
発見した。 このようなFe溶解Na−K−A型ゼオライトの
酸素選択性については従来の酸素、窒素に対する
吸着の研究においては何ら明示されていない。 本発明者等は上述のFe溶解Na−K−A型ゼオ
ライトを得るために下記のような処理を行なつ
た。 先ず本発明者等は、UCC社製Na−A型ゼオラ
イト粉末を充分に水洗し、更にNaCl水溶液で100
℃1時間煮沸後、再び水洗したものを原料として
使用した。これはNa−A型ゼオライト粉末には、
0.1wt%程度のK、0.05wt%程度のCa、0.05wt%
程度のMg等の不純物が通常混入しているが、上
記処理による全不純物量が0.1wt%以下になるよ
うに精製することができるからである。この中か
ら50gを分取しこれを1の純水に入れてスラリ
ー状になるように撹拌しながら、Feイオンの酸
化の進行を防ぐため、N2ガスでバブリングして
溶存酸素を除去した。この後FeCl3水溶液を滴下
して更に撹拌を1時間続けた。FeCl3はスラリー
水溶液がPH8.5〜9程度のため、Fe(OH)3コロイ
ドとして存在するものと思われるが、大部分は
Na−A型ゼオライト粉末へ付着する。 この後脱水して第1図に示すような吸着塔に充
填し、空気からの酸素吸着特性を確認した。本実
験においては、FeCl3の滴下液量を調整する事に
より、Fe2O3換算重量%で0.5wt%、1wt%の2種
類を調整した。 この後Feの付着したNa−A型ゼオライトから
真空過器を使用して水を除去し、空気浴で100
℃で予備乾燥してから、真空加熱浴で0.1Torrの
真空排気条件下、450℃で1時間加熱して、Feを
Na−A型ゼオライトに浴解させた。FeのNa−
A型ゼオライトへの溶解の品質管理には、ESR
による結晶内におけるFeの位置及び走査型電子
顕微鏡による結晶断面のFeの濃度分布により確
認している。 なお、Na−A型ゼオライトへのFeの溶解に
は、上記FeCl3以外に、FeCl2、Fe(CH3CO22
Fe(NO32,Fe(NO33等を使用したが最終的な
吸着性は変らない。おそらく、スラリー滴下後
Fe(OH)2,Fe(OH)3を形成し最終的には脱水に
伴いNa−A型ゼオライトと
The present invention relates to an oxygen selective adsorbent for separating, removing, or concentrating oxygen in the air, and a method for separating oxygen and nitrogen using the same. The biggest problem in separating, removing, or concentrating oxygen from air is that since the raw material is usually air, there is no raw material cost, and the price added to oxygen is (a) the cost of equipment installed for separation and concentration. (b) The power costs necessary to operate the equipment; (c) If a separation medium is required, it depends on its price and replenishment costs. Further, the separation and concentration process may be carried out by either of the two methods, oxygen separation or nitrogen separation, as long as air is used as the raw material. From these points of view, the economically advantageous ones are:
A typical oxygen and nitrogen separation process that has been carried out in the past involves cooling air to a cryogenic temperature to remove oxygen and nitrogen.
An example is a cryogenic separation device that separates nitrogen based on the difference in boiling point. This device is suitable for large-capacity oxygen production, and most of the domestic oxygen and nitrogen production relies on the cryogenic separation process, but it has the disadvantage of requiring large amounts of electricity and large equipment. Another separation method recently developed and put into practical use by Union Carbide and others uses an aluminosilicate polymer adsorbent.
Among these, molecular sieves 5A and 13X (manufactured by Union Carbide, trade name) have extremely high adsorption capacity for nitrogen (1.2g
N2 /100gat NTP), and a process for selectively removing nitrogen from the air and separating and concentrating oxygen has been put into practical use. in fact,
The adsorption capacity of 5A and 13X type molecular sieves follows the Langmuir type adsorption isotherm, and when the pressure reaches 1.5 ata, the adsorption capacity does not increase as much as the pressure increases. 2 /
Due to the O 2 molar ratio of 4, a very large amount of nitrogen needs to be removed. Therefore, the merits of scale associated with increasing the capacity of the device are small, and the actual situation is that the device is limited to small-capacity equipment. Another possibility is to use a transition metal-based organic complex that selectively absorbs oxygen. For example, a cyclic cobalt complex called sarcomine absorbs 1 mole of oxygen with 2 moles of sarcomine. Since this absorption is reversible with respect to changes in temperature and pressure, separation and concentration of oxygen can be achieved in principle by the heating-lowering cycle and pressure-raising-lowering cycle of the air. In reality, the deterioration due to absorption and release is severe, and since it is expensive, its application will be limited to use as a very special oxygen carrier. In addition to these, there are oxygen selective permeation filters, oxygen pumps using zirconium oxide, etc. that have not yet been put into practical use but are sufficiently possible in principle. As described above, in terms of oxygen separation, concentration, and removal, in practical small-capacity oxygen production processes, a pressure swing process is adopted in which nitrogen is removed from the air using molecular sieves. In addition, large-capacity types employ a cryogenic separation process using cryogenic cooling of air, but it is thought that all of these methods have almost reached their limits in terms of reducing power and equipment costs. The present invention aims to improve the above-mentioned drawbacks of the oxygen production process, provide a preferential adsorbent for oxygen, and achieve a significant reduction in oxygen production costs and a significant reduction in the size of equipment for the oxygen production process. This is a proposal. The present inventors have discovered that among the above-mentioned molecular sieves, Na-A type zeolite hardly selectively adsorbs oxygen even when it is packed in an adsorption tower and air is passed through it at high pressure at room temperature; Although it behaves as a nitrogen selective adsorbent like 5A and 13X,
After contacting Na-A type zeolite with Fe having a valence of at least 2 or higher in a wet state, heat treatment is performed at a temperature of around 450°C to dissolve Fe in the Na-A type zeolite crystals. Na-type zeolite (hereinafter referred to as Fe-dissolved Na-
K-A type zeolite) is significantly different from pure Na-A type zeolite in which part of the Na is replaced with K (hereinafter referred to as Na-K-A type zeolite), and has increased oxygen selectivity. We also found that the amount of oxygen adsorption increases in O 2 one-component systems. They also discovered that although the rate of oxygen adsorption decreases as the temperature decreases, no nitrogen is adsorbed at all, making it possible to remove oxygen from extremely highly concentrated nitrogen gas. The oxygen selectivity of such Fe-dissolved Na-K-A type zeolite has not been clarified at all in conventional research on adsorption of oxygen and nitrogen. The present inventors performed the following treatment in order to obtain the above-mentioned Fe-dissolved Na-K-A type zeolite. First, the present inventors thoroughly washed Na-A type zeolite powder manufactured by UCC with water, and then diluted it with NaCl aqueous solution for 100 mL.
After boiling at ℃ for 1 hour, the mixture was washed again with water and used as a raw material. This means that Na-A type zeolite powder has
K about 0.1wt%, Ca about 0.05wt%, 0.05wt%
This is because although a certain amount of impurities such as Mg are usually mixed in, the above treatment can purify the total amount of impurities to 0.1 wt% or less. From this, 50 g was taken out and added to the pure water from step 1. While stirring to form a slurry, dissolved oxygen was removed by bubbling with N 2 gas to prevent the progress of oxidation of Fe ions. After that, an aqueous FeCl 3 solution was added dropwise, and stirring was continued for an additional hour. FeCl 3 is thought to exist as Fe(OH) 3 colloid because the slurry aqueous solution has a pH of about 8.5 to 9, but most of it is
Adheres to Na-A type zeolite powder. Thereafter, it was dehydrated and packed into an adsorption tower as shown in FIG. 1, and its oxygen adsorption characteristics from air were confirmed. In this experiment, two types of Fe 2 O 3 equivalent weight %, 0.5 wt % and 1 wt %, were adjusted by adjusting the amount of FeCl 3 dropped. After that, water was removed from the Fe-adhered Na-A zeolite using a vacuum filter, and the water was removed from the Na-A type zeolite using an air bath.
After pre-drying at ℃, the Fe was heated in a vacuum heating bath at 450℃ for 1 hour under vacuum evacuation conditions of 0.1 Torr.
It was bath-dissolved in Na-A type zeolite. Fe Na−
ESR is used for quality control of dissolution into A-type zeolite.
This has been confirmed based on the position of Fe in the crystal and the Fe concentration distribution in the cross section of the crystal using a scanning electron microscope. In addition, in addition to the above-mentioned FeCl 3 , FeCl 2 , Fe(CH 3 CO 2 ) 2 , Fe(CH 3 CO 2 ) 2 ,
Although Fe(NO 3 ) 2 , Fe(NO 3 ) 3, etc. were used, the final adsorption properties did not change. Probably after slurry dripping
Fe(OH) 2 and Fe(OH) 3 are formed and eventually Na-A zeolite is formed as a result of dehydration.

【式】【formula】

【式】【formula】

【式】【formula】

【式】等の結合を形成するためと考え られる。 この後、Feを溶解したNa−A型ゼオライトを
Nacl水溶液中で30分煮沸して交換可能なFeを除
去し、水洗し、更にKCl水溶液に浸漬してNa−
Aの交換可能なNaの一部をKで交換し、Fe溶解
Na−K−A型ゼオライトを作製した。 なお本実験では、K交換率10%、20%の2種類
を作製した。 また、参考のためにFeを全く含まない純粋な
Na−A型ゼオライトを用いて上記のK交換法に
よりK交換率10%、20%の2種類でK交換を行な
つたものをも調製した。 ここで、K交換における陰イオンの影響につい
て述べると、Cl-のかわりにSO4 2-,PO4 3-
CH3CO2 -等を使用した場合は何ら変化しなかつ
たが、OH-を使用した場合は充分な水洗をしな
いと著しく吸着能が低下した。 以下図を参照してFeを溶解Na−A型ゼオライ
トの空気からの吸着分離性について説明する。 第1図はNa−A型ゼオライト、Na−K−A型
ゼオライト、Fe溶解Na−A型ゼオライト及び本
発明のFe溶解Na−K−A型ゼオライトの空気分
離特性を計測するために本発明者等が試作した装
置の概略説明図である。 1は高圧の空気ボンベである。ボンベ1を出た
高圧空気は減圧器2を経てボンベ3に至る。減圧
器2とボンベ3の間にブルドン管式圧力計4が設
置され圧力の測定が可能であり本試験では減圧器
2とブルドン管式圧力計4により入口圧力を5ata
に設定した。内径10mmφ、長さ300mmのステンレ
ス製の吸着塔6に挿入された水洗直後の吸着剤7
は何らの吸着能を有しない。このため本試験では
−70℃〜600℃迄の温度調整可能な温度調節浴8
に吸着塔6を設置し、吸着剤前処理のためバルブ
3,5を閉じ、バルブ9を開にし真空ポンプ10
で吸着塔内を0.1Torrに減圧し、温度調節浴8を
450℃に設定して脱水を兼ねて熱処理を1時間行
なつた。その後再び室温に冷却してからバルブ3
及び5を開にして高圧空気を流過させフロート式
流量計11で流量を測定した後酸素濃度計12に
全量流入させて出口酸素濃度を計測し更にデータ
は自記式録計13で記録した。 第1図に示すような実験装置で吸着塔6に
Feを全く溶解していないNa−A型ゼオライト粉
末、このの試料の10%K交換体、同じく20
%K交換体、1wt%Feを溶解Na−A型ゼオラ
イト1wtFe溶解10%K交換Na−K−A型ゼオ
ライト、1wt%Fe溶解20%K交換Na−K−A
型ゼオライトを15g充填し入口ガス流量を
100Nml/分、入口空気圧力を5ataに設定して出
口酸素濃度の経時変化を測定した。室温(25℃)
における出口酸素濃度の経時変化の例を第2図に
示す。 第2図において横軸は、経過時間であり、1目
盛は1分である。縦軸はO2濃素であり単位は容
量%である。なお、入口側酸素濃度を示すため、
空気中酸素濃度20.8%のところに基準線αを記し
た。 又第2図において、出口酸素濃度の経時変化曲
線を、Feを全く溶解してないNa−A型ゼオラ
イト粉末は実線で、このの試料の10%K交換
体は破線で、同じく20%K交換体は一点鎖線で
示している。 第2図において先ずFeを全く溶解してないNa
−A型ゼオライトの出口酸素濃度の経時変化デー
タから説明する。本試料では、出口酸素濃度
は、初期に20.8%から18%迄低下しその後46%迄
急速に上昇してから徐々に減少し、空気流通後約
5分で破過した。 このデータからわかるように吸着の初期にお
いては、単位時間当りの酸素の吸着量が窒素の吸
着量を上廻り、このため、出口酸素濃度は減少す
る。しかし時間の経過とともに単位時間当りの酸
素の吸着量を窒素の吸着量が上廻り出口酸素濃度
は上昇する。更に吸着剤が酸素、窒素に対し飽和
するため徐々に低下し入口側ガス濃度に等しくな
る。 一方、Na−A型ゼオライトの酸素、窒素1成
分系の吸着量に関しては、“吸着の基礎と設計、
北川、鈴木P.226”に記載されているように20℃、
1ataの条件下で1g当り6.2mlの窒素と2.2mlの酸
素を吸着する。 これらの事実を総合すると、吸着量において窒
素の方が3倍程度大きいので本来出口酸素濃度は
高くなる筈であるが、酸素の吸着剤への拡散速度
が窒素の拡散速度に比べ大きいため、上記のよう
な現象がおこるものと推定される。 しかしながら今迄述べたNa−A型ゼオライト
の空気からの酸素、窒素の分離性で判るように、
あまりにも酸素の選択的吸着性が弱く、実用的に
使用する事は、経済的に困難である。 このようなNa−A型ゼオライトのNaの一部を
Kと交換しても吸着剤の性能は何ら改善されな
い。即ち第2図において10%K交換体のデータ
では出口酸素濃度の最高値は32%、最低値は17%
となり、20%と交換体のデータでは出口酸素濃
度の最高値は22%、最低値は19%となる。なお、
30%K交換体ではもはや酸素、窒素は吸着しな
い。 つづいて本発明のFeの溶解Na−K−A型ゼオ
ライトの有効性について第3図により説明する。 第3図は、第2図と同様、室温(25℃)におけ
る出口酸素濃度の経時変化を示すもので、横軸、
縦軸および基準線αは第2図と同義である。 第3図において、1wt%Fe溶解Na−A型ゼオ
ライトはK交換してなくとも出口酸素濃度の最
低値が6%と低下しており、前記したFeを溶解
していないものよりもかなり改善されていること
が判る。更に1wt%Fe溶解10%K交換Na−K−
A型ゼオライトでは出口酸素濃度の最低値は4
%と低下し、強い酸素選択性を示すことが判る。
また1wt%Fe溶解20%K交換Na−K−A型ゼオ
ライトでは出口酸素濃度の最低値は7%と上昇
するが、注目すべきことは出口酸素濃度が空気酸
素濃度の20.8%すなわち基準線αを超えることが
なく、殆んどN2を吸着しておらず、完全な酸素
選択型吸着剤となつている。 上記3種類の吸着剤うち、の1wt%Fe溶解10
%K交換Na−K−A型ゼオライトを用いて低温
側の吸着条件で空気からの酸素、窒素分離を行な
つたところ、常温操作でも上記のような効果があ
つたものが、更に低温条件が加えられることによ
り、一層効率の上昇がみられた。これを第4図に
より説明する。 第4図において、の25℃でのデータは第3図
のと同じものである。′は0℃で吸着操作を
行なつたもので、出口酸素濃度の最低値は8%と
上昇するが、窒素を全く吸着しておらず、吸着量
も2倍以上に増加している。また″は−25℃で
吸着操作を行なつたもので、出口酸素濃度の最低
値は12%と更に上昇し空気分離性能は低下する
が、酸素の完全な選択性は充分存在している。 以上の事例を要約すると、 (1) Na−A型ゼオライトにFeを溶解させると、
常温における空気等の酸素、窒素2成分系から
の酸素吸着性等の選択性は上昇するが、これに
Naの一部をK交換すると、更に選択性が上昇
し、吸着塔のような動的吸着条件下では完全な
酸素選択性を実現する。 (2) 常温から低温側の温度域では部分K交換体は
全く窒素を吸着しないが、完全な酸素選択性を
得るためのK交換は高温側では高いK交換率が
必要で、低温側では低いK交換率で充分であ
る。 (3) 低温側、および高いK交換率の場合、出口酸
素濃度のピーク値が高い(すなわち酸素、窒素
の分離が不充分な)のは酸素の吸着剤への移動
速度が流通する空気の空塔速度に比べて小さ過
ぎるからであり、このような場合には吸着塔内
の空気の空塔速度を低下させる必要がある。 以上説明したように本発明酸素吸着剤は、従来
の既文献にいかなる示唆もされていない酸素選択
型の全く新しい吸着剤であり、又Feを溶解しな
いNa−A型ゼオライトの1.5〜2倍の酸素を吸着
するという優れた利点を有する。 本発明酸素吸着剤は、その適用する範囲が極め
て広く例えばモレキユラーシーブスを利用した酸
素濃縮装置に適用する場合、温度スイング、圧力
スイング方式のいずれにも適用可能であり、従来
のN2吸着型モレキユラーシーブスの吸着性能を
はるかに凌駕し装置の小型化、酸素濃縮の低廉化
への道を開くものである。 又、本発明酸素吸着剤を他成分ガスからの酸素
除去に利用するならば極めて安価な酸素吸着除去
剤を提供することとなる。 なお前記した本実験における流量(100ml/
分)、圧力(5ata)条件下では、1wt%Fe溶解20
%K交換Na−K−A型ゼオライトでほぼ完全な
酸素選択性を示した。 なお、この条件下において流量、圧力、
吸着塔断面積、吸着塔長さ等によつてどのよう
に出口酸素濃度が変化するかは“吸着の基礎と設
計 北川、鈴木P.89〜P.92”により推定できる。 また、高温側、低K交換率、低Fe溶解量の条
件では、窒素の吸着速度が無視し得ないため、2
成分系について解析すればよい。 これらの結果によるとFeの溶解量が多い程、
K交換率が高い程、また低温になる程、酸素と窒
素の物質移動係数が開く事を意味し、これは実用
的にはFeの溶解量が多い程、Kの交換率が高い
程、また低温になる程より低い入口流速が許容さ
れ、室温側、低K交換率、低Fe溶解量ではより
高い入口流速を設定しなければならない事とな
る。 いずれにしても、第2図〜第4図の出口酸素濃
度の経時変化データが得られれば吸着塔及びその
操作の設計は従来の技術範囲内で行ない得る。 なお、低温側温度条件の選定については上記吸
着剤の性質だけでは決らない。例えば廃熱が充分
に得られる条件下では吸収式冷凍機を使用しても
よくこの場合−25℃程度が最適であり、又他には
吸着塔を流過した後の高圧N2ガスとボルテツク
スチユーブを組み合わせると−10℃程度が最適で
あり、また流過高圧N2ガスで膨脹タービンを駆
動すれば、−30〜−50℃が好ましく、低温域の温
度選定はむしろ冷却の態様に依存する。 以下、本発明の酸素の選択的吸着分離方法を圧
力スイング式酸素製造装置に適用した実施例につ
いて説明する。 第5図は圧力スイング式酸素製造装置の概略説
明図である。第5図において、17〜24は自動
切換弁、25,26は本発明酸素吸着剤を充填し
た吸着塔、27は低温冷却用熱交、28は脱湿、
脱炭酸ガス用吸着塔、29はプレクーラ、30は
空気圧縮機、31は空気ストレーナ、32は絞り
弁であり、自動切換弁等を制御するための制御装
置等は図示を省略した。 今仮に、吸着塔25が吸着工程にあり、吸着塔
26が再生工程にあるとする。空気ストレーナ3
1を通つて除塵された空気は空気圧縮機30によ
り加圧されてから、プレクーラ29で粗脱水及び
室温迄冷却されて、更に吸着塔28で脱湿、脱炭
酸を行われてから、低温冷却熱交27で−30℃に
冷却されて弁20を通つて吸着塔25に送入され
て同塔内の吸着剤に加圧空気中の酸素が選択的に
吸着され、窒素富化空気が弁17を通つて同塔か
ら送出される。この時、吸着塔25に付設された
弁17,20は開、弁18,19は閉となつてい
る。 他方、吸着塔26は吸着塔25において吸着操
作を行なつている間に、まず吸着塔26内の吸着
剤の減圧再生を行なう。即ち、この時吸着塔26
に付設された弁21〜24のうち弁21,22,
24は閉、弁23は開とし吸着塔26内を大気圧
(または負圧)になるまで減圧して、吸着工程に
おいて吸着していた吸着成分の一部を脱着し、酸
素富化空気が弁23を通つて同塔から送出され
る。 減圧工程が終了すると同時に弁22が開とな
り、大気を送風手段(図示省略)により絞り弁3
2および弁22を通して吸着塔26内に送入し、
酸素に富んだ同塔内の空隙ガスおよび残吸着成分
を弁23を通じて同塔外に送出する掃気工程を行
なう。 上記の工程が終了すると同時に、吸着塔26は
吸着工程に移り、同時に吸着塔25は再生工程に
移る。 上記のように、吸着工程と再生工程を連続的に
繰返すことにより酸素富化空気および(又は)窒
素富化空気を取出すものである。 この実施例では、内径50mm、長さ600mmの吸着
塔に1wt%Fe溶解20%K交換Na−K−A型ゼオ
ライトを錠剤成型機で直径1mmの球状に成型した
ものを1Kg充填し、供給空気圧力を1ata〜5ata間
でスイングし、入口空気流量を2.8Nl/分、温度
25℃の室温条件で吸着分離した。 この時の第5図における、バルブ17,21後
方の製品窒素濃度、同窒素分離量、バルブ19,
23後方の製品酸素濃度、同酸素回収量を第1表
に記す。 なお、純粋なNa−A型ゼオライトの場合、25
℃おいては、バルブ17,21の後方からは製品
窒素は得られず45%の酸素が流過した。これは、
第1図に示す小型の空気分離試験機で見られた吸
着初期の酸素濃度のわずかの低下がそれに続く窒
素吸着に打ち消されたためと思われる。25℃付近
では、より大きな入口流速が必要であろう。
This is thought to be due to the formation of a bond such as [Formula]. After this, Na-A type zeolite in which Fe was dissolved was added.
Exchangeable Fe was removed by boiling in a NaCl aqueous solution for 30 minutes, washed with water, and further immersed in a KCl aqueous solution to remove exchangeable Fe.
Part of the exchangeable Na of A is exchanged with K, and Fe is dissolved.
Na-K-A type zeolite was produced. In this experiment, two types were prepared with a K exchange rate of 10% and 20%. Also, for reference, pure
Using Na-A type zeolite, two kinds of K-exchanged products were prepared using the above-mentioned K-exchange method: 10% and 20% K-exchange rate. Here, to discuss the influence of anions on K exchange, instead of Cl - , SO 4 2- , PO 4 3- ,
When CH 3 CO 2 - etc. were used, there was no change, but when OH - was used, the adsorption capacity decreased significantly unless sufficient washing with water was carried out. The adsorption and separation properties of Fe-dissolving Na-A type zeolite from air will be explained below with reference to the figures. Figure 1 shows the inventors' work to measure the air separation characteristics of Na-A type zeolite, Na-K-A type zeolite, Fe-dissolved Na-A type zeolite, and Fe-dissolved Na-K-A type zeolite of the present invention. FIG. 1 is a schematic explanatory diagram of a device prototyped by et al. 1 is a high pressure air cylinder. High pressure air leaving the cylinder 1 passes through a pressure reducer 2 and reaches the cylinder 3. A Bourdon tube pressure gauge 4 is installed between the pressure reducer 2 and the cylinder 3, and it is possible to measure the pressure.In this test, the inlet pressure was measured at 5ata using the pressure reducer 2 and the Bourdon tube pressure gauge 4
It was set to Adsorbent 7 immediately after washing inserted into a stainless steel adsorption tower 6 with an inner diameter of 10 mmφ and a length of 300 mm
has no adsorption capacity. For this reason, in this test, a temperature-controlled bath 8 whose temperature can be adjusted from -70℃ to 600℃ was used.
The adsorption tower 6 is installed at
The pressure inside the adsorption tower was reduced to 0.1 Torr, and the temperature control bath 8 was
Heat treatment was performed at 450°C for 1 hour, also serving as dehydration. Then, after cooling to room temperature again, valve 3
and 5 were opened to allow high-pressure air to flow through and measure the flow rate with a float type flow meter 11.Then, the entire amount was allowed to flow into an oxygen concentration meter 12 to measure the outlet oxygen concentration, and the data was further recorded with a self-recording recorder 13. In the adsorption tower 6 using the experimental equipment shown in Figure 1,
Na-A type zeolite powder with no Fe dissolved at all, 10% K exchanger of this sample, also 20
%K exchanger, 1wt% Fe dissolved Na-A type zeolite 1wtFe dissolved 10% K exchanged Na-K-A type zeolite, 1wt% Fe dissolved 20% K exchanged Na-K-A
Fill 15g of type zeolite and adjust the inlet gas flow rate.
The time-dependent change in outlet oxygen concentration was measured with the inlet air pressure set at 100 Nml/min and 5ata. Room temperature (25℃)
Figure 2 shows an example of the change in outlet oxygen concentration over time. In FIG. 2, the horizontal axis represents elapsed time, and one scale is one minute. The vertical axis is O 2 concentration, and the unit is volume %. In addition, to indicate the oxygen concentration on the inlet side,
A reference line α was drawn at the air oxygen concentration of 20.8%. In addition, in Figure 2, the time-course curve of outlet oxygen concentration is shown as a solid line for the Na-A type zeolite powder that does not dissolve any Fe, a broken line for the 10% K exchanger of this sample, and a broken line for the 20% K exchanger as well. The body is indicated by a dashed line. In Figure 2, first of all, Na has no dissolved Fe at all.
- This will be explained based on data on changes over time in outlet oxygen concentration of type A zeolite. In this sample, the outlet oxygen concentration initially decreased from 20.8% to 18%, then rapidly increased to 46%, and then gradually decreased, reaching a breakthrough in about 5 minutes after air flow. As can be seen from this data, at the initial stage of adsorption, the amount of oxygen adsorbed per unit time exceeds the amount of nitrogen adsorbed, and therefore the outlet oxygen concentration decreases. However, as time passes, the amount of nitrogen adsorbed exceeds the amount of oxygen adsorbed per unit time, and the outlet oxygen concentration increases. Furthermore, since the adsorbent becomes saturated with oxygen and nitrogen, the concentration gradually decreases and becomes equal to the gas concentration on the inlet side. On the other hand, regarding the adsorption amount of oxygen and nitrogen single component systems of Na-A type zeolite, please refer to “Basics and Design of Adsorption”.
20℃, as described in “Kitagawa, Suzuki P.226”
It adsorbs 6.2ml of nitrogen and 2.2ml of oxygen per 1g under 1ata condition. Taking all these facts together, the amount of nitrogen adsorbed is about three times larger, so the outlet oxygen concentration should originally be higher, but since the diffusion rate of oxygen into the adsorbent is greater than that of nitrogen, It is assumed that the following phenomenon occurs. However, as can be seen from the ability of Na-A zeolite to separate oxygen and nitrogen from air,
The selective adsorption of oxygen is too weak and it is economically difficult to use it practically. Even if part of the Na in such Na-A type zeolite is replaced with K, the performance of the adsorbent is not improved at all. In other words, in Figure 2, the data for the 10% K exchanger shows that the maximum value of the outlet oxygen concentration is 32% and the minimum value is 17%.
Therefore, according to the data of 20% and the exchanger, the maximum value of the outlet oxygen concentration is 22% and the minimum value is 19%. In addition,
A 30% K exchanger no longer adsorbs oxygen and nitrogen. Next, the effectiveness of the Fe-dissolved Na-K-A type zeolite of the present invention will be explained with reference to FIG. Figure 3, like Figure 2, shows the change in outlet oxygen concentration over time at room temperature (25°C), with the horizontal axis
The vertical axis and reference line α have the same meaning as in FIG. In Fig. 3, the minimum value of the outlet oxygen concentration of the 1wt% Fe-dissolved Na-A zeolite is reduced to 6% even without K exchange, which is much improved compared to the above-mentioned one in which Fe is not dissolved. It can be seen that Furthermore, 1wt% Fe dissolved 10% K exchanged Na-K-
For A-type zeolite, the minimum value of outlet oxygen concentration is 4
%, indicating strong oxygen selectivity.
In addition, in the case of 1 wt% Fe-dissolved 20% K-exchanged Na-K-A type zeolite, the minimum value of the outlet oxygen concentration increases to 7%, but it should be noted that the outlet oxygen concentration is 20.8% of the air oxygen concentration, that is, the reference line α It adsorbs almost no N2 , making it a perfect oxygen-selective adsorbent. Of the three types of adsorbents above, 1wt% Fe dissolution 10
When oxygen and nitrogen were separated from air using %K-exchanged Na-K-A type zeolite under adsorption conditions on the low temperature side, the above effects were obtained even when operated at room temperature, but even under lower temperature conditions A further increase in efficiency was observed by adding This will be explained with reference to FIG. In FIG. 4, the data at 25°C are the same as in FIG. ' is the one in which the adsorption operation was carried out at 0°C, and although the minimum value of the outlet oxygen concentration increased to 8%, no nitrogen was adsorbed at all, and the amount of adsorption increased more than twice. In addition, "" is the one in which the adsorption operation was carried out at -25°C, and the minimum value of the outlet oxygen concentration further increases to 12%, and the air separation performance decreases, but complete oxygen selectivity is sufficiently present. To summarize the above cases, (1) When Fe is dissolved in Na-A type zeolite,
The selectivity of oxygen adsorption from a two-component system of oxygen and nitrogen such as air at room temperature increases, but this
Exchanging part of the Na with K further increases the selectivity, and under dynamic adsorption conditions such as in an adsorption column, complete oxygen selectivity is achieved. (2) Partial K exchangers do not adsorb nitrogen at all in the temperature range from room temperature to low temperatures, but K exchange to obtain complete oxygen selectivity requires a high K exchange rate at high temperatures and a low K exchange rate at low temperatures. The K exchange rate is sufficient. (3) In the case of a low temperature side and a high K exchange rate, the peak value of the outlet oxygen concentration is high (that is, the separation of oxygen and nitrogen is insufficient). This is because it is too small compared to the column velocity, and in such a case, it is necessary to reduce the superficial velocity of the air in the adsorption column. As explained above, the oxygen adsorbent of the present invention is a completely new oxygen-selective adsorbent that has not been suggested in any conventional literature, and it has an oxygen adsorption capacity of 1.5 to 2 times that of Na-A type zeolite, which does not dissolve Fe. It has the excellent advantage of adsorbing oxygen. The oxygen adsorbent of the present invention has a very wide range of applications, for example, when applied to oxygen concentrators using molecular sieves, it can be applied to both temperature swing and pressure swing methods, and can be applied to conventional N 2 adsorption methods. The adsorption performance far exceeds that of type molecular sieves, paving the way for smaller equipment and lower cost oxygen concentration. Furthermore, if the oxygen adsorbent of the present invention is used to remove oxygen from other component gases, an extremely inexpensive oxygen adsorption/removal agent will be provided. In addition, the flow rate (100ml/
min), under pressure (5ata) conditions, 1wt% Fe dissolution20
% K-exchanged Na-K-A type zeolite showed almost perfect oxygen selectivity. In addition, under this condition, the flow rate, pressure,
How the outlet oxygen concentration changes depending on the adsorption tower cross-sectional area, adsorption tower length, etc. can be estimated from "Basics and Design of Adsorption Kitagawa, Suzuki, P.89-P.92". In addition, under the conditions of high temperature, low K exchange rate, and low Fe dissolution amount, the nitrogen adsorption rate cannot be ignored, so 2
All you have to do is analyze the component system. According to these results, the larger the amount of dissolved Fe, the more
This means that the higher the K exchange rate and the lower the temperature, the wider the mass transfer coefficients of oxygen and nitrogen become.Practically speaking, this means that the larger the dissolved amount of Fe, the higher the K exchange rate, and the higher the K exchange rate. As the temperature decreases, a lower inlet flow rate is allowed, and a higher inlet flow rate must be set at room temperature, low K exchange rate, and low Fe dissolution amount. In any case, the design of the adsorption tower and its operation can be carried out within the conventional technical range if the data on the change in outlet oxygen concentration over time shown in FIGS. 2 to 4 are obtained. Note that the selection of the low-temperature conditions is not determined solely by the properties of the adsorbent. For example, an absorption chiller may be used under conditions where sufficient waste heat can be obtained, and in this case the optimal temperature is around -25℃. When combined with a tube tube, the optimum temperature is around -10°C, and if the expansion turbine is driven by flowing high-pressure N2 gas, -30 to -50°C is preferable, and the temperature selection in the low-temperature range rather depends on the mode of cooling. do. Hereinafter, an example will be described in which the method for selective adsorption and separation of oxygen of the present invention is applied to a pressure swing type oxygen production apparatus. FIG. 5 is a schematic explanatory diagram of a pressure swing type oxygen production apparatus. In FIG. 5, 17 to 24 are automatic switching valves, 25 and 26 are adsorption towers filled with the oxygen adsorbent of the present invention, 27 is a heat exchanger for low-temperature cooling, 28 is a dehumidifier,
29 is a pre-cooler, 30 is an air compressor, 31 is an air strainer, 32 is a throttle valve, and a control device for controlling an automatic switching valve and the like is not shown. Assume now that the adsorption tower 25 is in the adsorption process and the adsorption tower 26 is in the regeneration process. air strainer 3
The air from which dust has been removed through 1 is pressurized by an air compressor 30, then roughly dehydrated and cooled to room temperature in a precooler 29, further dehumidified and decarboxylated in an adsorption tower 28, and then cooled at a low temperature. The air is cooled to -30°C by the heat exchanger 27 and sent to the adsorption tower 25 through the valve 20, where the oxygen in the pressurized air is selectively adsorbed by the adsorbent in the tower, and the nitrogen-enriched air is passed through the valve. 17 and is sent out from the same tower. At this time, valves 17 and 20 attached to adsorption tower 25 are open, and valves 18 and 19 are closed. On the other hand, while the adsorption tower 25 is performing an adsorption operation, the adsorption tower 26 first performs vacuum regeneration of the adsorbent within the adsorption tower 26 . That is, at this time, the adsorption tower 26
Of the valves 21 to 24 attached to the valves 21, 22,
24 is closed and the valve 23 is opened to reduce the pressure inside the adsorption tower 26 to atmospheric pressure (or negative pressure), desorb some of the adsorbed components adsorbed in the adsorption process, and oxygen-enriched air flows through the valve. 23 and is sent out from the same tower. At the same time as the pressure reduction process is completed, the valve 22 is opened, and the atmosphere is sent to the throttle valve 3 by a blowing means (not shown).
2 and into the adsorption tower 26 through the valve 22,
A scavenging process is performed in which the oxygen-rich void gas and residual adsorbed components in the column are sent out of the column through the valve 23. At the same time as the above steps are completed, the adsorption tower 26 moves to the adsorption step, and at the same time, the adsorption tower 25 moves to the regeneration step. As mentioned above, oxygen-enriched air and/or nitrogen-enriched air is extracted by continuously repeating the adsorption step and the regeneration step. In this example, an adsorption tower with an inner diameter of 50 mm and a length of 600 mm was filled with 1 kg of 1 wt% Fe-dissolved 20% K-exchanged Na-K-A zeolite molded into a sphere with a diameter of 1 mm using a tablet molding machine. Swing pressure between 1 ata and 5 ata, inlet air flow rate at 2.8Nl/min, temperature
Adsorption separation was carried out under room temperature conditions of 25°C. At this time, in FIG. 5, the product nitrogen concentration behind valves 17 and 21, the amount of nitrogen separated, the valve 19,
Table 1 shows the product oxygen concentration behind No. 23 and the amount of recovered oxygen. In addition, in the case of pure Na-A type zeolite, 25
℃, no product nitrogen was obtained from behind the valves 17 and 21, and 45% of oxygen passed through. this is,
This is probably because the slight decrease in oxygen concentration at the initial stage of adsorption, which was observed in the small air separation tester shown in Figure 1, was canceled out by the subsequent nitrogen adsorption. Around 25°C, higher inlet flow rates may be required.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に関しその効果を確認するため
に使用した実験装置のフロー、第2図、第3図及
び第4図は、実質的に純粋なNa−A型ゼオライ
ト、該ゼオライトの10%、20%K交換体、1wt%
Fe溶解Na−A型ゼオライト、1wt%Fe溶解10%
K交換Na−K−A型ゼオライト並びに1wt%Fe
溶解20%K交換Na−K−A型ゼオライトの常温、
0℃、−25℃の温度下の動的吸着量を示すグラフ、
第5図は本発明の実施態様のフローを示す。
Figure 1 shows the flow of the experimental equipment used to confirm the effects of the present invention, Figures 2, 3 and 4 show substantially pure Na-A type zeolite, 10% of the zeolite , 20% K exchanger, 1wt%
Fe-dissolved Na-A type zeolite, 1wt% Fe-dissolved 10%
K-exchanged Na-K-A type zeolite and 1wt%Fe
Dissolve 20% K-exchanged Na-K-A type zeolite at room temperature,
A graph showing the dynamic adsorption amount at temperatures of 0°C and -25°C,
FIG. 5 shows the flow of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 実質的に純粋なNa−A型ゼオライトに少く
とも2価以上の価数を有する鉄を溶解し、かつ
Naの一部をKで交換してなる酸素、窒素2成分
混合ガスからの酸素吸着剤。 2 室温以下の低温度域で酸素、窒素2成分混合
ガスを、実質的に純粋なNa−A型ゼオライトに
少くとも2価以上の価数を有する鉄を溶解し、か
つNaの一部をKで交換してなる酸素吸着剤充填
層に流過させて酸素を該吸着剤に選択的に吸着さ
せることを特徴とする酸素、窒素2成分混合ガス
を酸素と窒素に分離する方法。
[Claims] 1. Iron having a valence of at least two or more is dissolved in substantially pure Na-A zeolite, and
An oxygen adsorbent from a two-component mixed gas of oxygen and nitrogen, which is made by exchanging part of Na with K. 2. In a low temperature range below room temperature, a two-component mixed gas of oxygen and nitrogen is dissolved in substantially pure Na-A type zeolite, and iron having a valence of at least 2 is dissolved, and part of the Na is dissolved in K. A method for separating a two-component mixed gas of oxygen and nitrogen into oxygen and nitrogen, characterized in that the gas is passed through an oxygen adsorbent packed bed formed by exchanging the gas with oxygen, and the oxygen is selectively adsorbed by the adsorbent.
JP7270180A 1980-05-23 1980-06-02 Oxygen absorbent from two-component gas of oxygen and nitrogen and its using method Granted JPS56168833A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7270180A JPS56168833A (en) 1980-06-02 1980-06-02 Oxygen absorbent from two-component gas of oxygen and nitrogen and its using method
EP81302162A EP0040935B1 (en) 1980-05-23 1981-05-15 Oxygen adsorbent and process for the separation of oxygen and nitrogen using same
DE8181302162T DE3171473D1 (en) 1980-05-23 1981-05-15 Oxygen adsorbent and process for the separation of oxygen and nitrogen using same
US06/516,541 US4453952A (en) 1980-05-23 1983-07-22 Oxygen absorbent and process for the separation of oxygen and nitrogen using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7270180A JPS56168833A (en) 1980-06-02 1980-06-02 Oxygen absorbent from two-component gas of oxygen and nitrogen and its using method

Publications (2)

Publication Number Publication Date
JPS56168833A JPS56168833A (en) 1981-12-25
JPS6358614B2 true JPS6358614B2 (en) 1988-11-16

Family

ID=13496920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7270180A Granted JPS56168833A (en) 1980-05-23 1980-06-02 Oxygen absorbent from two-component gas of oxygen and nitrogen and its using method

Country Status (1)

Country Link
JP (1) JPS56168833A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481018A (en) * 1982-11-15 1984-11-06 Air Products And Chemicals, Inc. Polyvalent ion exchanged adsorbent for air separation
US4732580A (en) * 1986-10-01 1988-03-22 The Boc Group, Inc. Argon and nitrogen coproduction process
US6069850A (en) * 1998-03-18 2000-05-30 International Business Machines Corporation Method and apparatus for driving a battery-backed up clock while a system is powered-down

Also Published As

Publication number Publication date
JPS56168833A (en) 1981-12-25

Similar Documents

Publication Publication Date Title
US4453952A (en) Oxygen absorbent and process for the separation of oxygen and nitrogen using the same
JP5608184B2 (en) Zeolite adsorbent, process for obtaining it and use for removing carbonate from gas streams
US3140932A (en) Separation of an oxygen-nitrogen mixture
JPH01160816A (en) Method for selectively adsorpting co2 by zeolite
TW555587B (en) Process for the decarbonation of gas flows using zeolite adsorbents
JP2007516059A (en) Method for prepurifying air in an accelerated TSA cycle
JPH0459926B2 (en)
JPH08508968A (en) An improved method for the removal of gaseous impurities from hydrogen streams
JPH0127961B2 (en)
JPS6358614B2 (en)
JPH1099676A (en) Adsorbent for air separation, its production and air separation using said adsorbent
US9651302B2 (en) Purification method and purification apparatus for feed air in cryogenic air separation
JPS6358613B2 (en)
JPH0530762B2 (en)
JPS6226808B2 (en)
JPH0378126B2 (en)
JPS6258773B2 (en)
JPS59179127A (en) Separation of oxygen and nitrogen from gaseous mixture under condition of low temperature and low pressure
JPH0455964B2 (en)
JPS61245839A (en) Oxygen selective type adsorbent
JPS5864132A (en) Adsorbent for adsorbing and separating gas
JP4107781B2 (en) Method for producing 13CO enriched CO gas
JPH04310509A (en) Removal of impurity in nitrogen gas
JPS6125619A (en) Pressure swing system gas separation utilizing cold heat
JPS61129020A (en) Separation of oxygen and nitrogen from gaseous mixture